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Spin 3/2 zero rest-mass fields

in the Schwarzschild space-time
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1 Introduction

Helicity 3/2 field equations seem to play a crucial role in general relativity as well as in
twistor theory. Indeed, if we consider the Dirac equation for the first potential of a helicity
3/2 massless field,
AA'_C c c
\Y AUA/BI:O, O'A)B/:U(A/BI), (1)

the vanishing of the Ricci curvature can be taken as a consistency condition for such an
equation in curved space-time (see for example [1]). Such a close connection with Einstein’s
vacuum equations is quite remarquable. Moreover, twistors in flat space-time are interpreted
as charges for spin 3/2 massless fields (see [3]) and it is therefore hoped that these fields in
vacuum space-times might be used to define twistors.

The approach adopted here is purely analytical. The idea is to set up a technical basis
that will {maybe) lead to a better understanding of the analytic or geometric obstacles to
the definition of a "Il-charge” in Ricci-flat space-times. We chose to study the case of the
Schwarzschild metric

Guodrtde” = Fdt* — F7'dr? — rtdw?® (2)

where /" = 1 — 1/r, the Schwarzschild radius being here equal to 1.

Notations: Let (M, g) be a Riemannian manifold, C§°( M) denotes the set of C**functions
with compact support in M, H¥(M,g), k € IN is the Sobolev space, completion of C5°(M)
for the norm

k . .
1 e any = JX:;/M <V]f, V’f> dps,

where V7, dp and <, > are respectively the covariant derivatives, the measure of volume and
the hermitian product associated with the metric g. We write L*(M, g) = H*(M, g).
The 2-dimensional euclidian sphere S? is endowed with its usual metric

dw? = d0* + sin®0de* , 0 <8 <7, 0<p< 2.
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2 The global Cauchy problem

In this space-time, we consider the null tetrad [*, m® m®, n®, where

[*V, = \/% (F */23 + Flﬂaar) , (3)
a — .1_ 4_1/22_ 41/2£
nv“_\/i(F o e ) (4)
1 a 1 0
e 9 9) 5
mV 2 ((?9 * sind 8«,0) (5)

It is chosen so that the "extent” of each vector is 1, in order not to emphasize the importance

of any of the null directions with respect to the others. If we consider this tetrad as being

associated with a spin-frame o?, 4, i.e.

A A a A A a A A (6)

we can calculate the Infeld-Van der Waerden symbols

¢ ms / n —m
2= AT — ¢ ¢ 7
gAA ,——n—ia na ) ga —TI’La la ( )
and the non-zero spin-coeflicients are

Fl/? F'E-1/2 cotgl (8)
= = — y £ = = , = - = .
PR LG 22

We now have all we need to translate equation (1) in terms of partial derivatives in a coordi-
nate basis. We obtain 8 scalar equations, two of which can be transformed into constraints
involving only space-like partial derivatives. The system in its hamiltonian form can be
written:

_tf{.0 0 0 1 1 1
U= (00,0, y Tont s ey Ogigr s Tgryr s 01,1,) , )
0 Fl/2
0-8’0’ hUOIO/ + — Ll (Tolll
0 F (0 F‘/2
0‘8,1, ——hO’Oll, - ;’ (0‘0/1/ + 0-(1)/0/) + L3 00101
0 0 F' 0 F Fll2
aU 9 Orge —“/10'1/1/ — ‘2—51/1/ - O'O,If -+ L2 O'Ullf
T = =Hv o)
O.l h Flz25— 1
0’0’ Tgo + 5 ‘70'0' + C70'1' + Lo ogy
1
o 1 Fo_1 0 F‘/2
o’ lldolll + 7 (0'011/ + Ulllr) + L3 allll
011/1/ “1/2
_ho.llll + Ll 00/11

where

a B
h= —
F(a +ort ) (11)



13} 3 i 0
= — — ~ | cotgl — , k=1,2,3, 12
L 80+ (k Z)Cog +sin08ap ' (12)
—_ d 3 ¢ 0
= — — te_ ! Y :1)2)3’ 13
T o0 i (k 2> I Sino Oy (13)
together with the two constraints
2F  F F 2 —
QhUglll + (—r'-‘ — E‘) 0‘8:1: + ’T_:O—élol - ——1:-* (L3 (7810, - L'z 0’?,1,) = D, (14)
1 2F K'Y P, £ 1 T
zhaolll +{— = = Ty + —Oyryr — (L2 Oqrgr — L3 0'1111) = (. (15)
T 2 T
We introduce the Hilbert space H defined by
H = {L7 (|1, +oof, x 5% F'dr? + ridw?) ) (16)
and the successive domains of H in H
D(H)={UeH;, HUEeH, 1<j<k}, keIN" (17)

We also consider the spaces H. and D(H*)., k € IN", of the elements of % and D(H*),
k € IN”, which satisfy the coustraint equations (14), (15); i.e. if we write (14) in the following
way

1/2 / /2
AU:(), A:(—F L3)2h+?—1:|‘_£aF Lz,E,O,O), (18)
T T T r r
and in the same manner (15) could become
oo 7 S G
BUZO, B:(0,0,*—,*— L2,2h+—“—‘—“, 3), (19)
r r r r r
then, we have simply
H.=KerA[|KerB (20)
where KerA is the kernel of A in H, and for k € IN™,
D(H*)e = (KerA)p ey [ V(K er B) pey = Ker A(\ Ker B(\ D(H"), (21)

(KerA)D(Hk) being the kernel of A in D(H*). I these spaces with constraints, the following
existence and uniqueness result holds:

Theorem 1 For any initial data Uy € H, (resp. Us € D(HF)., k € IN*), equation (10)
adwits a unigue solution U such that

UeC(IRyHe) (resp. U €C (It D(H).)) (22)

and

Ulimo = Us. (23)



Note that if Uy € D(H*)., k € IN*, the solution U has the following additional reqularities
which are straightforward consequences of (10)

Ue (k1 ¢ (IR D(H*).) - (24)

7=0
Moreover, the Rarita-Schwinger 3-form
ﬂ = iaacl O dz® A dlEb A dIEC, (25)

is divergence-free, oo denoting the spinor, symmetric in B',C’, whose components satisfy

(10), (22) and (23). In other words, if we consider the explicit translation of (25)
<& >p = (58'0'7773'0') I + (éll’l’ani'l’)m + (65'1',775'1')” + (fg'w 778'1')”

+ (fé/l/»ﬂ?’l')m + (5?'1')773'1') L2 + (fé'o-'ﬂ?g'l')m + (58'1”773'0')” , neH (26)

where (, )2 denotes the standard scalar product on L? (|1, +oo[, x S2, F~'dr? 4 r*dw?), then
forany U,V € D(H).
<HU)V >p= - < U HV >4 (27)

and if U € C (IRy; H.) is a solution of (10), the quantity < U,U >p is conserved throughout
time.

Hints of the proof: Firstly, we decompose equations (10), (14) and (15) into spin-weighted
spherical harmonics. On each sub-space of given angular dependence, we prove a global
existence and uniqueness result for solutions without constraints. This is done using a fixed
point method: the evolution system (10) is expressed in the form of an integral equation, the
fixed points of which are the solutions of (10). The next step is to prove that if the initial
data have a given angular dependence and satisfly the constraints (14) and (15), then the
solution associated with this initial data satisfies the constraints at each time ¢. To prove
this, we show that the spaces with constraints are stable under H from which we infer their
stability under the one parameter continuous group generated by H. At this point, we have
proved the theorem for initial data with a fixed angular dependence. By linearity, the same
result holds for initial data involving only a finite number of harmonics, i.e. belonging to a
dense sub-space of H, (or D(H*),, k > 1). The last step is to extend the propagator to the
entire space using an energy estimate. For more details about these analytical methods, see
for example [2].

3 Where do we go from here?

Thus, the Cauchy problem is well-posed for a spin 3/2 potential ¢ 5, in Schwarzschild’s
space-time and of course, it is also true for a pure gauge field which is simply given by a
solution of Weyl’s neutrino equation. In particular, a non global o can be propagated into
its domain of dependence and the same holds for the gauge. Therefore, at least in the case
of the Schwarzschild metric, we now have some information about the nature of the obstacle
to the construction of a Il-charge. It was known that such an obstacle had to exists but it
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was not clear wether it resided in the propagation or in the patching of tlie potential modulo
gauge (see [3]). The results obtained here seem to imply that there is nothing pathological
about the propagation. Hence, the obstacle is more probably of a topological, rather than
analytic, nature. More precisely, there might not exist at each time a proper covering of S%.

Several directions of research can now be followed. Firstly, the same kind of study can be
carried out in other Ricci-flat space-times. This would tell us wether the result obtained in
Schwarzschild’s space-time is an exception or if the propagator of the potential modulo gauge
really is a "reliable” 1-parameter group in all vacuum space-times. Of course, one would
also like to understand what features of the geometry cause the obstacle, be it topological
or analytical, to arise. Studying the limit of a Schwarzschild black-hole when the mass goes
to zero could shed some light on this conundrum. ;From the viewpoint of analysis, it would
be interesting to push further the study of spin 3/2 fields in black-hole backgrounds. An
open problem is the construction of a time-dependent scattering theory in the Schwarzschild
case. The technical difficulties are numerous, but it seems a fairly natural conjecture that
the asymptotic behavior of linear spin 3/2 fields in the neighbourhood of horizons or in
asymptotically flat regions can be described in terms of classical wave operators. Work is in
progress.
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Two examples of classical scattering off fixed sources

By

lan Roulstone*

2nd March, 1995.

1 Introduction

Penrose, in Penrose & MacCallum (1972, §3.2), describes the scattering of zero rest-mass
particles by impulsive electromagnetic and gravitational waves by constructing hamilto-
nian equations on twistor space. The fixed source problem was also addressed in Penrose
& MacCallum (1972, §5.2) and formal expressions for the hamiltonians, obtained by use of
the twistor transform, were given. The approach to scattering off fixed sources described
here differs in two ways from that given in Penrose & MacCallum. Firstly, we consider
the scattering of zero rest-mass particles off fields generated by zero rest-mass particles,
whereas Penrose & MacCallum considered zero rest-mass particles scattering off a mas-
sive fixed source. Secondly, because the fields produced by the zero rest-mass particles
are impulsive waves, we can utilize the explicit ‘scissors and paste’ methods used in Pen-
rose (1968) and Penrose & MacCallum (1972, §3.2). This avoids the use of the twistor
transform. The fields off which the zero rest-mass particles scatter are treated as fixed al-
though the sources are moving with the speed of light. In contrast to scattering off a fixed
Coulomb field (with timelike source), the whole description is manifestly Lorentz covariant.

We construct the hamiltonian equations by applying the ‘scissors and paste’ method,
in which the zero rest-mass particle undergoing scattering is described by a null twistor,
to find a solution to the Lorentz force equation and to construct a space-time consisting
of two regions of Minkowski space, M, separated by an impulsive gravitational wave. The
scattering is thus described in terms of the unfolding of a canonical transformation on the
symplectic manifold of null twistors.

In the following sections we utilize the results of Bonnor (1969a,b) to construct fixed
backgrounds generated by null fluids. These solutions to the Maxwell and Einstein equa-
tions have the form of plane-fronted waves which, upon dropping differentiability require-
ments, may be impulsive (i.e. with §-function amplitude).

2 A twistor hamiltonian approach to scattering off fixed
sources

2.1 The Lorentz force problem

Bonnor (1969a) showed that one can obtain plane wave solutions of Maxwell’s equations
where the source was taken to be a charge moving with the speed of light.

*Present address: Meteorological Office, London Road, Bracknell, Berkshire, RG12 25Z. UK.
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A

Introduce a spin-frame o, $4, with normalization a48% = 1, and the associated

—=A' —A’ ' e
null tetrad 1* = at@?’ n® = 457 ,m® = af" ,m* = 4@, A position vector takes
the form 2% = vl{* + un® + (m® + (M°.

The field is generated by the vector potential
o = (2¢4,0,0,0), (1)

where Bonnor takes the function ¢ as C'! and piecewise C?. This condition ensures the
continuity of the Maxwell field F*® and precludes surface charges and surface currents.
(Later we will drop this requirement for the sake of considering fields with é-function
amplitude.) The function ¢ takes the form ¢ = ¢(u, ¢, (). The components of the
Maxwell 2-form, Fgs, are given by Fy, = V|, ®;). The components of the 4-current
J* = (47)" 'V, F2 are

J* = (2p,0,0,0), (2)

which implies J* o [* and 4mp = ~VZ2p. Thus in a charge-free region where J* = 0, ¢
satisfies
9tp
9¢ac

The electromagnetic field is null, that is, it satisfies F**F,, = 0 and gabed o By =

(3)

!
©

We now consider a specific choice for the function ¢. For r = (CZ)% >a, a €R,a
positive constant, take

¢ = §(u)[2log(r/a) + 1] .

(Bonnor chooses ¢ = ¥(u)[2log(r/a) + 1] for r > a, and ¢ = ¥(u)r?/a?, for r < a, with
¥ € C?. So we are dropping the differentiability requirements, and we have no need of the
solution for r < a. We note that Bonnor shows that such a solution can be obtained from
an advanced potential, but the total energy of the field due to a single charge moving with
the speed of light, diverges. When charges of both signs are present (so that the total
charge is zero), he shows that the field has finite energy.)

We find that the electromagnetic spinor takes the form
2a
$11 = pappp’ = 5(”)?—3 (4)

and remark
$aB X og0pg .

All other components of the anti-self-dual part of the field vanish.

We wish to solve the Lorentz force equation in this background. The Lorentz force
equation may be written in the form £,V P* = eF2b P which gives well-defined equations
of motion for null momenta P, = T47 4. This equation reduces to

TBFBIVBBITA = 6(}5'4371'_3 . (5)
In order to solve (5) in the background (4) we make the ansatz

7™ = 7 4+ o). | (6)
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Here, T4 is the initial momentum, [74] is the change in momentum and ©(u) is the

Heaviside step function. So we find upon substituting (6) into (5), and using (4),

2a e o

'7TA] = —mg—,, (7)

o ey . _ I
where we have inserted the initial momentum into 7rA7rA:VAA . From here an we shall

drop the constant 2a.

We follow Penrose & MacCallum (1972, §3.2) in finding a twistor hamiltonian_for-
mulation of (7). The hamiltonian takes the form H(Z%, Z,) = HY(Z%) + H™ (Z.),

where

R ¢
M2 =TH-(Z) = [ () da (®)
and f(z) = z~!. On the surface u = 0, the coordinate ( is given by
A
= oqwW
i = —p—. (9)
Q" T4
Then o3+
. € Yy
T4 = = = 10
677,4 ZawA (‘a‘A'n-A, ) ( )
and N o
‘ 37‘( ew
oA =i = —i 11
6 167!',41 Z'(_I-B’?I'Bl ’ ( )
where the hamiltonian (8) is
A
HZ¥) = el (~'_" ) , 12
HHZ") = e log (i (12)

with Ay « (a4,0)and B, « (0, a?’). We observe that the hamiltonian is homogeneous
of degree zero in Z*. Equations (10) and (11) may be expressed in the manifestly twistorial
form :

2.2 Scattering off an impulsive gravitational wave

We now turn to the formulation of a twistor hamiltonian approach to scattering off a fixed
gravitational source. Here we make use of the result of Bonnor (1969b, §7), to obtain
an exact solution of Einstein’s equations that represents the gravitational field of a zero
rest-mass particle. The field has the structure of a plane-fronted impulsive gravitational
wave and hence our twistor hamiltonian approach to scattering null geodesics off this field
will follow the ‘scissors and paste’ technique of Penrose (1968).

The metric for plane-fronted gravitational waves can be written in the form
ds? = 2dudv - 2d(dC + 24(w, ¢, )du’. (13)

The function A(w, ¢, () is taken by Bonnor to be piecewise C!, however we will suspend
this differentiability requirement to allow for a é-function behaviour in u. For this metric
(¢ is a Killing vector. The Ricci tensor for (13) is given by

ab _ __l 82‘4 lalb
T 20¢0C



1t

From the field equations

1
Rab __ §gabR = _87rTab ,

we have 2
ab 1 d A lalb

= 167 9CaC |
and thus we may interpret this as the energy tensor of a fluid of zero rest-mass particles.
In (13) we choose

A = 5@dlog<£> ,

where a is a constant and r? = (({ > a.

We now outline the ‘scissors and paste’ method as applied to the impulsive gravitational
wave. Cansider two regions of Minkowski space, M and M?*, separated by a hypersurface

*

Y given by v = 0 = u*.

i

M ds? 2du dv — 2d¢dcC,
M* o ds? = 2durdv* — 2d¢tdC,

and identify the two coordinate patches according to ( = (*and v = v* + s((, {),
where s((, {) = log (-:;—) This identification creates the curvature.

The deflection of a worldline passing through ¥ is written in terms of the transforma-
tion of the spin frame a?, B4,

Js
gt o~ 52_0/4 (14)
at = ot (15)
Whence
_B' ds _
57!',4/ = (7(‘31(1 )(,TC-QAI, (16)
and by construction
6XAAI = _S(C7 Z) aAaAI b
so that for 6w? we have
swh = XM . + XMy,
. 1 ! 8 . — '
= x4 (7‘(3/5'8 ) iﬁ}ql - 138((, () oAt TAr . (17)

Introducing the hamiltonian
H(Z%, Zo) = (@ 7g)(aBTp)s((, ),

we may write the equations (16) and (17) for the scattering of the null geodesics in twistor
hamiltonian form

OoH
§Za = —ft— .
‘97,
The spacelike coordinates on ¥ may be written in terms of Z,:
A7, — ;
( = i—=~, where Ay « (a4,0), By «~ (0,a*), (18)

B°Z,
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and therefore the twistor hamiltonian is given by

H(Z¥, Zy) = —(B Z°)(BPZg) log[( 'z, )( A2 )] : (19)

BﬁZg B zZ°

This is homogeneous of degree 1 in Z% and Z,. We may write the function (19) as the
sum of two expressions which involve functions that are homogeneous separately in £
and Z,. To see this (cf. Penrose & MacCallum 1972, §3.2; Tod 1975), introduce two such
functions gt and g~, where

dm
+ Zcx 2/
g 2(B’ ) —~
and g- = g¢%. Clearly, g* and g~ are homogeneous of degree 2 in Z* and Z,, respectively.
Then we see that the hamiltonian (19) can be written as H(Z%,Z,) = H* + H™, with
9g*(Z*)
+ of
HY = Z,1 577

where %% is the infinity twistor, together with a similar expression for H~.

3 The scattering transformation

The results (10), (11), (16) and (17) for spin-1 and spin-2 monopole scattering may be an-
alyzed both in terms of space-time and twistor space kinematics and dynamics. We begin
with a brief analysis of the scattering dynamics for the case of the fixed electromagnetic
source.

Let X2 be the position vector with respect to the origin O, of the point where the
worldline of the zero rest-mass particle meets the wave. Having such a vector, we construct
the position vectors for the particle before (with subscript ‘b’) and after (with subscript
‘a’} scattering in the following manner

A :XAA + ATAnA

' '
x;lA _ XAA + /\—-—A A ,

for varying A € IR. The initial momenta are 7rA7rA , and the final momenta 74 A are
obtained from Hamilton’s equations. In the case of scattering off an electromagnetlc wave
6XA4" = 0, so the change in 44’ given by

brAAT = AN L pAa
a )
may be obtained by the substitution 72" = #4" + [14], as follows
b4 = ARAE) 4 nE [T 4 () (20)

We may describe some of the salient features of the dynamics, in terms of the magni-
tudes of ‘time delay’ and ‘deflection’ vectors, obtained by projecting (20) into timelike
and spacelike 2-surfaces respectively.

If we denote the spacelike 2-surface by .S then the projection operator taking a vector
at some point of § into the 2-surface is (see e.g. Penrose & Rindler 1984, p. 271)

AA AFA 5 A=A’
Spg = ~a’B g - prat apfp
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and we can project the connecting vector between the scattered and unscattered geodesics
(in a spacelike direction) into the 2-surface

biAN = GAR BB
We find that the magnitude of 6344 is

CAA o~ e?
0% 5IAA’ (68 - .

¢

Thus the deflection decreases as r~!. We may examine the magnitude of the time delay in
a similar manner. In this case we use a timelike 2-surface T', with the projection operator
T7 that takes a 4-vector at some point of T into the 2-surface

AA! A_A' 5 7 AmAl
Tgg = a"a” PPy + B8 apag,

A

which, together with the expression for the change in 244, gives

' —_— ’ ’
efpilatat efgn? atmh

! ! ~ !
ngfémBB = 6344 = = =
Ca TB C()‘ g

The vector 644" is null and therefore the magnitude of the time delay is a constant (zero)
and independent of the impact parameter.

We may consider the time delay for the scattering of a null geodesic off the impulsive
gravitational wave. For the space-time given by (13) t* is not a Killing vector. The
transformation for t*, t* ~ %% is given by, from (14) and (15),

]. A=A’ A——A' l ( AA’ A-A’ 83 A—A' 85 A—A’ 85 88)
—la"a = |1 a’ —= «a - a"w” == .
- ( +445%) = 5 + At v atBh g 4 5 57
Thus, for instance, a 2-surface with projection operator Ty, will have no invariant mean-
ing. However, as Penrose & MacCallum (1972) remarked, there is no ‘absolute’ concept of
time delay in general relativity and thus the time delay that we shall calculate here is not
inconsistent with that obtained from examination of orbits in the Schwarzschild solution.

The deflection may be calculated in a straightforward manner. Write down an in-
finitesimal change in the coordinates of some position vector as

sz = §XAMY 4 N+ amAeN

= —s(¢,O)etw? +)\(TBaB)g§aA7rA’ + A(EB,WB')g%ﬁ‘Aa"'. (21)

Then using (14) and (15), for the spacelike surface we calculate S388" and for the timelike
surface we calculate T*E,Bl. Thus the ‘time delay’ and ‘deflection’ may be computed from
6xAA'T;§,B' and 6244 53BB" and from the norms we obtain the r=' dependence for the
deflection and zero for the time delay (the vector being null). (Remark: if we had chosen
to transvect (21) with 8B g then the function s(¢, () would contribute to the ‘null delay’.)

We have shown that the behaviour of null geodesics in flat space-time with an impulsive
wave background may be understood in terms of the unfolding of a canonical transfor-
mation of null twistors. Penrose (1968) discusses the transformation properties of the
canonical equations on twistor space and in particular refers to the invariant structures of
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the system. Following Penrose op. cit., we shall examine the invariance of the twistor norm
77, and the inner product Y*X,, under the action of the transformation 8, generated
by the hamiltonians (12) and (19). To examine the symplectic invariance, we consider cer-
tain differential forms: ¥ = iZ*dZ, and the symplectic two-form @ = d¥ = idZ* A dZ,.

If H is homogeneous of degree m in Z* and Z,, then §(Z°Z,) = 0 and the norm is
part of the invariant structure. This holds for hamiltonians (12) and (19). It follows that
this may be interpreted as the invariance of the helicity under §. The symplectic two-form
is the natural integral invariant associated with the hamiltonian system. It is invariant
under the action of §. Examination of §9 shows that it will vanish iff H is homogeneous
of degree one in Z%. Thus ¢ is an invariant for the hamiltonian (19) but not for the
electromagnetic case (12).

Of particular interest here is the effect of the transformations on the twistor inner
product Y*X,, which, in general, will not be preserved under the action of the transfor-
mation. We construct a measure of the shift induced by the transformation generated by
(12) on a point of P IN.. Let two rays y and p' be described by the two null twistors X
and Y*

X — (iz*'ny, na) and Y — (4, Ea)

Choose the two rays to be abreast and focused at infinity. That is

yAA A = A4 o aABA ~ mphat

—A4' J— .
where m, i € C, A°V,8° = 0,and Y*X, = 0. We then scatter the two rays using
our hamiltonian prescription and then consider the product X**Y .. We find

5(YGYG) = je ((CC)IC% (CC)Q) (22)

(where (/, denotes the (-coordinate of the vector 44 or yAA'). This will vanish only
if X and Y are coincident. In other words, even at large values of (, the expression will
only become small if the values of the z and y coordinates are close together. Hence the
scattering transformation induces a shift in viewpoint from PIN to N. This is a realization
of the fact that, in general, the canonical transformation will induce shear on a bundle of
shear-free rays. The asymptotic behaviour is typical of the Coulomb problem, where at
large distances from the source the field has an effect on the dynamics unless the interac-
tion is switched off (for further discussion see Hodges 1983, 1985; Roulstone 1994).

A similar calculation for the scattering of two parallel rays off an impulsive gravitational
wave gives, from (14) et seq., the following for the change in the inner product

_ - OH .. M
6 YaXa = amd Xa"_: YCX__ Y
(Y Xa) R SRy e

- — ~ i — (A'X, B'X

= —-B.,Y*BX log ~ -B,Y*BPY LAl
i — - i - (AYY BY"
-B,Y*BPX 41 s+ ~B,X*BP v X
+ 2 ﬁ Og(CC) + 2 X X,B (A&Xd B5X5> k)

# 0, (23)

as ( — o0o. Thus we see that the s, and s, terms now contribute directly to the displace-
ment.
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4 Summary

We conclude that the unfolding of a canonical transformation on the symplectic manifold
of null twistors can describe the scattering off a fixed background and preserves the usual
integral invariants. In contrast to the formal inhomogeneous expressions for the hamilto-
nians given in Penrose & MacCallum (1972, §5.2), and by virtue of their construction, the
hamiltonians (12) and (19) are homogeneous. We have shown that for both the Coulomb
and the linearized Schwarzschild backgrounds, shear is induced by considering the be-
haviour of neighbouring rays. This displacement does not vanish as one moves to large
distances from the source and is described naturally in terms of the non-projective space
IN. One can show that in the case of an electromagnetic dipole field, which decreases faster
than the Coulomb field, the amount of shear decreases with increasing impact parameter.
Further details, and the extension of the results to massive particles scattering off these
sources (cf. Tod 1975, Tod & Perjés 1976), can be found in Roulstone (1994).

Thanks especially to K.P.T.
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Self-dual Einstein metrics with symmetry

There are three different ‘field equations' that one might impose on a four-
dimensional Riemannian metric: one might require it to be Kéhler or to be Einstein or
to have self-dual Weyl tensor. These possibilities lead to an attractive Venn diagram
in which the overlaps all have ‘names’ and have all been studied at one time or
another. We may consider what happens to this diagram when the metric has a
Killing vector. Again the regions usually have names as follows:

Se\-dud- W06

“ oM QA i rc[e_ )

Easte u\;—> i l<&kl4r

With symmetry, the regions are:

1: 3-dimensional Einstein-Weyl spaces (much studied),
2: Kahler-with-symmetry, studied by LeBrun (J.Diff. Geom. 34 223 (1991),

3 and 4: scalar-flat Kahler and hyper-Kahler respectively with symmetry, solved by
the SU(s0 )-Toda field equation (LeBrun);

5: Einstein-Kahler with symmetry, studied by Pedersen and Poon

(Comm.Math.Phys. 136 309 (1991)) and solved by the 'Pedersen-Poon equation’,
equation (7) below;

6: self-dual Einstein or 'quaternionic-Kahler' with symmetry.

In this article, | will find a simple form for the field equations for region 6
corresponding to Einstein metrics with self-dual Weyl tensor and non-zero scalar

curvature. After a sequence of transformations, the field equations end up being
rather familiar.

As an introduction to the calculation, | will review some of the other regions in the
diagram. For Kahler-plus-symmetry, we know from LeBrun‘s work (J.Diff. Geom. 34

223 (1991)) that coordinates can be found in which the metric can be written in the
form
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st - wle (dx"+dy) cda |+ (db+ = (M
W

The Kahler condition & 2« ta :L S

46 = Wiodyde + Wydeada + (we'l, dxady o

from which the function W must satisfy
Wux_ + W\na + (WQK)H_ = O (3)

If we now require the scalar curvature to vanish then the function u must satisfy the
‘SU(w)-Toda field equation’, namely:

W “ -
xx + WUy + (e );;_L = O. @)

Thus a scalar-flat Kahler metric is determined by a solution of (4) together with a
solution W of the linear equation (3). One particular solution of (3) is given by

W = CuU, ; C=cConst (5)

where u satisfies (4).

In this case, the metric (1) is actually hyper-Kahler or equivalently is Ricci-fiat with
self-dual Wey! tensor (and so corresponds to region 4 in the figure).

If, instead of vanishing scalar-curvature, we seek Kahler metrics with vanishing
trace-free Ricci tensor then in place of (5) we must take

\f\/ = U
Az+M

(6)
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where M is a constant (of integration) and A is proportional to the Ricci scalar. Now
in place of (4) we find that u must satisfy the equation:

Urxe + Mgy *(‘e- )3} = ‘*—————Q[\Q— Ha (7)
Ne+ ™M

an equation found by Pedersen and Poon (Comm.Math.Phys. 136 309 (1991)). This
corresponds to region 5 in the figure.

it A is non-zero, then we may absotb M into z whereupon N\ disappears from (7). If
is zero then this case reduces to the previous one.

with /A non-zero, the field-equations lie outside the ‘charmed circle' at the top in the
figure. Everything inside the circle has self-dual Weyl tensor, so can be solved by a
twistor construction and so all symmetry reductions of them should be integrable,
outside the circle there is no expectation of integrability.

Region 6 in the figure, corresponding to self-dual Einstein metrics with symmetry and
with /A non-zero, lies inside the charmed circle and so should lead to integrable

equations. My purpose in this note is to find these equations. What turns up is
eventually very similar to the scalar-flat Kahler case.

We begin by finding a canonical form for the metric in this case. Suppose then that
we have a Killing vector K in a 4-dimensional Riemannian space. In terms of
spinors, the derivative of K decomposes as:

vﬁ \<\n = (‘ng éﬁ‘g' + "Ta' éAR @

and the following identity, true for any Killing vector,

Va V\QKC = chc.cL \<J~ (9)

entails
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Van' Qe = *'\PBC&DK‘}C N Eaca¥ayn

(10)
vg;\‘ /\P&‘c‘ - /\ E'A‘(Q’ \<C')\Q.
LAk b
Define the scalar ¥ by 2¥ =¥ W, and define the tensor—:i by
|
b Q g
A N (1)

Y

then T is an almost-complex structure. It is a straightforward calculation based on
(8) and (10) to see that this complex structure is actually integrable. This fact, which
is crucial in what follows, was pointed out to me by Lionel Mason. Thus the metric is
Hermitian, but will not be Kahler unless A is zero.

“.Q‘
Contracting the second of equations (10) with Y+ enables us to see that

LAY = A T e = Atepx®y

(12)

[N
so that .:ru.K = g_vo"l’.
A

We may now follow what is essentially LeBrun's argument to arrive at the form of
the metric. If the Killing vectoris X = ‘o/ . in contravariant form then in covariant
form it can be written ®

K. = 1 (4t+06)
W
-\
in terms of a 1-form & and a scalar W = (KX ,

(13)

We define a coordinate z = 9:,::" (which incidentally makes the limit A> 0 gnetobe
taken with care). The 2-blades containing K and dz are eigenspacres of the complex
structure and so are integrable, as are their orthogonal complements. Introduce a
complex coordinate § = x+iy on the orthogonal complement, then the metric can be
written exactly as in (1) again.

This time the metric is not Kahler, so we don't have equation (2). To see what we
have instead, note that from (8) and (12)
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el
K® VoXy = — CPABKQ(\‘ - N Xa = T VQWZ
2w
% ] A ‘Ks’
K°#(Tx,) = %aa X ot WA X4 (14)
_ VaW  — Lt_‘:\’_ vm"P.
) awr A

Knowing these we can caiculate that

W L
a6 = W, ADAA%+WSA%A d + @ (W, - an2w ) dx ady (15)

This has an integrability condition which naturally differs from that in (3).

The next step is to impose the conditions on the metric (1) that the trace-free Ricci
tensor vanish and that the Weyl tensor be self-dual. | carried out this calculation
following the formalism described in my article in Twistor Theory ed. Stephen
Huggett (Dekker; 1995), the proceedings of the Seale Hayne twistor conference.
The details are unilluminating, but the result is that W is determined as

—QANW =
2 2+ (16)

where u satisfies the equation

L L5
2" A7)

Equations (15), (16) and (17) with the metric (1) form our principal conclusion. It can
be checked that the integrability condition for (15) is automatically satisfied.

One simple class of solutions to (17) is the separable solutions: write u in a
separated form u= { (x.4)+q(?) then the general such solution of (17) is

e - 2 (4w s oz + az?) (18)
(1 + R{xm+g)*
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where a,b and k are arbitrary constants. The resulting metric is the metric with U(2)
symmetry found by Pedersen (Math.Ann. 274 35 (1986)).

What is unexpected, and is a disappointment, is that (17) can be transformed back
into (4); in other words, self-dual Einstein metrics with non-zero scalar curvature are
determined by the SU(w )-Toda field equation.

To see this, introduce new variables w = 1/zand v = u - 4logz, then

= Waxw + W e Wy, v U =G w1 (19
®* ‘3‘3 ~+ L FE R 3 £y > 2‘_\
= O

The metric (1) transforms to the following form:

as*- P EQVU::LL+A3») vda¥l+ L (dt r0)"
wl—.

(20)
Pw™

where v satisfies the SU(e0)-Toda field equation (in X,y and w), P is given by

and € is determined by

20 - didw — P dosdax 0 (P 2 P NP dxads
d 3 o

w (22)
- =1

IV, v \
= '_?_A_{u)vu,,_ OAALJ-}- adur\du ) (L.)Vuv _vu*.uvu)dth.a}
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‘Moving-Zero’ Solutions of Ward’s Chiral Model

In [W1] Ward modifies the SU(2) chiral field equation in R**!:
" 9,(J719,J) =0, (1)

which is Lorentz invariant but not integrable, to a field equation which is integrable, but
has less symmetry. This equation 1s

0,710, T) + Vae 9, (J718,J) = 0 (2)

with € being the alternating tensor with %' = 1, np**=diag(—1,1,1), J a map from
R*! to SU(2) and V,, a constant unit vector. We are using coordinates z* = (z°, 2!, 2%) =
(t,z,y),and 0, = d/dz*. The conformal properties of V, determine whether the symmetry
group is SO(2) or SO(1,1). Ward chooses V to have the components V, = (0,1,0), the
space-like case. The reason for this is that the standard energy momentum-tensor for [1] -

Ty = (~5380 4 Snn™)ir(J 0,70 B9 3)
gives an energy-momentum vector P, = T, which is divergence-free when both V5 = 0 and
J satisfies [2]. Hence we have a conserved energy E = [ Pydz'dz?, where the integration
is taken over planes of constant z° for solutious of [2]. This provides us with a natural
boundary condition of finite energy, which means that J = K +O(r~') as r — oo, K being
a (constant) element of SU(2), and r* = (z')? + (2%)2.

Ward then goes on to find soliton solutious of [2] usiug the method of ‘Riemann problem
with zeros’, with the location of the zeros being fixed. [ shall now outline the same
technique, with the generalization that the zeros are not fixed.

We examine the Lax pair

(AD; — 8 = AV (4)
(AD, — 9,)¥ = BY

where A € C, (u,v,z) are coordinates on R**'| A and B are su(2)-valued functions of
(u,v, ) only, and ¥(u,v,z,A) is a unimodular 2 x 2 matrix-valued function satisfying the
reality condition

U(u,v,z, ) = ¥(u,v,z, )7, (5)

where { denotes the conjugate transpose matrix.
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The Lax pair has the usual type of consistency conditions
0,B =0,A 0,A—0,B—A,B]=0, (6)
and putting J(u,v,z) = ¥(u,v,z,A = 0)7! for ¥ a solution of [4], we get {rom [4], [6] that
Oc(J 710 J) — 0,(J 710, J) = 0.

This is precisely[2], as we can see by replacing u = L(t +y),v = %(t — y), and the reality
condition ensures that J is unitary. We can now use the Riemaun method on [4] by using
the Ansatz B
Wap(u,v,z,A) = Sgp + —
ab( ) b+ P
where the vectors n,m, and the function « are independent of A. (Ward has « constant -
we are allowing the pole to move. His Ausatz also adds on other first order poles, but we
shall just have the one pole. The generalization is straightforward).

The reality condition[5] gives us n in terms of m:

me(a — a)

Ny = ——— —.
momo + mMmy
There is a ‘gauge’ homogeneity in that we can multiply mg and m; by the same holomorphic
functiou without altering the resulting W. Using this, we set m, = (1, f).

Substituting the Ansatz into [4] gives us differential equations for f and a. Firstly we
find that

ad,a — dya = ad,a — Jya = 0,

which is satisfied when there is an I' such that
Fla*u + az +v,a) = 0,
giving us a. Then the condition on f 1s that
adef = 0. f =ad.f~0,f =0,

which holds when f = f(a?u + ax + v, a) .

Thus we can generate a J satisfying [2] by prescribing: a function I’ of two variables; one
of the solutions « to the equation F(a*u+az+v,a) = 0; and a function f(a*u+az+v,a).
J 1s then given by '

oo = AH (60 + gy )
(S )b (Sab + mumb(l i ff))’
where A = a/a is the determinant of the term in brackets on the RHS, and (nig,my) =
(1, f). It should be noted that normalizing J so that it is unimodular does not affect J's
being a solution of [2]. Some clioices of I will give a such that J has singularities, and so
care must be taken with this choice.
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We can now go on to find the energy Py = Ty, of such a J, using expression [3]). This
turns out to be

(1 +ad)*|fiB+ LA

Al + &) (Im(e)Y,

%(Im( N+ 2—2([711(&))2 + 2

ad aa(l 4 ff)?
where A and B are given by
A=—— B g B
(2autz)F+F (Qoutz)Fi+F;

with Fy, Fy being the derivatives of F' with respect to its first and second parameters
respectively, and similarly fj, f, the derivatives of f.

The first two terms are entirely due to the determinant of J, and provide a ‘vacuum’
over which the third term of the energy densily moves. In the case of constant «, this
vacuum vanishes, and we are left with equation (A9) of [W1].

The simplest interesting case is obtained by choosing

1

F(c®u+ az +v,a) = (c*u + az + v) +2(a2+1) =0, (7)

the imaginary term being necessary to avoid singularities in J. This gives us two choices
for a, but they both give the similar J’s. We still have left a choice of f. The simplest
choice is a projection onto either of the parameters. We shall choose projection onto the
first, so that f = (a*u + az + v). Figure 1 shows the vacuum state of this solution at
t=5. The two crests move away from each other with velocity 1, maintaining their height
(which tends to 2 along the crests). There is also a circle of radiation, spreading outwards
from the origin, with velocity 1. At t=0, the circle is not apparent, and the crests form a
single wavefront.

On top of this vacuum, we get a solitou-like object travelling in a straight line along the
y-axis, in tandem with one of the crests. Unfortunately, its amplitude decays rapidly away
from ¢ = 0, and so gets swamped by the vacuuin. Figure 2 shows this ‘soliton’ at ¢ = 1.
It should be empliasized that due to the vacuum term, no solutions will have finite-energy
for this choice of a.

Figure 1 Figure 2
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If f = «, we get the appearance of two solitons coming towards each other, colliding at
t = 0, and scattering of at an angle (see below for rescaled views of this at t=-2,5). They
decay in amplititude away from ¢ = 0. This is an interesting result, since there has long
been numerical evidence for scattering solitons for (2], but no analytic explanation. It is
unfortunate that the vacuum is once again dominant.

The above example lias a motivation {rom twistor theory, in that we would like to inter-
pret ¥ as the patching matrix for a bundle over minitwistor space, or a compactification.
(Minitwistor space is O(2), the line bundle over C P! with Chern class 2. For more details
see [W2],[MS]). If we write, suppressing matrix indices,

L(ﬂ—/h §)

(6 + i) =&

where 74, & = wlu + momx + 7 are coordinates on minitwistor space, then we can split

\D(WA,f) = [+

this into partial {fractions, writing A = my /7y, to obtain
M N N
A—a M—g0

with a, 8 the roots ol [7], whicli is very similar to our Ansatz.

Vo [ 4

The consequences of addiig the term corresponding to sccond root are currently being
investigated, but it 1s alveady kuown that the vacuum term will mean that the bound-
ary conditions cannot be satisficd. This 1s not unexpected, as there arc geomelric reasons
for believing it necessary (o use an £ that 1s quadratic in its first parameter belore the
boundary conditions can be satistied.

Many thanks to Lionel Mason fov suggesting this topic, and for all lius help.
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Complex Structures via 3 and 4-Dimensional Cauchy Integrals
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Introducﬁon

The existence of complex structures in quantum theory and their possible role in a
theory of quantum gravity is a subject of much current interest. As Pauli points out
these structures are essential in ordinary quantum mechanics in order that the state vector
evolves unitarily subject to the appropriate field equation. Hawking and Gibbons have
argued that the complex structures correspond in the ‘history’ of the universe to the
emergence of our classical notion of time in thermodynamics. In the passage from a 4-
dimensional real Euclidean universe to a real Lorentzian universe one acquires a real ‘time’
coordinate and thus a notion of positive and negative frequency. It is their view that the
complex structure comes into play at the interface of these two regions where the real and
imaginary time coordinates vanish.

In terms of the theory of Fock space, we have the two cases of a Hilbert space of real
or of complex valued solutions to the field equation. In the former case, there 1s only one
available complex structure since this must map a given real solution of the field equation
to another real solution. In terms of the transform @(k) of the field multiplication by a
complex nuinber a = z + 1y 1s replaced by the action of the operator © + Jy on ¢ where J
acts linearly and multiplies the positive and negative frequency parts of the field by +: and
—1 respectively. We say that J is the complez structure acting on the Hilbert space. Thus
the action of J amounts to multiplication by ¢ but within the Hilbert space. In the case of
a complez valued field there are in fact two possible complex structures — that functionally
identical to the one given above, together with straightforward multiplication of ¢ by the
complex number . However it is only the former choice which leads to positive values for
the expectation of the energy operator - since particles and their associated antiparticles
both have positive rest energy we mnake this choice on physical grounds.

In this article we discuss the action of the complex structure J on a real or complex
valued spacetine field ¢ with any index structure via multidimensional Cauchy integra-
tion. In the case of a 4-dimensional integral ¢ is a field required to be analytic on real
compactified spacetime M# and extending therefore to a 4-complex dimensional neigh-
bourhood. In the 3-dimensional case we require further that the field satisfies V%p = 0
throughout CM#.

The formulae we give are essentially different from the usual multidimensional Cauchy
mtegral formulac one encounters in complex analysis. The latter are merely generalisations
of the 1-dimensional residue calculus to integration around the boundary of a n-dimensional
polydisk — a triviality by repeated integration.
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The formulae we present have the property of Lorentz and conformal covariance.
A Reproducing Kernel (RK)
Holomorphic extensions and positive frequency.

We let M# denote real compactified Minkowski spacetime. The invariant spacetime
regions CM*, CMY, M# are of cousiderable physical significance. A spacetime field ¢
which is holomorphic on CM* (by which we mean holomorplic on some open neighbour-
hood U D CMt) is called positive frequency. Fields which are holomorphic on C M~ are
called negative frequency. In contrast, and we will not be considering such, fields which
are holomorphic on the open future or past tubes CM™, CM~ are called future or past
analytic. CM° denotes the set of points of M# with spacelike imaginary part.

Positive frequency is equivalent to holomorphic extension to the forward tube defined

by

CM* = {2 — iy*) :4° > 0, (1°)° > Iy ).

We now define the contours in the 2% plane I'*: _ .
T

/

PN
;k)( T OT 0 """'ﬁxi
> l

N l
Both contours are future pointing in real time. Consider

1:/ "’+gz)d4z

z

+(.,0
z
T — / (p (Z 3 ) dZO
r- (2% = k)0 + k)2
where & = |z|; z is assumed to be real. Setting f(zY) = (7%% we calculate the

residues of f at 2° = £k &k # 0.

—(,0+(1C,Z) 1 akto_f_

residue at & =

43 k7 ot =
Similarly, but noting sign differences
(1 +
residue at — k= © (=k,2) , Ly [e=—&-
4k3 (—2k)* Ot

Since the field 1s positive frequency we may close off the contour in the lower half 29 plane,
and the residue theoremn gives

wi ot (k) — ot (k) i [0p7 (0H(K) + Dt /O(—k)]

T= .3 | .
2 k 2 i
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For k =0 L oot
T =-2m- resgp+/(zo)4|o = —gm' 3103 o
which is just a finite number.
Now
L[ et e [ et R) -t (k). [0t /0t(k) + Dt [Ot(—k)]
I = " d*z = — [ | —
- z 2 S$3 k3 k2
, o0 TR — ot (=L
= ﬂ/ / [cp (k) =7 )] — [0 JOt(k) + 0™ JOt(—k)]dk d*S.

2 Jo Js2 k

The term from k = 0 in T' contributes zero since it is a simple discontinuity in the &

integration. The spacetime picture of this integral is shown below,

. [reelspating A

Note that the integrand has a removable singularity at k = 0 so 1s holomorphic i an
open neighbourhood of the real &k axis, and that, analytically continued as a function of
both positive and negative k, is an even function. The second term in square brackets
contributes zero since for each term separately the contour can be closed in the upper/
lower half plane enclosing no singularities. We may therefore replace the k integration by
the contour integral in the complex & plane .

L[ et(k) - ot (=)
5/0-[ . |dk

where C 1s shown below

q
fmoveble s, o lk
e {/‘)i 9ul Ahy

-

(Clearly we could have also chosen C' to avoid & = 0 in the upper-half plane — this choice
will not affect the final result.) Now we can evaluate the k integral by residues; writ-
. . + t(—k .

ing this as 1 [.[* k(k)] — %fc[“"—%‘—)]dk, we see that the first term contributes nothing
as C can be closed in the lower-half k-plane. The second term on the other hand con-
tributes —mipt(0), since in this case C can be closed off in the upper-half k-plane. The

S? integration contributes a factor of 47. Hence

[ =27°p™(0).

We have thus eliminated any problems in dealing with the spatial 2—sphere depen-
dence of the field. In a sumilar way

/ “P_Sz)d‘*z = 273%™ (0).
r+ .
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Note that Hartog’s theorem does not apply. A simple corollary is the following

REMOVABILITY LEMMA (RL) : Given f holomorphic on CM¥, then

Ld“z =0, n=10-1,..

Proof. Write the integrand as Ez:l and use the reproducing kernel.

The Complex Structure for Spacetime Fields.

We introduce the complex structure J on spacetime fields as follows. Let J be a linear
map from V to itself

J:V =V

Then J is defined to act on a field ¢ by multiplying its positive frequency part by ¢ and
its negative frequency part by —i. So writing ¢ = ¢ + ¢~

J[p)=J@¢T +¢7] =J[¢*] + J[¢p7] = ipT —i¢™.
Clearly then
JP = -1 acting on all V
as required for J to be a complex structure on V. Note that J maps real fields to real

fields. The action of J constitutes a repolarisation of the field ¢ 5 (1 — 7).

- Now from our reproducing kernel above we see that

o) = 555 [ PEL s

where ' is depicted in the 2% plane
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Note that under time reflection T: 2% + —2z°, the contour reverses orientation so that J{p]
changes sign, as must be the case since T interchanges positive and negative frequency
parts. On the Riemann sphere of complexified time I'; is

2/, «
3G
We see that as k — oo, I'y pinches at 0o in z° and splits into two components in the future
and past tubes

with opposite orientation with respect to the great circle of real time. It is instructive to
see the geometry of the contour in the full four dimensions:

e

M# M) have topology S® x §1, 1 denotes the point at infinity. There is only one region
CMP°.

Up to an overall sign, there is another orientation of I'j — obtained by just flipping the
orientation of one of its constituents — this would simply reproduce any field of mixed
frequency.

Note that both M(*) are contractible — they sit inside C M* which are contractible man-
ifolds — however the positive and negative frequency parts of ¢ extend only to an open
neighbourhood of M# thus preventing contraction of the contours.
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Note that the contour must pinch at a point of M# - for example for the reproducing
contour if we instead chose

which is divergent since this encloses a dense set of singularities of the integrand.
The Complex Structure on Arbitrary Spacelike 3-Surfaces

It is essential in the consideration of scalar products for zero rest mass fields to un-
derstand how the results obtained above enable one to perform J via an integral over an
arbitrary spacelike 3-surface. In essence, we wish to understand how to obtain a. 3-surface
integral for J from the 4-dimensional contour integral above, by insertion, holomorphically,
of a delta function in 1maginary time. We have the following result.

THEOREM:

The action of the complex structure J on any spacetime field or potential (with any
index structure) ¢ satisfying V2 = 0 with the decay ¢ ~ r~(1+7) 5 > 0 at spatial infinity,
1s given by the 3-surface integral

—_
ek =307 [ g (V" - VPR, ()

~ on? z,z')
where K? = (2% —1'*)?, %, is future pointing, and £ is once differentiable and constrained.
to intersect the light cone of 2 at its vertex.

Remark on time symmetry. K% determines no time orientation. However both sides of the
above repolarisation formula reverse sign under time reflection - the positive and negative
frequency parts are interchanged and the normal to the surface of integration changes sign,
1.c. the repolarisation formula is consistent under T, time reflection symumetry.

Remarks on K. If §z = 2 — 2’ then K? = 0 if and only if éz has real and imaginary parts
which are spacelike, null, or zero, and are orthogonal. Therefore 1/K? is non-singular if
Sz € CM*. K is symmetric in z,z".

Note that our formula is manifestly Lorentz covariant.
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Proof: We rely on the results above for 4-dimensional integrals in an essential way. Consider
the general expression

w(f,g) = /fV“—V )g 'S,

This is a symplectic functional of f, g and the integrand is divergence free provided V2 f =
V?g = 0. We consider the case f = 1/K?*, g = . Note that V2f =0 in M even where f
itself is singular (see for example Schwinger’s papers on quantum electrodynamics c. 1949).
However as we shall see the 2-point kernel and the field do not play entirely symmetric
roles in an important way.

Now we complexify the r.li.s. of (x) above, 1.e. allow z — z = z —1y for real z,y. Then
the complez exterior derivative d = 9+ J of the forin in (*) vanishes since the integrand is
independent of Z, and is now divergence free in 2. Thus (x) is independent of £° provided
K # 0 and no singularities of ¢ are encountered. In real terms we have the frcedom
of deformation of a 3-dimensional contour in 8-dimensional space. Now define the linear
functionals I+:

+ la ‘a 1 13V
= [ (V- Vel a'E
(B, = €abeadz® A dz¢ A dzd), where

EF = {2%| 2% = 414¢, € > 0 is real and small; 2 = x is real}.

Then we insert a delta function of unaginary time holomorphically:

[[y] = 1 d*z [——2@(z“)zo 1 Op(2),
T o cF 20 F e z4 22 029 !
where CF are given in the 20 plane by o
7 — e
C & ;
{ :
Y o <
C e o S &

By 0+ 0 closure of the form in (*) these expressions are all independent of € > 0. Note
that no singularities are encountcmd since @ extends holomorphically in a neighbourhiood
of real spacetime, and K* # 0 since the contours remain in the future or past tubes. Now
clearly I*[p¥] = 0 since by surface independence the contours can be taken to infinity in
the past/future tubes where ¢~ / ¢t decay to zero.

To calculate I*[p ] note that in /Cx_ the second term contributes zero by RL, and by

RK the first term is proportional to SP:U(#| = 0. Thus fC“ = 0. Then for Jc— the first

te

term 1s clearly continuous at € = 0, and then by RK is equal to 4w (0). The second
term is also continuous at € = 0 where it is equal to
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Now RL does not apply because of the pole at z° = 0, and this integral is

. 3
|X|2 82 ,X)d x.

Hence
o P o Y Y- .
1 [(P ] - 227(' ‘r’" / | '2 8t (O X)

Similarly but taking note of the change in sign in the first terin

I7[p7] = 2in’e™( /‘ 7 A Bt (0,x) d*x.

Adding these equations gives

gl + ol = =2in?le 0 = O]+ [ [z FOo0 e

PROPOSITION:
I*¥[p] = 0 for all p decomposable into ¢ = pt + ™.
Proof: Tt suffices to show that It[p*] = 0. Surface independence and the decay of ¢ at

spatial infinity enable one to deform the contour to be,
Q

b

N/ L
O X

7 \

N
Then for the fixed real part P shown since P lies strictly in the interior of the future real
light cone of z, the integrand is 0 + 0 closed for all z in an open neighbourhood of the
union of CM+, CM~. In particular we have 8+ 0 closure at y* = 0 since the integrand is
holomorphic on any Comple)\ line through P¢ 4 0% in a sufficiently small neighbourhood.
This enables us to deform 7 passing through real spacetime to eventually lie at infinity

in the future tube where the integral is zero.
Hence,

Jlp(z) Z(0,y)d'y.

T on? / |x — y[? Ot
Now in the case of a flat £9 in () the term from the derivative acting to the left contributes
zero, since this creates a factor (x —z’)* which is orthogonal to the measure of integration.
Now by surface independence we claim our result is established. It suffices to verify that
(a) the integration over the tunelike cylinder at infinity vauishes and (b) that we may
apply Stokes’ theorem to obtain surface independence for a general spacelike 3-surface. As
we shall see the latter in fact requires the surface to satisfy a differentiability condition.
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To verify (a) if we set ¢ ~ 1/r!*7 then the second term of (*) integrated over the

timelike cylinder shown gives - - T~ 4,7[4‘71)((
r”(l+7)/'1 du k
o (u—1efr)? —1

~ r_(1+7)[logr + A]

for some constant A. The first term contributes

! du
—(t7)
/0 [(w —ve/r)? = 1]?

B 1

~

rity o erY

for some constant B. Thus a necessary and sufficient condition for the integral to vanish
at infinity is v > 0 as stated above.

To verify (b) it suffices to show that the integral over the small timelike surface T'(r)
shown below tends to zero as the vertex of the light cone z is approached — then surface
independence follows from Stokes’ theorem applied to the shaded region since the form is
closed throughout this region and non-singular on the boundary.

We take the general timelike displacement of the surface to vary with the spacelike dis-
tance r from the vertex according to kr® (}) for real constants k,a such that the surface
intersects the light cone at its vertex only, or equivalently o > 1. Then since the field ¢
and its gradient are bounded and continuous at z the contribution from the second term

of () is
/kra(<") 1'2dt
o @
1 — kro!
-

14 kro-t
Now for all o > 1 and & such that the surface is spacelike at x this contribution vanishes
in the limit 7 — 0. The contribution from the first term of () is proportional to

r3 /kra dt
o (t2 —-T2)2

kra~1

1 __k2r20—2'

x rlog|

kre <r
o< tanh ™! (kr* 1) +
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Now for all a > 1 this contribution vanishes in the limit r — 0. Only in the case a =1
are we left with the contribution

k
~1
« taph™ &k + 152
wherein k& < 1 so that the surface is spacelike. This is the case of a conical 3-surface with
vertex at the field point z. Thus if the surface is only once differentiable the contribution
from T(0%) is zero since we can always bound this contribution above by that from our
generic form (1) in the case a > 1. This completes the proof of the theorem. I am grateful
to N. Woodliouse for suggesting the existence of the extra contribution due to a surface
with singular extrinsic curvature.
We have the trivial corollary in terms of the 3-dimensional Laplacian:

Tp(x, 0] = a2 221

where A2 f(x) = +.5; I;fl_%',llgd:‘y. Thus we see that the action of J is non-local
with respect to the Cauchy data (p,0¢/0n) and that in the case that ¥ is flat is de-
termined alone by the free data of the normal derivative. This gives a relation between
elliptic operators on 3-spaces and restrictions to Euclidean spaces of hyperbolic operators

on pseudo-Riemannian spaces.

Concluding remarks

These results may be used to derive expressions for positive definite norms of massless
bosonic fields of arbitrary integer spin as two-point configuration space integrals, requiring
no ectraction of frequency parts or potentials for tlie principal fields. It is especially
interesting in the case of linear gravity that one obtains a positive definite norm as an
mtegral over the linearised phase space variables. This is well defined provided only that
one can make a choice of foliation of real spacetime by a family of spacelike hypersurfaces
— thus the vacuum Einstein equations may faud to hold. This gives in principal a way of
measuring the difference of two neighbouring spacetiine geoinetries even in the presence of
matter. Details of this will appear in a subsequent publication.

[ am grateful to L.P. Hughstou for stiinulating discussions.
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A Minimum Principle for the Cohomological Inner Product on
Twistor Space

Franz Miiller (e-mail: muller@ihes.fr)

In this note we describe how, in the Dolbeault framework, one can obtain the SU(2,2)-
invariant inner product on the cohomology groups H(P1 , O(—=2 — n)) (P4 a small nbh.
of Py C PT), n > 0, starting from a pos. def. inner product on representative (0,1)-forms
and evaluating it for representatives with minimal norm. In the standard approach one puts
a SU(4)-invariant Fubini-Study metric g on PT which gives a pos. def. SU(4) N SU(2,2)-
invariant inner product on forms [R. et al.], [S]. But the fact that full SU(2,2)-invariance is
recovered by going to representatives with minimal g-norm might have been overlooked.

It follows, at least for n > 0, from the general theory [FK] (as referred to in [S]) that the
minima are attained by unique g-harmonic representatives satisfying -Neumann boundary
conditions (3.2). Thus, one can just calculete to see that these minima agree with the
SU(2,2)-invariant cohomological norm (for sufficiently many states (3.8)). We shall perform
such a calculation (3.6), (3.12) for the case n = 0 where in fact one integrates over P,
generalising (1.1).

1. The case of SU(1, 1) as an Introduction: We consider the analogue of H = £2(S!)
for the hypersurface Py in PT. The Hermitian inner product

(f19) = 2—71r§/|z|=1 T(z_)g(z)(—i;‘-z~ , z€C, (1.1)

on H is positive definite and induces an orthogonal splitting # = H, @ H_ into functions
extending holomorphically over the upper (S;) and lower (S_) hemisphere of CP! ~ S2. It
is furthermore invariant under the action

1 az+b
Bz+af(5z+a

(g% f)z) = ) . g = (8 eG=50(,1). (1.2)

This is best seen by thinking of f as a section of O(—1) over S or S_ , represented by a
function of homogeneity —1 in the homogeneous coordinates [zg, 2] , e.g.

fo=1/(a0z® +a;2") , a= [ao, a1] € Sy . (1.3)

The action of (& is then induced by the natural action on points ¢ € S*\S! and the inner
product is

(falgs) = £(@obo — @;16;)™" or zero (1.4)

depending on whether «,b € Sy or S_ . The sign is such that the expression is positive for
@ = b. In the same way one gets realisations on O(—1—n) for all the (holomorphic) discrete
series representations of SU(1,1) (n € N), an invariant inner product for n > 0 being [BE]

(f1g)n = 1 /lz|<1(1 - zz)"-‘ﬁg(z)dz/\ dz , zeC. (1.5)

9
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All of this has analogues for projective (flat) twistor space PT ~ CP? although one has to
work with cohomology groups. S! is replaced by the five-dimensional real hypersurface

Po = {[2] | h(z,2) = 0} = (SU(2) x SU@)/U(L) (16)

- ~2 _ 3.3
where h(z,z) = 2°2° + 2'z! - 222* - 2°%° |

which divides PT into P, and P_ . We have “elementary states” (sections of O(—2))
_
(a;z*)(biz*) '

which generate 1-cocycles in Cech cohomology via the connecting homomorphism in the
Mayer-Vietoris long exact sequence on a cover with two Stein sets [EH|. The positive definite
SU(2,2)-invariant inner product on these is

([fab] | [fed])n,—2 = (h(a, c)h(b,d) — h{a,d)h(b, ¢))~! or zero, (1.9)

depending on the respective position of the lines a A b, c A d.

Jab = ahbe Py (1.8)

2. (0,1)-forms on Py : In a fixed basis where A has the form (1.7) we fix
g(z,2) = 2°2° + 2'7 + 2%2% + 2°F° . (2.1)
Simultaneously, g denotes the Fubini-Study metric induced on PT. We use affine coordinates
(&m &) =(2'/2", 2], 2°[2°) (2.2)
on a dense open cell CPP*\CP?. A g-normal to Py of constant g-length is given by
n = n0, + {0¢ + 705 + €07 . (2.3)

We then naturally define (0, 1)-forms w on Py to be those (C*) 1-forms which vanish on
holomorphic tangent vectors. If such a (0, 1)-forin w is the restriction of a d-closed form on
a nbh. U of Py then it satisfies the boundary CR-equations

Ow =0 <= vidw =0Vv e T'PT N TcPo (2.4)

where d is the exterior derivative on Py. Now we can complete to a Hilbert space of (0,1)-
forms on Py with the inner product

(@i = [, 1A%) RRCE)

where % 1s the Hodge star with respect to the metric § induced from g on Py. This is
obviously a positive definite inner product on arbitrary (square-integrable) 1-forms on Py,
invariant under the transformations in SU(2,2),NSU(4), . It is however not invariant under
general transformations in SU(2,2). ;From (1.1) it is clear that one should try to construct
a fully invariant — on the level of cohomology — inner product from the “boundary values”
of elements in the cohomology groups H'(Ps, O(—2)) of P4 . It is surprising that this can
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be achieved with a formula (2.5), which depends upon the choice of g, by picking unique
g-harmonic representatives satisfying the J-Neumann conditions on the boundary Pg.

3. The SU(2,2)-invariance on normalised representatives : An orthogonal basis
of the Hilbert space completion of H'(P4 , O(—2)) with respect to the cohomological iuner
product is given by the classes generated by the following g-harmonic (0, 1)-forms [EP],[S],
written in homogeneous coordinates
% 7 A

(20Z0 + 21Z1) 1™ n€N;uy;=0,...,n

Wnyij = 0n,ij(ZodZ) — Z1dZ0) , lnij =

(3.1)
Furthermore, they satisfy the -Neumann boundary conditions [FK]

0(8,,dr)w = —mg (n)aw = —nw =0 at Py (3.2)

g?

where o is the symbol of an operator and g is the antiholomorphic projection of a vector
field. Notice that the w,;; are also h-harmonic in the sense

gwn,ij = Ezwn,ij =0 Vn) 27] (33)

but the associated Laplacian is not elliptic. If we are presented with (0,1)-forms w, 1 on
some nbh. U of Py which extend @, 7 and one of which satisfies (3.2) then (2.5) simplifies
to

@)y = [, 9w, n)natl (3.4)

where g~ is the dual of g and £, is its determinant. (This is probably the “better” definition
anyway although seemingly less intrinsic.) We calculate

Unijam p(2°2° + 2'21) g(2, 2)
Wnij [Wm -2 =
(Wnij | W ki) g, -2 /Po 7(z7)

L)stA dCAdp NdTAdENDE 2 (q + EE)dC A dT A dn A dif A dEJE
2t

nufl, with

naQy = n(

(1 +CC+ a7 + €€)° (2i)° (L+CCH+n+E6)*  (55)
and thus

(it a = [ ST TELCN Gy
i 1 Wm ki) g, (2i)3 P, (1+<—<—)3+m+n

=18 Sbit((1 + ) (n) (".))'1 . (3.6)

tj\J

The space generated by the g-harmonics {wn,;} is not invariant under SU(2,2). Rather,
we obtain an basis of an slc(4)-module, orthogonal in cohomology, from the lowest weight
vector wg 1= wy g by the application of step operators

X YIE*w , neN;ij=0,...,n (3.7)
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where X, , Y, are the step operators in suc(2) ® I and I ® suc(2) complemented by Ej
(specified below) to generate the whole action of slc(4). Since ( | )y is invariant under
SU(2) x SU(2) we only have to compare

([E7 wol | [E} wol)n ¢ {wn 00 1Wn,00)y (3.8)

in order to ascertain the full invariance of { | ), on normalised representatives, because we
claim

Lemma: E7% wg and ¢, wn oo are cohomologous for the right choiceof ¢, € Z and £, € slg(4) .
For the d-closed (0,1)-forms

(a:2')(bidz*) — (bi3*)(a;d2") (3.9)

- [(@z)(Bi2F) = (biz')(aiz)]?

which correspond to the Cech representatives f,; of (1.8) one obtains the cohomological inner
product as in (1.9). Here z — Z is the map

(29, 21, 2%, 2°%) — (39, 3, 22 2% = (-7, 2°, -2, 7) (3.10)
which is invariant under SU(2) x SU(2) and can be viewed as the antipodal map on the
fibres of a fibration [A] S? — PT — S* which restricts to a fibration S? — Py = S* of
Po. We choose Ey = 0,,(.)|(a; = 8?) such that

E: Wy = (C(aa..)"wa(,,ai - 5?) b, = (S'l, ¢ = 5‘2, d; = 5;’3 . (3.11)

(similarly, we could choose X = 0,;0,,(.)|.. and Y} = d;0.,(.)|... ). See [BE] §11.4 for a similar

notation. From (1.9) one quickly computes
(LB ol 1[5 wolyn = 62, 07, ([was] [waalul.. = (1) (3.12)

Proof of the Lemma: In affine coordinates one computes that on O(—2) one has

E+ = L, —2n where v = Z(’)( —n(¢0; + 10, + £0¢) (3.13)
and
" d¢ tdg "¢
L,—2m) —L 2 = (42 > 47 S . 3.14
e T s Plar e o B
Thus, by induction
[E";_ wol = (=1)"(n + 1) wneo] - (3.15)

A comparison of (3.6) and (3.12) now yields

Theorem: Let ( | ), denote the positive definite inner product on the cohomology groups
H' (P4, O(-2)) invariant under SU(2,2) = SU, (for example given by linear extension of
(1.9) but properly defined by the twistor transform [DE]), where A is an indefinite Hermitian
form of signature (+, +, —, —) on C* which defines P and Py. Let g be the positive definite
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Hermitian form obtained from h by a flip of signs (in some h-diagonal basis) with associated
unitary group SU, and Fubini-Study metric g_, on O(—2) and define

(win)g,-2 = /Po A%, W) (3.16)

where §_, is the restriction of g_; to Pg invariant under SU, N SU,; and w, 7 are square
integrable (0,1)-forms on Py . Let ¢; (1 = 1,2) be in the above cohomology groups. One has,
for some g-independent constant k € Ry

(e)ea)n =k (w] 1w )g,—2 (3.17)

where w! € ¢; are the (restrictions of the) unique g-harmonic representatives which satisfy
the 9-Neumann boundary conditions. They are characterised by having minimal g-norm
within their class. a

The last statement follows from the fact that the 9-Neumann conditions (3.2) on w are
equivalent to

(W10d)g-2 =0 Y ¢eT(UPo), O(-2)) . (3.18)

Remarks: We can consider the two spaces H'(Py , O(—2)) simultaneously and obtain an
orthogonal splitting of “boundary values” as in the case of SU(1,1). A weak form of (2.4)
should be enough to characterise representatives in this total space.

We also remark that (3.6) makes it very easy to sum the g-harmonics to a (Szego-type)
kernel which is in fact different from the usual one [W] appearing in the twistor transform,
the latter being a g-unbounded operator ! One would expect this kernel K to fit naturally into
an integral representation (a so-called homotopy formula [HP]) of an arbitrary (0,1)-form
on Py, say, viz.

w(2) :C(/Po W(C) A A'(g,z)_/P+ F(C) A Ki(C,2)) + 3, /73+ W(C) A K3 (¢, 2) ) o

One can ponder the themes in this article from a physical point of view: Broken symmetry,
normalisation, minimum principle, ...
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COMPLEX NUMBERS

in

QUANTUM MECHANICS

A One-Day Seminar will be held at the Sub-Faculty of Philosophy,
University of Oxford, 10 Merton Street, Oxford on

Saturday, 3 June, 1995

The aim of the seminar is to survey thé uses of complex numbers and
complex structures in existing quantum theory and to consider the role
they might play in quantum gravity. Some abstracts are given overleaf.

Programme
10:00 Registration and coffee (Lunch 12:45, Tea 16:30)
10:30 L. P. Hughston: “Complex Geometry and Quantum Probability”
11:30 I. S. Anandan: “A Geometric View of Quantum Theory”
14:15 L. J. Mason: “Generating Spacetime from Complex Numbers”
14.45 A. P. Hodges: “The Twistor Diagram Program”

15:15 R. F. Streater: “Complex Numbers and Complex Structures in
Quantum Mechanics”

17:00 J. B. Barbour: “Why i and Is It in Quantum Gravity?”

17:15 G. W. Gibbons: “How the Complex Numbers Got into Physics”

Anyone interested is welcome to attend; time has been included in the programme for
questions and comments from participants. Tea, coffee, and biscuits will be available
at the Sub-Faculty from 10:00 and during the lunch and tea breaks. There are several
restaurants near the Sub-Faculty, but participants are encouraged to bring sandwiches
for a picnic lunch in the nearby Botanical Gardens. There is no registration fee but
please advise either of the organizers if you plan to attend. Organizers:

Julian B. Barbour, College Farm, South Newington, Banbury, Oxon, OX 15 4JG (Tel:
01295-720492; fax: 01295-721851). Dr Harvey Brown, Sub-Faculty of Philosophy,
University of Oxford, 10 Merton Street, Oxford, OX1 4JJ (Tel: 01865-276930; fax:
01865-276932; e-mail: harvey.brown@philosophy.oxford.ac.uk.).
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Abstracts and References

L. P. llughston: “Complex Geometry and Quantum Probability.” A survey of the
basic constructions of ordinary quantum mechanics is presented by the use of the
formalism of complex projective spaces and the Fubini-Study metric. In this way the
various probabilistic assumptions that go into the interpretation of quantum mechanics
can be formulated in a geometric language. The geometric view helps to clanfy many
aspects of the ordinary theory, but also highlights some of its problems, and forms a
basis for possible generalisations. References:

L. P. Hughston (1995) “Geometric aspects of quantum mechanics,” in Twistor Theory
(S. A. Huggett, ed.), Marcel Dekker; L. P. Hughston (1995) “Geometry of stochastic
state vector reduction” (preprint); L. P. Hughston, R. Josza, and W. K. Wooters
(1993) “A complete classification of quantum ensembles having a given density
matrix,” Phys. Letts. A 183, 14-18.

J. S. Anandan: “A Geometric View of Quantum Theory.” A new method of
observing the wave function of a single quantum system and the geometric phase are
used to justify operationally a geometric formulation of quantum theory in the quantum
state space (the set of rays of the Hilbert space or the projective Hilbert space). Some
generalizations and modifications of quantum theory are considered from this point of
view.

J. B. Barbour: “Why / and is it in quantum gravity.” My interest is this: Is there one
specific way in which complex numbers enter quantum mechanics? If so, what is the
corresponding physical phenomenon that makes this necessary? If, as Pauli argued,
complex wave functions are needed to ensure unitarity, what happens in quantum
gravity, in which there may be neither time nor unitarity? Does some other effect
enforce the appearance of complex structures in quantum gravity? References: Chen
Ning Yang, “Square root of minus one, complex phases and Erwin Schrodinger,” in
Schrodinger: Centenary Celebrartion of a Polymath (C. W. Kilmister, ed), CUP (1987);
W. Pauli, Z. Physik 80, 573 (1933); J. B. Barbour, Phys. Rev. D, 5422 (1993).

G. W. Gibbons: “How the Complex Numbers Got into Physics.” I review the role
that complex numbers play in setting up the usual quantum mechanical formalsim and I
argue that there may be circumstances under which this is not possible, for example, if
spacetime does not admit a global time orientation. [ also argue that in currently popular
models of quantum cosmology it makes sense to say that the complex numbers
emerged contemporaneously with the emergence of a classical notion of time.
References: G. W. Gibbons, Nucl. Phys. B410 (1993) 117-142; Nucl. Phys. B271
(1986) 495-508; Int. J. Mod. Phys. D3 (1994) 61-70.
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Short contributions for TIN 40 should be sent to
Twistor Newsletter Editor
Mathematical Institute
24-29 St. Giles’
Oxford OX1 3LB
United Kingdom
E-mail: tnews@maths.ox.ac.uk
to arrive before the 1st October 1995.



