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tn TN 39, 1 described tle action of the quantum complex structure J on any field or potential satislying
the wave equation in flat spacetitne, as an integral over an arbitrary curved spacelike hypersurface. In
the present article I use this result to demonstrate the relationship belween the twistor scalar product for
massless fields, with 2-point norms in the bosouic cases of a inassless scalar field, electromagnetisin and linear
gravity. The 2-poiut norms are autowuatically positive definite for fields of mized frequency, and invartant
under Lhe 15-paramecter couforinal group. They have the added advantage that their computation involves
no extraction ol potentials or positive/negative {requency parts from the principal dynamical fields.

In the casc of gravity I give an interpretation in terins of colierent states and superpositions of spacetimme
geometries.

I also describe the corresponding two point integral for the ferinionic case of a massless neutrino field.

The Heritian, Symplectic, Complex and Metric Structures

To begin with we introduce F as the standard Hermitian Fierz scalar product for a spin %n field ¢,
given by
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Here ¢ is the n'* Dirac polential for ¢, and « is equal to | or i according as n is odd or eveu. Now F is the
Hermitian structure. Denoting the symiplectic, quantuin comnplex and metric structures by Q, J and (, )
respectively, the schieme for these three basic structures is

F(e,9) = e, 9) = —i[F(p,9) = F(#,¢)]
1 3 1 bl 1 2 1 2
and the positive definite metric or normn, for a mized frequency bosonic state is now,
(ele) = (e, J]#)).
1 2 1 3

Rewmark on localily and complezification. It is worth noting the two distinct types of possible complexification
for spacetime fields, with regard to locality. The complexification of a field itself (to allow for a distinct
autiparticle) is local, as is the splitting of a field into its sell-dual and auti-self-dual parts. However, as the
results above show, the splitting of any field into its positive and negative frequency parts is non-local - that
is to say, J is a non-local operator. It is non-local to the extent that it requires data over an entire Cauchy
spacelike hypersur{ace.

The Scalar Case

We cousider a real Klein-Gordon field of mixed frequency satisfying the massless wave equation. Then
the symplectic form is given by

o, ) = /E(Wud) ~ ¢V, y)d3ne
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which is compatible with the complex structure in that Q(¢,9) = Q(Jé, J¢). Now the lermitian scalar
product F is

F(o, ) = Qa, J[¥]) + i€2(s, ¥)

and the symmelric positive defiutte mebric 1s

60 = W) = 26,0 o« [ [ TR ot Tupte) - T e

where ¥ is a once diflerentiable spacelike hypersurface. The 2-point integrand above represents the proba-
bility current in the product of two configuration spaces. For bosonic fields it is not possible in the relativistic
theory to construct a single point current vector jo(z), which is future pointing, so that j, - d*L* would
represent the positive probability flux. (‘Ihis is in coutrast to the standard non-relativistic Schrodinger pre-
scription of foriming the symplectic probability 3-current j = ¥ Vy* — p* Vi {or some wave function 1.) Thus
we see that the particle number concept, which we obtaiu froin the metric {, ), is non-local in the single
configuration space but focal in L(r) x E(y) - two copies of a single conliguration space. This important
idea as we shall sce carries over Lo the electromagnetic and linear gravity cases also.

The Photon Case l

We consider a generally complex clectromagnelic field,

Iap = paean +Yapean

(so that m an alternative frequently adopted notation ¢ = ¢). The splitting of F into its sell-dual and
anti-sell-dual parts is given siiply by,

1 v
Fh = §(Fab + 1" Fop)

where * denotes the duality transformation, and the splitting into positive and negative frequency parts is
giveu by,
FE = i.(iiJ)[F].
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Remark on photon states. A physical photon stale can be given in two ways: (1) as a real electromagnetic
field with the relevant complex structure J at hand, or equivalently (2) a positive frequency field with
idependent left and right handed parts. _

Remark on self-duality and helicity. 'I'lie (anti-)sell-dual part of a nassless field is given always by its
{uu)prinsed spiuor part — it is important to realise that the right (left) handed part of the field is given by
the (un)primed spinor part only if the field is of positive frequency.

Remark on complex fields. These allow for Lhie case that the particles associated to the field are not identical
with their antiparticles. In the electromagnetic case thie photon is its own antipartiele, so that F is real for
a physical field. However for its mathcmatical interesl we study Lhe general case of a complex field tensor.

Now thie conserved Fierz scalar product is given by,

Fp,¢) :/VBAIB"),’I &’z
b

wlere 7 is the veclor potential, subject to the Lorenz gauge condition Vg,qﬁl =0 (GL), and ¥ is a spacelike
liypersur(ace.

Note on the gauge coudition: the spinor gauge GL implics that 1 satisfies the wave equation V%5 = 0
and that the divergence of 5 vanishes V40® = 0. Later on we will need to assume the Coulomb gauge:
Nt = (0,A) = f((),A(k)]e””d% - such 1 clearly satisfies the wave equation since the integration is over
{k? = 0} - to obtain consistency with GL we nced that k- A = 0 — the 3-vector potential A and the electric
field are parallel, and the electric, magnetic and momentuin 3-vectors forin a right-handed set.
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Now lrom TN 39 the repolarised potential is given by,

4 l l — - 1 ; -
J[’I//: I(z) = anZ /}3’9 A_'Z(Vb —- V") (&) Pz,

Iu the general case,
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where £, L’ are identical, but in general curved spacelike hiypersurfaces. In the case that ¥ is a flat 3-plane
the second term above vanishes since this contains the factor (z —z')* orthogonal to the integration measure.
The first term above upon interchanging the upper indices A’,C’ is equal to

— i ’ 7 2
B // W+2() tomg (2) 2’ PP (term 1)
Ux D’
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We claim that (term 2) above is zero : this terin contains V’CA'UD:A(::’)d%'CD’ which by GL equals
VIAA’UDIC‘(:L")(IBI’CD’ which vanishes in the Couloinh gauge. Since the original I'lerz expression was gauge
independent subject to GL holding, and since GL is consistent with the Coulomb gauge, we may assume the
latler gauge to hold when we gauge fix ¥ to be a flat 3-plane. We are left then with (term 1) which fromn
the Dirac chain is equal to

' ~// ¢A’B'(I)¢AC(1’J)(13IICA'd3IAB'
ExE! I '

Now define
P(z,y) = E(z) - E*(y) + B(z) - B*(y).

Then P*(x,y) = P(y,z) and P(x,z) is real. Define
Q(=z,y) = E(z} - B*(y) - B(z) - E*(y).
Then Q(y, £) = —Q(=, y)* and Q(z,z) is purely imaginary. Also define,
C=E-:B.
Now introduce the following géneralised two-point stress-energy tensor for electromagnetism:
Tav(z,y) = pap(z)parp(y).

Note that, even in the 2-point case this tensor retains its symmetry and its trace-frce property, since the
lield spinors ¢ and 1 are symmetric. Now,

<PAB($)¢A'B'(!/)"“”') = woo(T)Poror (¥) + 2p01(x) @01 (y) + w11(x) P11 (y)
1
= 5C() - C"(1)

= %[P(.’l), y) + 1Q(’C, y)]



16

Now to calculate the corresponding ¥ part: we have

1 .
Yoor = 5(1)1 +1iDy)

1
1/)011/ = —§D3

1 .
Py = —§(D1 —1D,)

where now D = E+4iB, noting the change in the sign in front of 7 (of course the electric and magnetic vectors
licre are the same as in the ¢ case — there is ouly a single complex electromagnetic field under consideration).
Now, introducing new variables {X,Y} = {x,y} but wilth a free ordering,

Yarp (Y )oap(X)n®nb

v= oo (X)oror (V) 4 2801 (X )Wor (Y) + D1 (X) Y1 (Y)

= %D'(X).D(Y)

= P Y) QU (X, V).

Then, ]
leap(z)@arp (y) + Yarp (Y)dap(X)n*n® (1)

= %(P +1iQ) (=, y) + %(P" +iQ" )X, Y)

which in the case of ordering (X,Y) = (z,y)

= S[P() + P, 2)] + 5l 1) - Q(w,2)]

/ P(z,y)

K(z,y)

Alternatively in the case (X,Y) = (y,z), (1) = P{z,y). Thus both orderings give the same result for the
photon norm {gle) below. This is a reflection of the fact that the photons obey Bose stalistics. More
precisely the 2-photon state represented by Fap ca(z, y) satisfies Maxwell’s equations on the first two indices
with respect to & and on the second two indices with respect to y, and Bose statistics implies Fap. ca(z, y) =
Fetab(y, #). Our norm is in fact the llilbert space norin for Quantum Electrodynaiics, which is closely

related to the expectation of the numnber operator N in the Fock space state coherent to the classical state
{¢,9). In suthmary we have shown

(plp) o // E(z) 'E'(lyx)jﬁix]'n'(y) >0 VE,B

and that this is identical to the Fierz/Twislor scalar product with the relevant complex structure inserted.
(I have shown that the generic 2-point 3-space integral [¢(z)¢(y)/|x — y|? is convergent if and only il
¢ ~ 1/r1*7 for v > 1 at spatial inlinity, though I omit the proof of this here.)

which integrates against symmetric K’ to

Remarks. The invariance under the restricted conlormal group C'l

SU(2,2) 223 50(2,4) =5 ¢

follows automatically from the twistor translation of the Fierz scalar product, and that the action of J
commmutes with any conformal translonisation. In particular the 2-point norm is Lorentz and translation
invariant, as in fact follows mmmecdiatety from the above argument — the current vector in the Fierz scalar
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product is divergence free so one is free Lo boost and translate ¥, belore J is perfortned. 'The photon norm
is thus a property of a given complex electromagnetic field - not of the particular time slice. In this sense
it contains informalion aboul the time evolution of the field, via the requirement that it be constant. It is
also worth noting that the 2-point integral enables one to compute the norin of the field without having to
extract any potentials or positive/negative frequency parls.

The remarks above carry over naturally to the spin-2 case, that is linear gravnty, as we demonstrate
below.

The Gravitational Case

To begin with we integrate by parts once in the Fierz scalar product given earlier to oblain,

Fl,¥) = /EFB'C’D’(I)XJ Cl( )d3 D!

where [ and x arc the first and second potentials for the lincarised Weyl spinor respectively. 1t follows that,
with h = y + ¥

¥, J[y]) o //zxyl_ Bre )'[rlx)“ I“E’hAI) (”3') - 2(1(__)1):_F_,/z130c( ')]43’3'EE’ L PP

where £, X/ arc in general curved but coincident. In the special case where £ is flat this simplifies Lo
1?/} J[¢] // I CIDI ) ( ,) VL-E/’IAD (I’)da'-UIEE dd.'L‘DD .
-z

i . .
Here ' represents a real spin-2 field of mized frequency, and we assume the transverse gauge hgqp - >z = 0.
Then we have
4 ’ '] - ’
Viphis (2)d®c'BE 3PP

Vg ' 1 1 ’ ’ ’
= Viphiy (2)d®2EC 3PP 4 9 eCE 0L, o (o )dP e EF @32 PP

in which the sccond term vanisles smce we can mterclmnge the lower indices A and E by the spinor gauge
condition, leaving a termn involving hDDF’(d )EF which vanishes in the transverse gauge. Then using the
Dirac chain we are left in the transverse gauge siinply with

0(// r ’C’D’('L' E,AD( ')(‘l')Ecl(d)DD'v
Ex¥/

(= )?

A tensorial version of this expression can be oblained as follows. 1n the transverse gauge the linearised
extrinsic curvature is given by

1
M = quqg’nevehc,,

in which the derivative of h arises from the perturbed covariant derivative V.
We now proceed to demonstrate that,

Ficop (2T (') (d)EC (d)PP" = 1, (2)11°(2') B3 &2

Clearly,
Al (2)11%(2") = (g°* — nn®) (g™ — ) nn" (Vehea) (2) (Vo) (2')

which by the gauge choice reduces to,

nn"(Vehe ) () (VA4 (o).
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The spinor part, of our assertion is,

! ’ f
VBB'X(/}!;_)'( )Vep X BE( )nEC nPl"

By the spinor gauge condition on x (from the Dirac chain) we have,

B'E' EC'

olold
o =Vapxgp n vAE‘XEI) n

- EE' B'C’. EE’
Vepxiy n =VEEXap 0

and also, 5 bp’ B DD
VBB'XérD/n = VBD’,?CI'BIN

which together give a contribution
’ ! A 'I _A BDI
(VEE'XEBC )(x’)"DD (VDD'XC%')(I)" :

Now we can interchange the upper indices B and D since this just gives an extra term

(Vepxhs Wa B8 (Vppxd pr)e)n P ePB
in which we may interchange the lower indices I’ and C’ by the spinor gauge condition on ¥, and then this
vanishes since & -1 = 0. Up to an overall numerical factor therefore, our assertion is established.

The conformal invariance of this 2-point gravity norm follows from the saine arguments given for the
photon case above.

In termns of Laplacians we have,

ne (=)
('fllg)) x /I)Iab(z)A"l/ZI)Iab z 27\'2 // m — 17')2 (f)

in which A~/2 acts as a non-local operator. In the vacuum case invariance under the conformal group
holds so that in particular the expression is conserved under time translations. It is noteworthy that one
could calenlate this integral in the presence of matler where the Einstein vacuuin field equations fail to hold.
For the mtegrand only requires a foliation of the spacetime. However in the non-vacuuin case the norm is
certainly not conserved in general. Ouly in the special case that there exists a timelike Kitling vector field
d/0t along which the Lie derivalive of 1l vanishes is the above norin guaranteed to be conserved in the
preschce of matter.

For two distinct fields the above expression could be interpreted as the ‘overlap’ of two neighbouring
spacctinie geomelries, where Lhe consiituent fields themselves are normalised. 1t is this overlap which one
could iiilerprel as a measure of the probability of a transition |11} = |II) where the Dirac kets denote the

1 3

coherent states in the projective Fock space (state space} PF. Now any state |¢) in PF has an unique

decomposilion into coherent states, and thus the submanifold C of colierent states in PF is non-linear. That

is Lo say the complex projective line L in state space joining the colierent states |[1) and |1} lies entirely
1 2

off the coherent state subinanifold apart from at the points |11} and | II) where it intersects C transversally.
H p

Thus we think ol the superposition of two neighbouring spacelime geometries as a point {¢) on L\C and
then the probability of transition Lo |]_1) is the distance d{t,11) with respect to the standard Fubini-Study

metric restricted to the projective line joining [1) to |11). It is important to realize that the nonlinearity of

C is fully present even in the linear gravity. This is a desired feature of our description, since in the presence
of wealk gravitational fields nature in the classical domain does not support superpositions ol neighbouring
well defined classical geometries. It is precisely the space C which corresponds under exponentiation to
these classical geometries ~ the solutions JI of the classical field equation. Moreover, as the early work of

Schrodinger shows, C is unitarily invariant under a wide class of Hamiltonians, in particular all harmonic
oscillator Hamiltonians. Thus a frec colierent stale of the gravitational field remains coherent under its time

cvolubion and is associated at each time to an unique classical geometry. Since the neighbouring coherent
i
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states overlap, according to (1), the colierent stale is [ree to wander within C under unitary evolution, and
so under timne evolution the geomnetry may chaunge, but retain its classical nature.

The Fermionic Case

Let us now consider Lhe corresponding situation for the case of a nassless neutrino lield v4. The Iierz
scalar product is now

Fv, ) = / Tavar LA (5),
Ju

Note here that the current, 4-vector j = v is automaltically a fulure pointing null vector so that the expression
above is positive definite for all v. We can apply the saine repolarisation procedure as belore to give

BB
roryl / - m(z)my)—ﬁmmv@) var Y &g (+0)

where ¥ is a single once dilferentiable spacelike hypersurlace, which is in general curved. In the case that %
is flat we are left simply with

[, MR s
T y) '
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We remark on the physical significance of the above forinula. Suppose we have a neutrino field consisting
of a maxture of both left and right-handed particles. Firstly note that for such a general mixture we only
use a singlc spinor leld v. More precisely both v4 and v4: have positive [requency parts corresponding to
the left and right-handed fields respectively. The standard VFierz 1-point integral (x), because of the Ferini
statistics which ensures the current vector is always future pointing, represents for all v the positive definite
norim which corresponds to the sum of the numbers L and R of lelt and right-handed neutrinos. The eflect
of the quantum complex structure in (++), as one can see from the repolarising action of J in (*), is simply
to produce the difference L — R. The siluation for Bose statislics is reversed in the sense described earlier.

Concluding remarks

I have been able to show that these two-point nortns can be expressed in terms of Dirac’s CP? calculus,
and also as twistor diagramns. In the latter case | have sliown using RP’s article in TN 27 that the action of
tle quantum complex structure J is expressible as an holomorphic link integral in twistor space. Thus also,
from the integral representation of J, is the scalar product of a field with the Green’s function for the wave
operator, a suggestion of Atiyal which is alluded to in RP’s article.

Details of these issues will appear later. /lw ’t; [Lfb&_/ p . ’Cv "\13_&;(-‘4/\?
o i, i (ine Honglotons for i
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