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Two examples of classical scattering off fixed sources

By

lan Roulstone*

2nd March, 1995.

1 Introduction

Penrose, in Penrose & MacCallum (1972, §3.2), describes the scattering of zero rest-mass
particles by impulsive electromagnetic and gravitational waves by constructing hamilto-
nian equations on twistor space. The fixed source problem was also addressed in Penrose
& MacCallum (1972, §5.2) and formal expressions for the hamiltonians, obtained by use of
the twistor transform, were given. The approach to scattering off fixed sources described
here differs in two ways from that given in Penrose & MacCallum. Firstly, we consider
the scattering of zero rest-mass particles off fields generated by zero rest-mass particles,
whereas Penrose & MacCallum considered zero rest-mass particles scattering off a mas-
sive fixed source. Secondly, because the fields produced by the zero rest-mass particles
are impulsive waves, we can utilize the explicit ‘scissors and paste’ methods used in Pen-
rose (1968) and Penrose & MacCallum (1972, §3.2). This avoids the use of the twistor
transform. The fields off which the zero rest-mass particles scatter are treated as fixed al-
though the sources are moving with the speed of light. In contrast to scattering off a fixed
Coulomb field (with timelike source), the whole description is manifestly Lorentz covariant.

We construct the hamiltonian equations by applying the ‘scissors and paste’ method,
in which the zero rest-mass particle undergoing scattering is described by a null twistor,
to find a solution to the Lorentz force equation and to construct a space-time consisting
of two regions of Minkowski space, M, separated by an impulsive gravitational wave. The
scattering is thus described in terms of the unfolding of a canonical transformation on the
symplectic manifold of null twistors.

In the following sections we utilize the results of Bonnor (1969a,b) to construct fixed
backgrounds generated by null fluids. These solutions to the Maxwell and Einstein equa-
tions have the form of plane-fronted waves which, upon dropping differentiability require-
ments, may be impulsive (i.e. with §-function amplitude).

2 A twistor hamiltonian approach to scattering off fixed
sources

2.1 The Lorentz force problem

Bonnor (1969a) showed that one can obtain plane wave solutions of Maxwell’s equations
where the source was taken to be a charge moving with the speed of light.
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Introduce a spin-frame o, $4, with normalization a48% = 1, and the associated

—=A' —A’ ' e
null tetrad 1* = at@?’ n® = 457 ,m® = af" ,m* = 4@, A position vector takes
the form 2% = vl{* + un® + (m® + (M°.

The field is generated by the vector potential
o = (2¢4,0,0,0), (1)

where Bonnor takes the function ¢ as C'! and piecewise C?. This condition ensures the
continuity of the Maxwell field F*® and precludes surface charges and surface currents.
(Later we will drop this requirement for the sake of considering fields with é-function
amplitude.) The function ¢ takes the form ¢ = ¢(u, ¢, (). The components of the
Maxwell 2-form, Fgs, are given by Fy, = V|, ®;). The components of the 4-current
J* = (47)" 'V, F2 are

J* = (2p,0,0,0), (2)

which implies J* o [* and 4mp = ~VZ2p. Thus in a charge-free region where J* = 0, ¢
satisfies
9tp
9¢ac

The electromagnetic field is null, that is, it satisfies F**F,, = 0 and gabed o By =

(3)

!
©

We now consider a specific choice for the function ¢. For r = (CZ)% >a, a €R,a
positive constant, take

¢ = §(u)[2log(r/a) + 1] .

(Bonnor chooses ¢ = ¥(u)[2log(r/a) + 1] for r > a, and ¢ = ¥(u)r?/a?, for r < a, with
¥ € C?. So we are dropping the differentiability requirements, and we have no need of the
solution for r < a. We note that Bonnor shows that such a solution can be obtained from
an advanced potential, but the total energy of the field due to a single charge moving with
the speed of light, diverges. When charges of both signs are present (so that the total
charge is zero), he shows that the field has finite energy.)

We find that the electromagnetic spinor takes the form
2a
$11 = pappp’ = 5(”)?—3 (4)

and remark
$aB X og0pg .

All other components of the anti-self-dual part of the field vanish.

We wish to solve the Lorentz force equation in this background. The Lorentz force
equation may be written in the form £,V P* = eF2b P which gives well-defined equations
of motion for null momenta P, = T47 4. This equation reduces to

TBFBIVBBITA = 6(}5'4371'_3 . (5)
In order to solve (5) in the background (4) we make the ansatz

7™ = 7 4+ o). | (6)
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Here, T4 is the initial momentum, [74] is the change in momentum and ©(u) is the

Heaviside step function. So we find upon substituting (6) into (5), and using (4),

2a e o

'7TA] = —mg—,, (7)

o ey . _ I
where we have inserted the initial momentum into 7rA7rA:VAA . From here an we shall

drop the constant 2a.

We follow Penrose & MacCallum (1972, §3.2) in finding a twistor hamiltonian_for-
mulation of (7). The hamiltonian takes the form H(Z%, Z,) = HY(Z%) + H™ (Z.),

where

R ¢
M2 =TH-(Z) = [ () da (®)
and f(z) = z~!. On the surface u = 0, the coordinate ( is given by
A
= oqwW
i = —p—. (9)
Q" T4
Then o3+
. € Yy
T4 = = = 10
677,4 ZawA (‘a‘A'n-A, ) ( )
and N o
‘ 37‘( ew
oA =i = —i 11
6 167!',41 Z'(_I-B’?I'Bl ’ ( )
where the hamiltonian (8) is
A
HZ¥) = el (~'_" ) , 12
HHZ") = e log (i (12)

with Ay « (a4,0)and B, « (0, a?’). We observe that the hamiltonian is homogeneous
of degree zero in Z*. Equations (10) and (11) may be expressed in the manifestly twistorial
form :

2.2 Scattering off an impulsive gravitational wave

We now turn to the formulation of a twistor hamiltonian approach to scattering off a fixed
gravitational source. Here we make use of the result of Bonnor (1969b, §7), to obtain
an exact solution of Einstein’s equations that represents the gravitational field of a zero
rest-mass particle. The field has the structure of a plane-fronted impulsive gravitational
wave and hence our twistor hamiltonian approach to scattering null geodesics off this field
will follow the ‘scissors and paste’ technique of Penrose (1968).

The metric for plane-fronted gravitational waves can be written in the form
ds? = 2dudv - 2d(dC + 24(w, ¢, )du’. (13)

The function A(w, ¢, () is taken by Bonnor to be piecewise C!, however we will suspend
this differentiability requirement to allow for a é-function behaviour in u. For this metric
(¢ is a Killing vector. The Ricci tensor for (13) is given by

ab _ __l 82‘4 lalb
T 20¢0C
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From the field equations

1
Rab __ §gabR = _87rTab ,

we have 2
ab 1 d A lalb

= 167 9CaC |
and thus we may interpret this as the energy tensor of a fluid of zero rest-mass particles.
In (13) we choose

A = 5@dlog<£> ,

where a is a constant and r? = (({ > a.

We now outline the ‘scissors and paste’ method as applied to the impulsive gravitational
wave. Cansider two regions of Minkowski space, M and M?*, separated by a hypersurface

*

Y given by v = 0 = u*.

i

M ds? 2du dv — 2d¢dcC,
M* o ds? = 2durdv* — 2d¢tdC,

and identify the two coordinate patches according to ( = (*and v = v* + s((, {),
where s((, {) = log (-:;—) This identification creates the curvature.

The deflection of a worldline passing through ¥ is written in terms of the transforma-
tion of the spin frame a?, B4,

Js
gt o~ 52_0/4 (14)
at = ot (15)
Whence
_B' ds _
57!',4/ = (7(‘31(1 )(,TC-QAI, (16)
and by construction
6XAAI = _S(C7 Z) aAaAI b
so that for 6w? we have
swh = XM . + XMy,
. 1 ! 8 . — '
= x4 (7‘(3/5'8 ) iﬁ}ql - 138((, () oAt TAr . (17)

Introducing the hamiltonian
H(Z%, Zo) = (@ 7g)(aBTp)s((, ),

we may write the equations (16) and (17) for the scattering of the null geodesics in twistor
hamiltonian form

OoH
§Za = —ft— .
‘97,
The spacelike coordinates on ¥ may be written in terms of Z,:
A7, — ;
( = i—=~, where Ay « (a4,0), By «~ (0,a*), (18)

B°Z,
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and therefore the twistor hamiltonian is given by

H(Z¥, Zy) = —(B Z°)(BPZg) log[( 'z, )( A2 )] : (19)

BﬁZg B zZ°

This is homogeneous of degree 1 in Z% and Z,. We may write the function (19) as the
sum of two expressions which involve functions that are homogeneous separately in £
and Z,. To see this (cf. Penrose & MacCallum 1972, §3.2; Tod 1975), introduce two such
functions gt and g~, where

dm
+ Zcx 2/
g 2(B’ ) —~
and g- = g¢%. Clearly, g* and g~ are homogeneous of degree 2 in Z* and Z,, respectively.
Then we see that the hamiltonian (19) can be written as H(Z%,Z,) = H* + H™, with
9g*(Z*)
+ of
HY = Z,1 577

where %% is the infinity twistor, together with a similar expression for H~.

3 The scattering transformation

The results (10), (11), (16) and (17) for spin-1 and spin-2 monopole scattering may be an-
alyzed both in terms of space-time and twistor space kinematics and dynamics. We begin
with a brief analysis of the scattering dynamics for the case of the fixed electromagnetic
source.

Let X2 be the position vector with respect to the origin O, of the point where the
worldline of the zero rest-mass particle meets the wave. Having such a vector, we construct
the position vectors for the particle before (with subscript ‘b’) and after (with subscript
‘a’} scattering in the following manner

A :XAA + ATAnA

' '
x;lA _ XAA + /\—-—A A ,

for varying A € IR. The initial momenta are 7rA7rA , and the final momenta 74 A are
obtained from Hamilton’s equations. In the case of scattering off an electromagnetlc wave
6XA4" = 0, so the change in 44’ given by

brAAT = AN L pAa
a )
may be obtained by the substitution 72" = #4" + [14], as follows
b4 = ARAE) 4 nE [T 4 () (20)

We may describe some of the salient features of the dynamics, in terms of the magni-
tudes of ‘time delay’ and ‘deflection’ vectors, obtained by projecting (20) into timelike
and spacelike 2-surfaces respectively.

If we denote the spacelike 2-surface by .S then the projection operator taking a vector
at some point of § into the 2-surface is (see e.g. Penrose & Rindler 1984, p. 271)

AA AFA 5 A=A’
Spg = ~a’B g - prat apfp
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and we can project the connecting vector between the scattered and unscattered geodesics
(in a spacelike direction) into the 2-surface

biAN = GAR BB
We find that the magnitude of 6344 is

CAA o~ e?
0% 5IAA’ (68 - .

¢

Thus the deflection decreases as r~!. We may examine the magnitude of the time delay in
a similar manner. In this case we use a timelike 2-surface T', with the projection operator
T7 that takes a 4-vector at some point of T into the 2-surface

AA! A_A' 5 7 AmAl
Tgg = a"a” PPy + B8 apag,

A

which, together with the expression for the change in 244, gives

' —_— ’ ’
efpilatat efgn? atmh

! ! ~ !
ngfémBB = 6344 = = =
Ca TB C()‘ g

The vector 644" is null and therefore the magnitude of the time delay is a constant (zero)
and independent of the impact parameter.

We may consider the time delay for the scattering of a null geodesic off the impulsive
gravitational wave. For the space-time given by (13) t* is not a Killing vector. The
transformation for t*, t* ~ %% is given by, from (14) and (15),

]. A=A’ A——A' l ( AA’ A-A’ 83 A—A' 85 A—A’ 85 88)
—la"a = |1 a’ —= «a - a"w” == .
- ( +445%) = 5 + At v atBh g 4 5 57
Thus, for instance, a 2-surface with projection operator Ty, will have no invariant mean-
ing. However, as Penrose & MacCallum (1972) remarked, there is no ‘absolute’ concept of
time delay in general relativity and thus the time delay that we shall calculate here is not
inconsistent with that obtained from examination of orbits in the Schwarzschild solution.

The deflection may be calculated in a straightforward manner. Write down an in-
finitesimal change in the coordinates of some position vector as

sz = §XAMY 4 N+ amAeN

= —s(¢,O)etw? +)\(TBaB)g§aA7rA’ + A(EB,WB')g%ﬁ‘Aa"'. (21)

Then using (14) and (15), for the spacelike surface we calculate S388" and for the timelike
surface we calculate T*E,Bl. Thus the ‘time delay’ and ‘deflection’ may be computed from
6xAA'T;§,B' and 6244 53BB" and from the norms we obtain the r=' dependence for the
deflection and zero for the time delay (the vector being null). (Remark: if we had chosen
to transvect (21) with 8B g then the function s(¢, () would contribute to the ‘null delay’.)

We have shown that the behaviour of null geodesics in flat space-time with an impulsive
wave background may be understood in terms of the unfolding of a canonical transfor-
mation of null twistors. Penrose (1968) discusses the transformation properties of the
canonical equations on twistor space and in particular refers to the invariant structures of
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the system. Following Penrose op. cit., we shall examine the invariance of the twistor norm
77, and the inner product Y*X,, under the action of the transformation 8, generated
by the hamiltonians (12) and (19). To examine the symplectic invariance, we consider cer-
tain differential forms: ¥ = iZ*dZ, and the symplectic two-form @ = d¥ = idZ* A dZ,.

If H is homogeneous of degree m in Z* and Z,, then §(Z°Z,) = 0 and the norm is
part of the invariant structure. This holds for hamiltonians (12) and (19). It follows that
this may be interpreted as the invariance of the helicity under §. The symplectic two-form
is the natural integral invariant associated with the hamiltonian system. It is invariant
under the action of §. Examination of §9 shows that it will vanish iff H is homogeneous
of degree one in Z%. Thus ¢ is an invariant for the hamiltonian (19) but not for the
electromagnetic case (12).

Of particular interest here is the effect of the transformations on the twistor inner
product Y*X,, which, in general, will not be preserved under the action of the transfor-
mation. We construct a measure of the shift induced by the transformation generated by
(12) on a point of P IN.. Let two rays y and p' be described by the two null twistors X
and Y*

X — (iz*'ny, na) and Y — (4, Ea)

Choose the two rays to be abreast and focused at infinity. That is

yAA A = A4 o aABA ~ mphat

—A4' J— .
where m, i € C, A°V,8° = 0,and Y*X, = 0. We then scatter the two rays using
our hamiltonian prescription and then consider the product X**Y .. We find

5(YGYG) = je ((CC)IC% (CC)Q) (22)

(where (/, denotes the (-coordinate of the vector 44 or yAA'). This will vanish only
if X and Y are coincident. In other words, even at large values of (, the expression will
only become small if the values of the z and y coordinates are close together. Hence the
scattering transformation induces a shift in viewpoint from PIN to N. This is a realization
of the fact that, in general, the canonical transformation will induce shear on a bundle of
shear-free rays. The asymptotic behaviour is typical of the Coulomb problem, where at
large distances from the source the field has an effect on the dynamics unless the interac-
tion is switched off (for further discussion see Hodges 1983, 1985; Roulstone 1994).

A similar calculation for the scattering of two parallel rays off an impulsive gravitational
wave gives, from (14) et seq., the following for the change in the inner product

_ - OH .. M
6 YaXa = amd Xa"_: YCX__ Y
(Y Xa) R SRy e

- — ~ i — (A'X, B'X

= —-B.,Y*BX log ~ -B,Y*BPY LAl
i — - i - (AYY BY"
-B,Y*BPX 41 s+ ~B,X*BP v X
+ 2 ﬁ Og(CC) + 2 X X,B (A&Xd B5X5> k)

# 0, (23)

as ( — o0o. Thus we see that the s, and s, terms now contribute directly to the displace-
ment.
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4 Summary

We conclude that the unfolding of a canonical transformation on the symplectic manifold
of null twistors can describe the scattering off a fixed background and preserves the usual
integral invariants. In contrast to the formal inhomogeneous expressions for the hamilto-
nians given in Penrose & MacCallum (1972, §5.2), and by virtue of their construction, the
hamiltonians (12) and (19) are homogeneous. We have shown that for both the Coulomb
and the linearized Schwarzschild backgrounds, shear is induced by considering the be-
haviour of neighbouring rays. This displacement does not vanish as one moves to large
distances from the source and is described naturally in terms of the non-projective space
IN. One can show that in the case of an electromagnetic dipole field, which decreases faster
than the Coulomb field, the amount of shear decreases with increasing impact parameter.
Further details, and the extension of the results to massive particles scattering off these
sources (cf. Tod 1975, Tod & Perjés 1976), can be found in Roulstone (1994).

Thanks especially to K.P.T.
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