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Self-dual Einstein metrics with symmetry

There are three different ‘field equations' that one might impose on a four-
dimensional Riemannian metric: one might require it to be Kéhler or to be Einstein or
to have self-dual Weyl tensor. These possibilities lead to an attractive Venn diagram
in which the overlaps all have ‘names’ and have all been studied at one time or
another. We may consider what happens to this diagram when the metric has a
Killing vector. Again the regions usually have names as follows:
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With symmetry, the regions are:

1: 3-dimensional Einstein-Weyl spaces (much studied),
2: Kahler-with-symmetry, studied by LeBrun (J.Diff. Geom. 34 223 (1991),

3 and 4: scalar-flat Kahler and hyper-Kahler respectively with symmetry, solved by
the SU(s0 )-Toda field equation (LeBrun);

5: Einstein-Kahler with symmetry, studied by Pedersen and Poon

(Comm.Math.Phys. 136 309 (1991)) and solved by the 'Pedersen-Poon equation’,
equation (7) below;

6: self-dual Einstein or 'quaternionic-Kahler' with symmetry.

In this article, | will find a simple form for the field equations for region 6
corresponding to Einstein metrics with self-dual Weyl tensor and non-zero scalar

curvature. After a sequence of transformations, the field equations end up being
rather familiar.

As an introduction to the calculation, | will review some of the other regions in the
diagram. For Kahler-plus-symmetry, we know from LeBrun‘s work (J.Diff. Geom. 34

223 (1991)) that coordinates can be found in which the metric can be written in the
form
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The Kahler condition & 2« ta :L S
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from which the function W must satisfy
Wux_ + W\na + (WQK)H_ = O (3)

If we now require the scalar curvature to vanish then the function u must satisfy the
‘SU(w)-Toda field equation’, namely:

W “ -
xx + WUy + (e );;_L = O. @)

Thus a scalar-flat Kahler metric is determined by a solution of (4) together with a
solution W of the linear equation (3). One particular solution of (3) is given by

W = CuU, ; C=cConst (5)

where u satisfies (4).

In this case, the metric (1) is actually hyper-Kahler or equivalently is Ricci-fiat with
self-dual Wey! tensor (and so corresponds to region 4 in the figure).

If, instead of vanishing scalar-curvature, we seek Kahler metrics with vanishing
trace-free Ricci tensor then in place of (5) we must take

\f\/ = U
Az+M

(6)
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where M is a constant (of integration) and A is proportional to the Ricci scalar. Now
in place of (4) we find that u must satisfy the equation:

Urxe + Mgy *(‘e- )3} = ‘*—————Q[\Q— Ha (7)
Ne+ ™M

an equation found by Pedersen and Poon (Comm.Math.Phys. 136 309 (1991)). This
corresponds to region 5 in the figure.

it A is non-zero, then we may absotb M into z whereupon N\ disappears from (7). If
is zero then this case reduces to the previous one.

with /A non-zero, the field-equations lie outside the ‘charmed circle' at the top in the
figure. Everything inside the circle has self-dual Weyl tensor, so can be solved by a
twistor construction and so all symmetry reductions of them should be integrable,
outside the circle there is no expectation of integrability.

Region 6 in the figure, corresponding to self-dual Einstein metrics with symmetry and
with /A non-zero, lies inside the charmed circle and so should lead to integrable

equations. My purpose in this note is to find these equations. What turns up is
eventually very similar to the scalar-flat Kahler case.

We begin by finding a canonical form for the metric in this case. Suppose then that
we have a Killing vector K in a 4-dimensional Riemannian space. In terms of
spinors, the derivative of K decomposes as:

vﬁ \<\n = (‘ng éﬁ‘g' + "Ta' éAR @

and the following identity, true for any Killing vector,

Va V\QKC = chc.cL \<J~ (9)

entails
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Define the scalar ¥ by 2¥ =¥ W, and define the tensor—:i by
|
b Q g
A N (1)
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then T is an almost-complex structure. It is a straightforward calculation based on
(8) and (10) to see that this complex structure is actually integrable. This fact, which
is crucial in what follows, was pointed out to me by Lionel Mason. Thus the metric is
Hermitian, but will not be Kahler unless A is zero.

“.Q‘
Contracting the second of equations (10) with Y+ enables us to see that

LAY = A T e = Atepx®y

(12)

[N
so that .:ru.K = g_vo"l’.
A

We may now follow what is essentially LeBrun's argument to arrive at the form of
the metric. If the Killing vectoris X = ‘o/ . in contravariant form then in covariant
form it can be written ®

K. = 1 (4t+06)
W
-\
in terms of a 1-form & and a scalar W = (KX ,

(13)

We define a coordinate z = 9:,::" (which incidentally makes the limit A> 0 gnetobe
taken with care). The 2-blades containing K and dz are eigenspacres of the complex
structure and so are integrable, as are their orthogonal complements. Introduce a
complex coordinate § = x+iy on the orthogonal complement, then the metric can be
written exactly as in (1) again.

This time the metric is not Kahler, so we don't have equation (2). To see what we
have instead, note that from (8) and (12)
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Knowing these we can caiculate that

W L
a6 = W, ADAA%+WSA%A d + @ (W, - an2w ) dx ady (15)

This has an integrability condition which naturally differs from that in (3).

The next step is to impose the conditions on the metric (1) that the trace-free Ricci
tensor vanish and that the Weyl tensor be self-dual. | carried out this calculation
following the formalism described in my article in Twistor Theory ed. Stephen
Huggett (Dekker; 1995), the proceedings of the Seale Hayne twistor conference.
The details are unilluminating, but the result is that W is determined as

—QANW =
2 2+ (16)

where u satisfies the equation

L L5
2" A7)

Equations (15), (16) and (17) with the metric (1) form our principal conclusion. It can
be checked that the integrability condition for (15) is automatically satisfied.

One simple class of solutions to (17) is the separable solutions: write u in a
separated form u= { (x.4)+q(?) then the general such solution of (17) is

e - 2 (4w s oz + az?) (18)
(1 + R{xm+g)*
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where a,b and k are arbitrary constants. The resulting metric is the metric with U(2)
symmetry found by Pedersen (Math.Ann. 274 35 (1986)).

What is unexpected, and is a disappointment, is that (17) can be transformed back
into (4); in other words, self-dual Einstein metrics with non-zero scalar curvature are
determined by the SU(w )-Toda field equation.

To see this, introduce new variables w = 1/zand v = u - 4logz, then

= Waxw + W e Wy, v U =G w1 (19
®* ‘3‘3 ~+ L FE R 3 £y > 2‘_\
= O

The metric (1) transforms to the following form:

as*- P EQVU::LL+A3») vda¥l+ L (dt r0)"
wl—.

(20)
Pw™

where v satisfies the SU(e0)-Toda field equation (in X,y and w), P is given by

and € is determined by

20 - didw — P dosdax 0 (P 2 P NP dxads
d 3 o

w (22)
- =1

IV, v \
= '_?_A_{u)vu,,_ OAALJ-}- adur\du ) (L.)Vuv _vu*.uvu)dth.a}
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