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Introducﬁon

The existence of complex structures in quantum theory and their possible role in a
theory of quantum gravity is a subject of much current interest. As Pauli points out
these structures are essential in ordinary quantum mechanics in order that the state vector
evolves unitarily subject to the appropriate field equation. Hawking and Gibbons have
argued that the complex structures correspond in the ‘history’ of the universe to the
emergence of our classical notion of time in thermodynamics. In the passage from a 4-
dimensional real Euclidean universe to a real Lorentzian universe one acquires a real ‘time’
coordinate and thus a notion of positive and negative frequency. It is their view that the
complex structure comes into play at the interface of these two regions where the real and
imaginary time coordinates vanish.

In terms of the theory of Fock space, we have the two cases of a Hilbert space of real
or of complex valued solutions to the field equation. In the former case, there 1s only one
available complex structure since this must map a given real solution of the field equation
to another real solution. In terms of the transform @(k) of the field multiplication by a
complex nuinber a = z + 1y 1s replaced by the action of the operator © + Jy on ¢ where J
acts linearly and multiplies the positive and negative frequency parts of the field by +: and
—1 respectively. We say that J is the complez structure acting on the Hilbert space. Thus
the action of J amounts to multiplication by ¢ but within the Hilbert space. In the case of
a complez valued field there are in fact two possible complex structures — that functionally
identical to the one given above, together with straightforward multiplication of ¢ by the
complex number . However it is only the former choice which leads to positive values for
the expectation of the energy operator - since particles and their associated antiparticles
both have positive rest energy we mnake this choice on physical grounds.

In this article we discuss the action of the complex structure J on a real or complex
valued spacetine field ¢ with any index structure via multidimensional Cauchy integra-
tion. In the case of a 4-dimensional integral ¢ is a field required to be analytic on real
compactified spacetime M# and extending therefore to a 4-complex dimensional neigh-
bourhood. In the 3-dimensional case we require further that the field satisfies V%p = 0
throughout CM#.

The formulae we give are essentially different from the usual multidimensional Cauchy
mtegral formulac one encounters in complex analysis. The latter are merely generalisations
of the 1-dimensional residue calculus to integration around the boundary of a n-dimensional
polydisk — a triviality by repeated integration.
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The formulae we present have the property of Lorentz and conformal covariance.
A Reproducing Kernel (RK)
Holomorphic extensions and positive frequency.

We let M# denote real compactified Minkowski spacetime. The invariant spacetime
regions CM*, CMY, M# are of cousiderable physical significance. A spacetime field ¢
which is holomorphic on CM* (by which we mean holomorplic on some open neighbour-
hood U D CMt) is called positive frequency. Fields which are holomorphic on C M~ are
called negative frequency. In contrast, and we will not be considering such, fields which
are holomorphic on the open future or past tubes CM™, CM~ are called future or past
analytic. CM° denotes the set of points of M# with spacelike imaginary part.

Positive frequency is equivalent to holomorphic extension to the forward tube defined

by

CM* = {2 — iy*) :4° > 0, (1°)° > Iy ).

We now define the contours in the 2% plane I'*: _ .
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Both contours are future pointing in real time. Consider
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where & = |z|; z is assumed to be real. Setting f(zY) = (7%% we calculate the

residues of f at 2° = £k &k # 0.

—(,0+(1C,Z) 1 akto_f_

residue at & =

43 k7 ot =
Similarly, but noting sign differences
(1 +
residue at — k= © (=k,2) , Ly [e=—&-
4k3 (—2k)* Ot

Since the field 1s positive frequency we may close off the contour in the lower half 29 plane,
and the residue theoremn gives

wi ot (k) — ot (k) i [0p7 (0H(K) + Dt /O(—k)]

T= .3 | .
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For k =0 L oot
T =-2m- resgp+/(zo)4|o = —gm' 3103 o
which is just a finite number.
Now
L[ et e [ et R) -t (k). [0t /0t(k) + Dt [Ot(—k)]
I = " d*z = — [ | —
- z 2 S$3 k3 k2
, o0 TR — ot (=L
= ﬂ/ / [cp (k) =7 )] — [0 JOt(k) + 0™ JOt(—k)]dk d*S.
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The term from k = 0 in T' contributes zero since it is a simple discontinuity in the &

integration. The spacetime picture of this integral is shown below,

. [reelspating A

Note that the integrand has a removable singularity at k = 0 so 1s holomorphic i an
open neighbourhood of the real &k axis, and that, analytically continued as a function of
both positive and negative k, is an even function. The second term in square brackets
contributes zero since for each term separately the contour can be closed in the upper/
lower half plane enclosing no singularities. We may therefore replace the k integration by
the contour integral in the complex & plane .

L[ et(k) - ot (=)
5/0-[ . |dk

where C 1s shown below
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(Clearly we could have also chosen C' to avoid & = 0 in the upper-half plane — this choice
will not affect the final result.) Now we can evaluate the k integral by residues; writ-
. . + t(—k .

ing this as 1 [.[* k(k)] — %fc[“"—%‘—)]dk, we see that the first term contributes nothing
as C can be closed in the lower-half k-plane. The second term on the other hand con-
tributes —mipt(0), since in this case C can be closed off in the upper-half k-plane. The

S? integration contributes a factor of 47. Hence

[ =27°p™(0).

We have thus eliminated any problems in dealing with the spatial 2—sphere depen-
dence of the field. In a sumilar way

/ “P_Sz)d‘*z = 273%™ (0).
r+ .
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Note that Hartog’s theorem does not apply. A simple corollary is the following

REMOVABILITY LEMMA (RL) : Given f holomorphic on CM¥, then

Ld“z =0, n=10-1,..

Proof. Write the integrand as Ez:l and use the reproducing kernel.

The Complex Structure for Spacetime Fields.

We introduce the complex structure J on spacetime fields as follows. Let J be a linear
map from V to itself

J:V =V

Then J is defined to act on a field ¢ by multiplying its positive frequency part by ¢ and
its negative frequency part by —i. So writing ¢ = ¢ + ¢~

J[p)=J@¢T +¢7] =J[¢*] + J[¢p7] = ipT —i¢™.
Clearly then
JP = -1 acting on all V
as required for J to be a complex structure on V. Note that J maps real fields to real

fields. The action of J constitutes a repolarisation of the field ¢ 5 (1 — 7).

- Now from our reproducing kernel above we see that

o) = 555 [ PEL s

where ' is depicted in the 2% plane
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Note that under time reflection T: 2% + —2z°, the contour reverses orientation so that J{p]
changes sign, as must be the case since T interchanges positive and negative frequency
parts. On the Riemann sphere of complexified time I'; is

2/, «
3G
We see that as k — oo, I'y pinches at 0o in z° and splits into two components in the future
and past tubes

with opposite orientation with respect to the great circle of real time. It is instructive to
see the geometry of the contour in the full four dimensions:

e

M# M) have topology S® x §1, 1 denotes the point at infinity. There is only one region
CMP°.

Up to an overall sign, there is another orientation of I'j — obtained by just flipping the
orientation of one of its constituents — this would simply reproduce any field of mixed
frequency.

Note that both M(*) are contractible — they sit inside C M* which are contractible man-
ifolds — however the positive and negative frequency parts of ¢ extend only to an open
neighbourhood of M# thus preventing contraction of the contours.
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Note that the contour must pinch at a point of M# - for example for the reproducing
contour if we instead chose

which is divergent since this encloses a dense set of singularities of the integrand.
The Complex Structure on Arbitrary Spacelike 3-Surfaces

It is essential in the consideration of scalar products for zero rest mass fields to un-
derstand how the results obtained above enable one to perform J via an integral over an
arbitrary spacelike 3-surface. In essence, we wish to understand how to obtain a. 3-surface
integral for J from the 4-dimensional contour integral above, by insertion, holomorphically,
of a delta function in 1maginary time. We have the following result.

THEOREM:

The action of the complex structure J on any spacetime field or potential (with any
index structure) ¢ satisfying V2 = 0 with the decay ¢ ~ r~(1+7) 5 > 0 at spatial infinity,
1s given by the 3-surface integral

—_
ek =307 [ g (V" - VPR, ()

~ on? z,z')
where K? = (2% —1'*)?, %, is future pointing, and £ is once differentiable and constrained.
to intersect the light cone of 2 at its vertex.

Remark on time symmetry. K% determines no time orientation. However both sides of the
above repolarisation formula reverse sign under time reflection - the positive and negative
frequency parts are interchanged and the normal to the surface of integration changes sign,
1.c. the repolarisation formula is consistent under T, time reflection symumetry.

Remarks on K. If §z = 2 — 2’ then K? = 0 if and only if éz has real and imaginary parts
which are spacelike, null, or zero, and are orthogonal. Therefore 1/K? is non-singular if
Sz € CM*. K is symmetric in z,z".

Note that our formula is manifestly Lorentz covariant.
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Proof: We rely on the results above for 4-dimensional integrals in an essential way. Consider
the general expression

w(f,g) = /fV“—V )g 'S,

This is a symplectic functional of f, g and the integrand is divergence free provided V2 f =
V?g = 0. We consider the case f = 1/K?*, g = . Note that V2f =0 in M even where f
itself is singular (see for example Schwinger’s papers on quantum electrodynamics c. 1949).
However as we shall see the 2-point kernel and the field do not play entirely symmetric
roles in an important way.

Now we complexify the r.li.s. of (x) above, 1.e. allow z — z = z —1y for real z,y. Then
the complez exterior derivative d = 9+ J of the forin in (*) vanishes since the integrand is
independent of Z, and is now divergence free in 2. Thus (x) is independent of £° provided
K # 0 and no singularities of ¢ are encountered. In real terms we have the frcedom
of deformation of a 3-dimensional contour in 8-dimensional space. Now define the linear
functionals I+:

+ la ‘a 1 13V
= [ (V- Vel a'E
(B, = €abeadz® A dz¢ A dzd), where

EF = {2%| 2% = 414¢, € > 0 is real and small; 2 = x is real}.

Then we insert a delta function of unaginary time holomorphically:

[[y] = 1 d*z [——2@(z“)zo 1 Op(2),
T o cF 20 F e z4 22 029 !
where CF are given in the 20 plane by o
7 — e
C & ;
{ :
Y o <
C e o S &

By 0+ 0 closure of the form in (*) these expressions are all independent of € > 0. Note
that no singularities are encountcmd since @ extends holomorphically in a neighbourhiood
of real spacetime, and K* # 0 since the contours remain in the future or past tubes. Now
clearly I*[p¥] = 0 since by surface independence the contours can be taken to infinity in
the past/future tubes where ¢~ / ¢t decay to zero.

To calculate I*[p ] note that in /Cx_ the second term contributes zero by RL, and by

RK the first term is proportional to SP:U(#| = 0. Thus fC“ = 0. Then for Jc— the first

te

term 1s clearly continuous at € = 0, and then by RK is equal to 4w (0). The second
term is also continuous at € = 0 where it is equal to
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Now RL does not apply because of the pole at z° = 0, and this integral is

. 3
|X|2 82 ,X)d x.

Hence
o P o Y Y- .
1 [(P ] - 227(' ‘r’" / | '2 8t (O X)

Similarly but taking note of the change in sign in the first terin

I7[p7] = 2in’e™( /‘ 7 A Bt (0,x) d*x.

Adding these equations gives

gl + ol = =2in?le 0 = O]+ [ [z FOo0 e

PROPOSITION:
I*¥[p] = 0 for all p decomposable into ¢ = pt + ™.
Proof: Tt suffices to show that It[p*] = 0. Surface independence and the decay of ¢ at

spatial infinity enable one to deform the contour to be,
Q

b

N/ L
O X

7 \

N
Then for the fixed real part P shown since P lies strictly in the interior of the future real
light cone of z, the integrand is 0 + 0 closed for all z in an open neighbourhood of the
union of CM+, CM~. In particular we have 8+ 0 closure at y* = 0 since the integrand is
holomorphic on any Comple)\ line through P¢ 4 0% in a sufficiently small neighbourhood.
This enables us to deform 7 passing through real spacetime to eventually lie at infinity

in the future tube where the integral is zero.
Hence,

Jlp(z) Z(0,y)d'y.

T on? / |x — y[? Ot
Now in the case of a flat £9 in () the term from the derivative acting to the left contributes
zero, since this creates a factor (x —z’)* which is orthogonal to the measure of integration.
Now by surface independence we claim our result is established. It suffices to verify that
(a) the integration over the tunelike cylinder at infinity vauishes and (b) that we may
apply Stokes’ theorem to obtain surface independence for a general spacelike 3-surface. As
we shall see the latter in fact requires the surface to satisfy a differentiability condition.
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To verify (a) if we set ¢ ~ 1/r!*7 then the second term of (*) integrated over the

timelike cylinder shown gives - - T~ 4,7[4‘71)((
r”(l+7)/'1 du k
o (u—1efr)? —1

~ r_(1+7)[logr + A]

for some constant A. The first term contributes

! du
—(t7)
/0 [(w —ve/r)? = 1]?

B 1

~

rity o erY

for some constant B. Thus a necessary and sufficient condition for the integral to vanish
at infinity is v > 0 as stated above.

To verify (b) it suffices to show that the integral over the small timelike surface T'(r)
shown below tends to zero as the vertex of the light cone z is approached — then surface
independence follows from Stokes’ theorem applied to the shaded region since the form is
closed throughout this region and non-singular on the boundary.

We take the general timelike displacement of the surface to vary with the spacelike dis-
tance r from the vertex according to kr® (}) for real constants k,a such that the surface
intersects the light cone at its vertex only, or equivalently o > 1. Then since the field ¢
and its gradient are bounded and continuous at z the contribution from the second term

of () is
/kra(<") 1'2dt
o @
1 — kro!
-

14 kro-t
Now for all o > 1 and & such that the surface is spacelike at x this contribution vanishes
in the limit 7 — 0. The contribution from the first term of () is proportional to

r3 /kra dt
o (t2 —-T2)2

kra~1

1 __k2r20—2'

x rlog|

kre <r
o< tanh ™! (kr* 1) +
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Now for all a > 1 this contribution vanishes in the limit r — 0. Only in the case a =1
are we left with the contribution

k
~1
« taph™ &k + 152
wherein k& < 1 so that the surface is spacelike. This is the case of a conical 3-surface with
vertex at the field point z. Thus if the surface is only once differentiable the contribution
from T(0%) is zero since we can always bound this contribution above by that from our
generic form (1) in the case a > 1. This completes the proof of the theorem. I am grateful
to N. Woodliouse for suggesting the existence of the extra contribution due to a surface
with singular extrinsic curvature.
We have the trivial corollary in terms of the 3-dimensional Laplacian:

Tp(x, 0] = a2 221

where A2 f(x) = +.5; I;fl_%',llgd:‘y. Thus we see that the action of J is non-local
with respect to the Cauchy data (p,0¢/0n) and that in the case that ¥ is flat is de-
termined alone by the free data of the normal derivative. This gives a relation between
elliptic operators on 3-spaces and restrictions to Euclidean spaces of hyperbolic operators

on pseudo-Riemannian spaces.

Concluding remarks

These results may be used to derive expressions for positive definite norms of massless
bosonic fields of arbitrary integer spin as two-point configuration space integrals, requiring
no ectraction of frequency parts or potentials for tlie principal fields. It is especially
interesting in the case of linear gravity that one obtains a positive definite norm as an
mtegral over the linearised phase space variables. This is well defined provided only that
one can make a choice of foliation of real spacetime by a family of spacelike hypersurfaces
— thus the vacuum Einstein equations may faud to hold. This gives in principal a way of
measuring the difference of two neighbouring spacetiine geoinetries even in the presence of
matter. Details of this will appear in a subsequent publication.

[ am grateful to L.P. Hughstou for stiinulating discussions.



