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A Minimum Principle for the Cohomological Inner Product on
Twistor Space

Franz Miiller (e-mail: muller@ihes.fr)

In this note we describe how, in the Dolbeault framework, one can obtain the SU(2,2)-
invariant inner product on the cohomology groups H(P1 , O(—=2 — n)) (P4 a small nbh.
of Py C PT), n > 0, starting from a pos. def. inner product on representative (0,1)-forms
and evaluating it for representatives with minimal norm. In the standard approach one puts
a SU(4)-invariant Fubini-Study metric g on PT which gives a pos. def. SU(4) N SU(2,2)-
invariant inner product on forms [R. et al.], [S]. But the fact that full SU(2,2)-invariance is
recovered by going to representatives with minimal g-norm might have been overlooked.

It follows, at least for n > 0, from the general theory [FK] (as referred to in [S]) that the
minima are attained by unique g-harmonic representatives satisfying -Neumann boundary
conditions (3.2). Thus, one can just calculete to see that these minima agree with the
SU(2,2)-invariant cohomological norm (for sufficiently many states (3.8)). We shall perform
such a calculation (3.6), (3.12) for the case n = 0 where in fact one integrates over P,
generalising (1.1).

1. The case of SU(1, 1) as an Introduction: We consider the analogue of H = £2(S!)
for the hypersurface Py in PT. The Hermitian inner product

(f19) = 2—71r§/|z|=1 T(z_)g(z)(—i;‘-z~ , z€C, (1.1)

on H is positive definite and induces an orthogonal splitting # = H, @ H_ into functions
extending holomorphically over the upper (S;) and lower (S_) hemisphere of CP! ~ S2. It
is furthermore invariant under the action

1 az+b
Bz+af(5z+a

(g% f)z) = ) . g = (8 eG=50(,1). (1.2)

This is best seen by thinking of f as a section of O(—1) over S or S_ , represented by a
function of homogeneity —1 in the homogeneous coordinates [zg, 2] , e.g.

fo=1/(a0z® +a;2") , a= [ao, a1] € Sy . (1.3)

The action of (& is then induced by the natural action on points ¢ € S*\S! and the inner
product is

(falgs) = £(@obo — @;16;)™" or zero (1.4)

depending on whether «,b € Sy or S_ . The sign is such that the expression is positive for
@ = b. In the same way one gets realisations on O(—1—n) for all the (holomorphic) discrete
series representations of SU(1,1) (n € N), an invariant inner product for n > 0 being [BE]

(f1g)n = 1 /lz|<1(1 - zz)"-‘ﬁg(z)dz/\ dz , zeC. (1.5)
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All of this has analogues for projective (flat) twistor space PT ~ CP? although one has to
work with cohomology groups. S! is replaced by the five-dimensional real hypersurface

Po = {[2] | h(z,2) = 0} = (SU(2) x SU@)/U(L) (16)

- ~2 _ 3.3
where h(z,z) = 2°2° + 2'z! - 222* - 2°%° |

which divides PT into P, and P_ . We have “elementary states” (sections of O(—2))
_
(a;z*)(biz*) '

which generate 1-cocycles in Cech cohomology via the connecting homomorphism in the
Mayer-Vietoris long exact sequence on a cover with two Stein sets [EH|. The positive definite
SU(2,2)-invariant inner product on these is

([fab] | [fed])n,—2 = (h(a, c)h(b,d) — h{a,d)h(b, ¢))~! or zero, (1.9)

depending on the respective position of the lines a A b, c A d.

Jab = ahbe Py (1.8)

2. (0,1)-forms on Py : In a fixed basis where A has the form (1.7) we fix
g(z,2) = 2°2° + 2'7 + 2%2% + 2°F° . (2.1)
Simultaneously, g denotes the Fubini-Study metric induced on PT. We use affine coordinates
(&m &) =(2'/2", 2], 2°[2°) (2.2)
on a dense open cell CPP*\CP?. A g-normal to Py of constant g-length is given by
n = n0, + {0¢ + 705 + €07 . (2.3)

We then naturally define (0, 1)-forms w on Py to be those (C*) 1-forms which vanish on
holomorphic tangent vectors. If such a (0, 1)-forin w is the restriction of a d-closed form on
a nbh. U of Py then it satisfies the boundary CR-equations

Ow =0 <= vidw =0Vv e T'PT N TcPo (2.4)

where d is the exterior derivative on Py. Now we can complete to a Hilbert space of (0,1)-
forms on Py with the inner product

(@i = [, 1A%) RRCE)

where % 1s the Hodge star with respect to the metric § induced from g on Py. This is
obviously a positive definite inner product on arbitrary (square-integrable) 1-forms on Py,
invariant under the transformations in SU(2,2),NSU(4), . It is however not invariant under
general transformations in SU(2,2). ;From (1.1) it is clear that one should try to construct
a fully invariant — on the level of cohomology — inner product from the “boundary values”
of elements in the cohomology groups H'(Ps, O(—2)) of P4 . It is surprising that this can
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be achieved with a formula (2.5), which depends upon the choice of g, by picking unique
g-harmonic representatives satisfying the J-Neumann conditions on the boundary Pg.

3. The SU(2,2)-invariance on normalised representatives : An orthogonal basis
of the Hilbert space completion of H'(P4 , O(—2)) with respect to the cohomological iuner
product is given by the classes generated by the following g-harmonic (0, 1)-forms [EP],[S],
written in homogeneous coordinates
% 7 A

(20Z0 + 21Z1) 1™ n€N;uy;=0,...,n

Wnyij = 0n,ij(ZodZ) — Z1dZ0) , lnij =

(3.1)
Furthermore, they satisfy the -Neumann boundary conditions [FK]

0(8,,dr)w = —mg (n)aw = —nw =0 at Py (3.2)

g?

where o is the symbol of an operator and g is the antiholomorphic projection of a vector
field. Notice that the w,;; are also h-harmonic in the sense

gwn,ij = Ezwn,ij =0 Vn) 27] (33)

but the associated Laplacian is not elliptic. If we are presented with (0,1)-forms w, 1 on
some nbh. U of Py which extend @, 7 and one of which satisfies (3.2) then (2.5) simplifies
to

@)y = [, 9w, n)natl (3.4)

where g~ is the dual of g and £, is its determinant. (This is probably the “better” definition
anyway although seemingly less intrinsic.) We calculate

Unijam p(2°2° + 2'21) g(2, 2)
Wnij [Wm -2 =
(Wnij | W ki) g, -2 /Po 7(z7)

L)stA dCAdp NdTAdENDE 2 (q + EE)dC A dT A dn A dif A dEJE
2t

nufl, with

naQy = n(

(1 +CC+ a7 + €€)° (2i)° (L+CCH+n+E6)*  (55)
and thus

(it a = [ ST TELCN Gy
i 1 Wm ki) g, (2i)3 P, (1+<—<—)3+m+n

=18 Sbit((1 + ) (n) (".))'1 . (3.6)

tj\J

The space generated by the g-harmonics {wn,;} is not invariant under SU(2,2). Rather,
we obtain an basis of an slc(4)-module, orthogonal in cohomology, from the lowest weight
vector wg 1= wy g by the application of step operators

X YIE*w , neN;ij=0,...,n (3.7)
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where X, , Y, are the step operators in suc(2) ® I and I ® suc(2) complemented by Ej
(specified below) to generate the whole action of slc(4). Since ( | )y is invariant under
SU(2) x SU(2) we only have to compare

([E7 wol | [E} wol)n ¢ {wn 00 1Wn,00)y (3.8)

in order to ascertain the full invariance of { | ), on normalised representatives, because we
claim

Lemma: E7% wg and ¢, wn oo are cohomologous for the right choiceof ¢, € Z and £, € slg(4) .
For the d-closed (0,1)-forms

(a:2')(bidz*) — (bi3*)(a;d2") (3.9)

- [(@z)(Bi2F) = (biz')(aiz)]?

which correspond to the Cech representatives f,; of (1.8) one obtains the cohomological inner
product as in (1.9). Here z — Z is the map

(29, 21, 2%, 2°%) — (39, 3, 22 2% = (-7, 2°, -2, 7) (3.10)
which is invariant under SU(2) x SU(2) and can be viewed as the antipodal map on the
fibres of a fibration [A] S? — PT — S* which restricts to a fibration S? — Py = S* of
Po. We choose Ey = 0,,(.)|(a; = 8?) such that

E: Wy = (C(aa..)"wa(,,ai - 5?) b, = (S'l, ¢ = 5‘2, d; = 5;’3 . (3.11)

(similarly, we could choose X = 0,;0,,(.)|.. and Y} = d;0.,(.)|... ). See [BE] §11.4 for a similar

notation. From (1.9) one quickly computes
(LB ol 1[5 wolyn = 62, 07, ([was] [waalul.. = (1) (3.12)

Proof of the Lemma: In affine coordinates one computes that on O(—2) one has

E+ = L, —2n where v = Z(’)( —n(¢0; + 10, + £0¢) (3.13)
and
" d¢ tdg "¢
L,—2m) —L 2 = (42 > 47 S . 3.14
e T s Plar e o B
Thus, by induction
[E";_ wol = (=1)"(n + 1) wneo] - (3.15)

A comparison of (3.6) and (3.12) now yields

Theorem: Let ( | ), denote the positive definite inner product on the cohomology groups
H' (P4, O(-2)) invariant under SU(2,2) = SU, (for example given by linear extension of
(1.9) but properly defined by the twistor transform [DE]), where A is an indefinite Hermitian
form of signature (+, +, —, —) on C* which defines P and Py. Let g be the positive definite
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Hermitian form obtained from h by a flip of signs (in some h-diagonal basis) with associated
unitary group SU, and Fubini-Study metric g_, on O(—2) and define

(win)g,-2 = /Po A%, W) (3.16)

where §_, is the restriction of g_; to Pg invariant under SU, N SU,; and w, 7 are square
integrable (0,1)-forms on Py . Let ¢; (1 = 1,2) be in the above cohomology groups. One has,
for some g-independent constant k € Ry

(e)ea)n =k (w] 1w )g,—2 (3.17)

where w! € ¢; are the (restrictions of the) unique g-harmonic representatives which satisfy
the 9-Neumann boundary conditions. They are characterised by having minimal g-norm
within their class. a

The last statement follows from the fact that the 9-Neumann conditions (3.2) on w are
equivalent to

(W10d)g-2 =0 Y ¢eT(UPo), O(-2)) . (3.18)

Remarks: We can consider the two spaces H'(Py , O(—2)) simultaneously and obtain an
orthogonal splitting of “boundary values” as in the case of SU(1,1). A weak form of (2.4)
should be enough to characterise representatives in this total space.

We also remark that (3.6) makes it very easy to sum the g-harmonics to a (Szego-type)
kernel which is in fact different from the usual one [W] appearing in the twistor transform,
the latter being a g-unbounded operator ! One would expect this kernel K to fit naturally into
an integral representation (a so-called homotopy formula [HP]) of an arbitrary (0,1)-form
on Py, say, viz.

w(2) :C(/Po W(C) A A'(g,z)_/P+ F(C) A Ki(C,2)) + 3, /73+ W(C) A K3 (¢, 2) ) o

One can ponder the themes in this article from a physical point of view: Broken symmetry,
normalisation, minimum principle, ...
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