In search of a twistor correspondence for the KP equations

S.R. Barge (barge@maths.ox.ac.uk)

1 Introduction

This article summarises work done in an attempt to develop a twistor correspondence for the Kadomtsev-Petviashvili equations,

$$(4u_3 + 6uu_1 - u_{111})_1 - 3\sigma^2 u_{22} = 0,$$

where $\sigma^2 = -1$ for the KPI equation and $\sigma^2 = +1$ for the KPII equation, and other related equations as yet unattainable as reductions of the anti-self-dual Yang-Mills equations. The motivation comes from [2] and the work done on developing the Dirac operator and the nonlocal Riemann-Hilbert problem is adapted from work in [1] and [5].

We shall take as our twistor space $\mathcal{O}(n)$, the twisted line bundle of Chern class n, fibred over \mathbb{CP}^1, which is viewed stereographically as $\mathbb{C} \cup \infty$. The Riemann sphere will be given coordinates λ on \mathbb{C} and $\lambda' = \lambda^{-1}$ on $\mathbb{C}' = \mathbb{C} \cup \infty - 0$. The bundle $\mathcal{O}(n)$ can then be given coordinates (μ, λ) on the fibres over \mathbb{C} and $(\mu', \lambda') = (\mu \lambda^{-n}, \lambda^{-1})$ on the fibres over \mathbb{C}'. It can be shown that an element of the space of holomorphic sections of the bundle is of the form

$$\mu_n = \sum_{i=0}^n t_i \lambda^i, \quad (t_i) \in \mathbb{C}^{n+1}.$$

For the KPII case, we consider the coordinates (t_i) to be real.

2 The Dirac Operator

The standard Ward construction involves solving the equation $\bar{\partial}_E f = 0$ on a vector bundle E. The idea of Mason, in [2], was to replace the $\bar{\partial}_E$-operator
with a Dirac operator \mathcal{D}_{α}, where

$$\psi \mathcal{D}_{\alpha} \phi := \begin{pmatrix} \partial_{\lambda} & \alpha \\ \bar{\alpha} & -\partial_{\lambda} \end{pmatrix} \begin{pmatrix} \phi \\ \bar{\phi} \end{pmatrix} = 0.$$ \hspace{1cm} (1)

where α is a smooth function on $\mathcal{O}(n)$. Mason and Woodhouse, in [3], show that if we impose certain symmetry conditions on α and $\bar{\phi}$, then we can derive the equations of the KP hierarchy. These conditions are;

$$i) \quad \tilde{\phi} = \bar{\phi},$$

$$ii) \quad \phi(\lambda, \bar{\lambda}) = \bar{\phi}(\bar{\lambda}, \lambda),$$

$$iii) \quad \alpha = \exp(\bar{\mu} - \mu)\alpha_0(\lambda, \bar{\lambda}).$$

In the next section, we proceed in the opposite direction, and summarise a method of deriving the Dirac operator with the given symmetries from the operators of the KP hierarchy.

3 Derivation of the Dirac operator

Consider the equation $L \psi = 0$ where L is the first operator in the KP hierarchy, $L = \partial_{\tau} - \partial_{\tau}^2 + u$, where $u(t) \in L^1 \cap L^2(\mathbb{R}^2)$ and $t = (t_1, t_2)$. If we assume that $u(t)$ is zero in a neighbourhood of $|t| = \infty$, then $\psi \sim \exp \mu_2$ as $|t| \to \infty$. If we write $\psi = e^{\mu_2 \phi}$, then ϕ satisfies

$$\left[(\partial_\tau + \lambda) \left(\partial_\tau + \lambda^2 \right) \right] \phi(t; \lambda) = u(t)\phi(t; \lambda). \hspace{1cm} (2)$$

As detailed in Wickerhauser, [5], there is a unique solution to this equation, satisfying $\phi \to 1$ as $|t| \to \infty$.

We shall denote by $\hat{\phi}$ the Fourier transform of ϕ with respect to the variable $\xi = (\xi_1, \xi_2) \in \mathbb{R}^2$, defined by

$$\hat{\phi}(\xi; \lambda)) = \int_{\mathbb{R}^2} e^{-i\xi \cdot t} \phi(t; \lambda) dt, \quad dt = dt_1 dt_2.$$

Define the polynomials $P(\xi) = \xi_1^2 - \xi_2$ and $P_\lambda(\xi) = P(i\xi_1 + \lambda, i\xi_2 + \lambda^2)$. By taking Fourier transforms of equation (2), one obtains

$$\phi(t; \lambda) = 1 + G\phi = 1 + \frac{1}{4\pi^2} \int_{\mathbb{R}^2} e^{i\xi \cdot t} \frac{[u\phi]^\wedge(\xi; \lambda)}{P_\lambda(\xi)} d\xi.$$
We can make \(\|G\| \) less than unity by decreasing \(\|u\|_{L^1} + \|u\|_{L^2} \). We can then write \(\phi = (I - G)^{-1} \), and hence

\[
\partial_{\lambda} \phi = (I - G)^{-1}(\partial_{t} G)\phi.
\]

After a little work, we obtain the expression

\[
(\partial_{t} G)\phi = \alpha_0(\lambda) \exp(\bar{\mu}_2 - \mu_2),
\]

where

\[
\alpha_0(\lambda) = -\frac{1}{2\pi i} \int_{\mathbb{R}^2} \exp(\mu_2 - \bar{\mu}_2)u(t)\phi(t; \lambda)dt.
\]

We now consider the behaviour of \(\nu(t; \lambda) = (I - G)^{-1} \exp(\bar{\mu}_2 - \mu_2) \). It is bounded and satisfies equation (2) with the boundary condition \(\nu(t; \lambda) \sim \exp(\bar{\mu}_2 - \mu_2) \) as \(|t| \to \infty \). Define \(\bar{\nu}(t; \lambda) = \exp(\mu_2 - \bar{\mu}_2)\nu(t; \lambda) \). This has the boundary condition \(\bar{\nu}(t; \lambda) \to 1 \) as \(|t| \to \infty \), and satisfies the equation

\[
\left[(\partial_1 + \bar{\lambda}^2) (\partial_2 + \bar{\lambda}^2) \right] \bar{\nu}(t; \lambda) = u(t)\bar{\nu}(t; \lambda).
\]

But \(\phi(t; \bar{\lambda}) \) is the unique solution to this problem, therefore

\[
\partial_{\lambda} \phi(t; \lambda) - \exp(\bar{\mu}_2 - \mu_2)\alpha_0(\lambda)\phi(t; \bar{\lambda}) = 0.
\]

As \(u \) is real-valued, it follows that \(\overline{\phi(\lambda)} = \phi(\bar{\lambda}) \) and \(\overline{\alpha_0(\lambda)} = \alpha_0(\bar{\lambda}) \) and hence we obtain the conjugate equation

\[
\exp(\bar{\mu}_2 - \mu_2)\alpha_0(\bar{\lambda})\phi(\bar{\lambda}) + \partial_{\lambda} \phi(\bar{\lambda}) = 0.
\]

Thus far we have only considered the variables \(t_1 \) and \(t_2 \). We now wish to include the \(t_3 \) dependence of \(\phi \), arising from the second operator in the KP hierarchy,

\[
M = \partial_3 - \partial_1^3 + \frac{3}{2}u_2 - \frac{3}{2}u_1 - v,
\]

where \(v \) is defined in terms of \(u \) by the compatibility conditions. Writing equation (4) with \(\mu_2 = \mu_3 \exp(-\lambda^3 t_3) \) and multiplying both sides by \(\exp \mu_3 \), we then apply \(L_3 \) to both sides, giving that \(\alpha_0(\lambda; t_3) = \alpha_0(\lambda) \exp(-\lambda^3 \bar{\lambda}^3) \) and hence

\[
\partial_{\lambda} \phi(t; \lambda) + \exp(\bar{\mu}_3 - \mu_3)\alpha_0(\lambda)\phi(t; \bar{\lambda}) = 0,
\]

where \(t \) is now an element of \(\mathbb{R}^3 \). It follows that if \(\phi \exp \mu_n \) satisfies the first \((n - 1) \) operators in the KP hierarchy, equation (5) holds, with \(n \) replacing the subscript 3.
4 The KPI equation

Whereas the inverse scattering for the KPI equation produces a d-bar problem relating $\phi(\lambda)$ and $\phi(\bar{\lambda})$, where ϕ is nowhere analytic in λ, the KPI equation gives a substantially different result. The first operator in the KPI hierarchy is given by $L = \partial_{\lambda} - \partial_{\bar{\lambda}} + u$, so proceeding as in the KPII case, taking $\mu_{3}(\lambda) = i(\lambda t_{1} + \lambda^{2}t_{2} - \lambda^{3}t_{3})$. The problem arising in the fact that for KPII, $P_{\lambda}(\xi)^{-1}$ has discrete singularities for all λ, but in the KPI case, $P_{\lambda}(\xi)^{-1}$ has continuous singularities for real λ. This causes the Green's function to be undefined on the real λ-axis. The resulting calculation leads to ϕ being a sectionally meromorphic function, satisfying a nonlocal Riemann-Hilbert problem on the real λ-axis,

$$(\phi_{+} - \phi_{-})(t; \lambda) = \int_{\mathbb{R}} F(\lambda, \kappa) \exp\{\mu(\kappa) - \mu(\lambda)\} \phi_{-}(\kappa) d\kappa,$$

$\phi_{+}(\phi_{-})$ being holomorphic in the upper (lower) half-plane.

At this time it is unclear as to the connection between the two results. One feels that they may be parts of a larger construction (for complex t_{i}) which reduces to the d-bar relation when $t_{i} \in \mathbb{R}$ and to the nonlocal Riemann-Hilbert problem when some t_{i} are imaginary.

5 The twistor correspondence

The main problem with this theory is its global nature. The Ward correspondence for the anti-self-dual Yang-Mills equations is a local construction, therefore it would be sensible to attempt to develop a localised version of the preceding theory. One possible direction is to use ideas from Segal and Wilson, [4], concerning the theory of Grassmannians and the KP hierarchy. A link exists between the theory, if we insist in equation (1) that α vanishes in a neighbourhood of infinity. Then in that neighbourhood, $\partial_{\lambda} \phi = 0$ and ψ has the general form of the Segal-Wilson Baker function,

$$\psi(t; \lambda) = \exp \mu \left(1 + \sum_{i=1}^{\infty} a_{i} \lambda^{-i} \right).$$

It may well be possible to extend the Baker function to obtain the global ψ of the Dirac operator.
An alternative avenue of approach is to consider what happens if the co-
ordinates \(t_i \) are complex. The Davey-Stewartson equations generate similar
constructions to the KP equations, but with the \(t_1 \)-coordinate being com-
plex. In this sense, the DS-equations are more fundamental than the KP
equations. By complexifying the other coordinates, it may be possible to
generate higher-dimensional integrable systems.

References

[1] M.J. Ablowitz and P.A. Clarkson: *Solitons, nonlinear evolution equa-
tions and inverse scattering*, London Mathematical Society lecture notes

the KP equations*, Collection, ‘Twistor Theory’ ed. S.A. Huggett, Marcel
Dekker (1995)

[3] L.J. Mason and N.M.J. Woodhouse: *Twistor theory, self-duality and
integrability*, in proof, OUP (1995)

Hautes. Études. Sci. Publ. 61, 5-65 (1985)

[5] M.V. Wickerhauser: *Inverse scattering for the heat operator and evolu-