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1 Introduction

Helicity 3/2 field equations seem to play a crucial role in general relativity as well as in
twistor theory. Indeed, if we consider the Dirac equation for the first potential of a helicity
3/2 massless field,
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the vanishing of the Ricci curvature can be taken as a consistency condition for such an
equation in curved space-time (see for example [1]). Such a close connection with Einstein’s
vacuum equations is quite remarquable. Moreover, twistors in flat space-time are interpreted
as charges for spin 3/2 massless fields (see [3]) and it is therefore hoped that these fields in
vacuum space-times might be used to define twistors.

The approach adopted here is purely analytical. The idea is to set up a technical basis
that will {maybe) lead to a better understanding of the analytic or geometric obstacles to
the definition of a "Il-charge” in Ricci-flat space-times. We chose to study the case of the
Schwarzschild metric

Guodrtde” = Fdt* — F7'dr? — rtdw?® (2)

where /" = 1 — 1/r, the Schwarzschild radius being here equal to 1.

Notations: Let (M, g) be a Riemannian manifold, C§°( M) denotes the set of C**functions
with compact support in M, H¥(M,g), k € IN is the Sobolev space, completion of C5°(M)
for the norm

k . .
1 e any = JX:;/M <V]f, V’f> dps,

where V7, dp and <, > are respectively the covariant derivatives, the measure of volume and
the hermitian product associated with the metric g. We write L*(M, g) = H*(M, g).
The 2-dimensional euclidian sphere S? is endowed with its usual metric

dw? = d0* + sin®0de* , 0 <8 <7, 0<p< 2.
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2 The global Cauchy problem

In this space-time, we consider the null tetrad [*, m® m®, n®, where

[*V, = \/% (F */23 + Flﬂaar) , (3)
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It is chosen so that the "extent” of each vector is 1, in order not to emphasize the importance

of any of the null directions with respect to the others. If we consider this tetrad as being

associated with a spin-frame o?, 4, i.e.
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we can calculate the Infeld-Van der Waerden symbols
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and the non-zero spin-coeflicients are

Fl/? F'E-1/2 cotgl (8)
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We now have all we need to translate equation (1) in terms of partial derivatives in a coordi-
nate basis. We obtain 8 scalar equations, two of which can be transformed into constraints
involving only space-like partial derivatives. The system in its hamiltonian form can be
written:
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where
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together with the two constraints
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We introduce the Hilbert space H defined by
H = {L7 (|1, +oof, x 5% F'dr? + ridw?) ) (16)
and the successive domains of H in H
D(H)={UeH;, HUEeH, 1<j<k}, keIN" (17)

We also consider the spaces H. and D(H*)., k € IN", of the elements of % and D(H*),
k € IN”, which satisfy the coustraint equations (14), (15); i.e. if we write (14) in the following
way

1/2 / /2
AU:(), A:(—F L3)2h+?—1:|‘_£aF Lz,E,O,O), (18)
T T T r r
and in the same manner (15) could become
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then, we have simply
H.=KerA[|KerB (20)
where KerA is the kernel of A in H, and for k € IN™,
D(H*)e = (KerA)p ey [ V(K er B) pey = Ker A(\ Ker B(\ D(H"), (21)

(KerA)D(Hk) being the kernel of A in D(H*). I these spaces with constraints, the following
existence and uniqueness result holds:

Theorem 1 For any initial data Uy € H, (resp. Us € D(HF)., k € IN*), equation (10)
adwits a unigue solution U such that

UeC(IRyHe) (resp. U €C (It D(H).)) (22)

and

Ulimo = Us. (23)



Note that if Uy € D(H*)., k € IN*, the solution U has the following additional reqularities
which are straightforward consequences of (10)

Ue (k1 ¢ (IR D(H*).) - (24)
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Moreover, the Rarita-Schwinger 3-form
ﬂ = iaacl O dz® A dlEb A dIEC, (25)

is divergence-free, oo denoting the spinor, symmetric in B',C’, whose components satisfy

(10), (22) and (23). In other words, if we consider the explicit translation of (25)
<& >p = (58'0'7773'0') I + (éll’l’ani'l’)m + (65'1',775'1')” + (fg'w 778'1')”

+ (fé/l/»ﬂ?’l')m + (5?'1')773'1') L2 + (fé'o-'ﬂ?g'l')m + (58'1”773'0')” , neH (26)

where (, )2 denotes the standard scalar product on L? (|1, +oo[, x S2, F~'dr? 4 r*dw?), then
forany U,V € D(H).
<HU)V >p= - < U HV >4 (27)

and if U € C (IRy; H.) is a solution of (10), the quantity < U,U >p is conserved throughout
time.

Hints of the proof: Firstly, we decompose equations (10), (14) and (15) into spin-weighted
spherical harmonics. On each sub-space of given angular dependence, we prove a global
existence and uniqueness result for solutions without constraints. This is done using a fixed
point method: the evolution system (10) is expressed in the form of an integral equation, the
fixed points of which are the solutions of (10). The next step is to prove that if the initial
data have a given angular dependence and satisfly the constraints (14) and (15), then the
solution associated with this initial data satisfies the constraints at each time ¢. To prove
this, we show that the spaces with constraints are stable under H from which we infer their
stability under the one parameter continuous group generated by H. At this point, we have
proved the theorem for initial data with a fixed angular dependence. By linearity, the same
result holds for initial data involving only a finite number of harmonics, i.e. belonging to a
dense sub-space of H, (or D(H*),, k > 1). The last step is to extend the propagator to the
entire space using an energy estimate. For more details about these analytical methods, see
for example [2].

3 Where do we go from here?

Thus, the Cauchy problem is well-posed for a spin 3/2 potential ¢ 5, in Schwarzschild’s
space-time and of course, it is also true for a pure gauge field which is simply given by a
solution of Weyl’s neutrino equation. In particular, a non global o can be propagated into
its domain of dependence and the same holds for the gauge. Therefore, at least in the case
of the Schwarzschild metric, we now have some information about the nature of the obstacle
to the construction of a Il-charge. It was known that such an obstacle had to exists but it
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was not clear wether it resided in the propagation or in the patching of tlie potential modulo
gauge (see [3]). The results obtained here seem to imply that there is nothing pathological
about the propagation. Hence, the obstacle is more probably of a topological, rather than
analytic, nature. More precisely, there might not exist at each time a proper covering of S%.

Several directions of research can now be followed. Firstly, the same kind of study can be
carried out in other Ricci-flat space-times. This would tell us wether the result obtained in
Schwarzschild’s space-time is an exception or if the propagator of the potential modulo gauge
really is a "reliable” 1-parameter group in all vacuum space-times. Of course, one would
also like to understand what features of the geometry cause the obstacle, be it topological
or analytical, to arise. Studying the limit of a Schwarzschild black-hole when the mass goes
to zero could shed some light on this conundrum. ;From the viewpoint of analysis, it would
be interesting to push further the study of spin 3/2 fields in black-hole backgrounds. An
open problem is the construction of a time-dependent scattering theory in the Schwarzschild
case. The technical difficulties are numerous, but it seems a fairly natural conjecture that
the asymptotic behavior of linear spin 3/2 fields in the neighbourhood of horizons or in
asymptotically flat regions can be described in terms of classical wave operators. Work is in
progress.
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