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In search of a twistor correspondence for the
KP equations

S.R.Barge (barge@maths.ox.ac.uk)

1 Introduction

This article summarises work done in an attempt to develop a twistor corre-
spondence for the Kadomtsev-Petviashvili equations,

(duz + Guuy — u,“)l — 3021122 =0,

wlere 6% = —1 for the KPI equalion and ¢? = +1 for the KPII equation, and
other related equations as yel unattainable as reductions of the anti-self-dual
Yang-Mills equations. The tnotivation comes from [2] and the work done on
developing the Dirac operator and the nonlocal Riemann-Hilbert problem is
adapled from work in [1] and [5]. :

We shall take as our twistor space O(n), the twisted line bundle of Chern
class n, fibred over CP', which is viewed stereographically as C U oo. The
Riemann sphere will be given coordinates A on C and X = A" on C =
CU co — 0. The bundle O(n) can then be given coordinates (¢, A) on the
fibres over C and (p/, N') = (pA™", A71) on the libres over C'. It can be shown
that an element of the space of holomorphic sections of the bundle is of the
form

=) LA, (L) e O
1=0

Lot the IKPII case, we consider the coordinates ({;) to be real.

2 The Dirac Operator

The standard Ward construction involves solving the equation dgf = 0 on a
vector bundle 2. The idea of Mason, in [2], was to replace the dp-operator
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with a Dirac operator ., where

ne(23)()

where « is a smooth function on O(n). Mason and Woodhouse, in [3], show
that if we imposc certain symmetry conditions on « and ¢, the we can derive
thie equations of the KP hierarchy. Tlhese couditions are;

i) d=¢,

1) (N A) = o(\A),
112) o = exp(fr — p)og(A, A).

In the next section, we proceed in the opposite direction, and summatise a
method of deriving the Dirac operator with the given symmetries from the
operators ol the IKP hierarchy.

3 Derivation of the Dirac operator

Consider the equation Ly = 0 where L is the first operator in the KP hi-
erarchy, L = Jy — 07 + u, where u(t) € L' N L} (R?) and ¢ = (¢4,t). If we
assume that u(t) is zero in a neighbourhood of |t| = oo, then ¢ ~ exp pu; as
[t] = oo. If we write ¢ = e2¢, then ¢ salislics '

[0+ ) = (D24 N)] §(t: 1) = u(t)(t; A). (2)

As detailed in Wickerhauser, [5], there is a unique solution to this equation,
satisfying ¢ — 1 as [¢| = oo.

We shall denote by ¢ the Fourier translorm of ¢ with respect to the
variable £ = (£, &;) € R?, defined by

~

HEN) = /R e~ N)dt,  dt = dtydiy.

Define the polynomials P(€) = €2 — &, and Py(§) = P(i& + A, i& + A?). By
taking Fourier transforms of equation (2), one obtains

) = i L eddudl (6N
ff)(t,/\)_1+G¢—1+4ﬂ2/R2ef e
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We can make ||G|| less than unity by decreasing ||u||pr + ||ullz2. We can then
write ¢ = (I — G)7'1, and hence

0z¢ = (I = G)71(0:G)¢.
After a little work, we oblain the expression
(0:1G)d = ao(A) exp(ia — pa),

wliere

ap(A) = ;—1 /Wexp(pg — )u(t)o(t; A)dt.

T

We now consider thie behaviour of v(t;2) = (I — G) Vexp(irz — p2). 1t is
bounded and satisfies equation (2) with the boundary condition v(¢;X) ~
exp(fiz — piz) as |t| = oco. Deline 0(t; A) = exp(u2 — gi2)r(t; A). This has the
boundary condition #(¢;A) = 1 as |t| = oo, and satisfies the equation

[0+ 2)" = @+ 22)] 55 0) = ()t 1), (3)
Bui #(1; A) is the unique solution to this problem, therefore
F39(1; X) = explfia — pa)ao(A)g(t; A) = 0. (4)

As u is real-valued, it follows that ¢(A) = ¢(A) and ap(A) = ag(A) and hence
we obtain the conjugale equation

exp(ta — p2)ao(A)$(A) + Drg(A) = 0.

Thus far we have only cousidered the variables {; and t;. We now wish to
include the t3 dependence of ¢, arising fromn the second operator in the KP
hierarchy,

. 3 3
, 1\’[:()3—8'13+§u81+§u1—v,
where v is deflined in terms of u by the compatibility conditions. Writing
equation (4) with gz = pzexp(—A3(3) and multiplying both sides by exp U3,
we then apply Lj to both sides, giving that ay(X; t3) = a(A)exp —(A*—A3)t3
and hence

D36(4: \) + expliis — pz)ao(\)b(t; 1) = 0, (5)

where ¢ is now an eleiment of R3. It follows that if ¢exp p, satisfies the first
(n — 1) operators in the KP hierarchy, equation (5) holds, wilh n replacing
the subscript 3.
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4 The KPI equation

Whereas the inverse scattering for the KP1I equation produces a d-bar prob-
Jemn relating ¢(A) and ¢(X), where ¢ is nowhere analytic in A, the KPI equa-
tion gives a substantially different result. The first operator in the KPI
hierarchy is given by L = 0, — 07 + u, so proceeding as in the KPII case,
taking si3(A) = (Mg + A%, — At3). The problem arising in the fact that for
KPLL, Py(€)7! has discrete singularities for all A, but in the KP1 case, Py(€)™!
hhas continuous singularities for real A\. This causes the Green’s function to
be undefined on the real A-axis. The resulling calculation leads to ¢ being
a scclionally meromorphic function, satislying a nonlocal Riemann-Hilbert
problem on the real M-axis,

(b4 = )G = [ O R exp{u(x) = w0} - ()
$4+(4-) being holomorphic in the upper (lower) half-plane.

At this time it is unclear as to the connection between the two results.
Oue fecls that they may be parts of a larger construction (for complex ¢,;7)
which reduces to the d-bar relation when #; € R and to the nonlocal Riemann-
ilbert problem when some ¢; are imaginary.

5 The twistor correspondence

The main problem with this theory is its global nature. The Ward corre-
spondence for the anti-self-dual Yang-Mills equations is a local construction,
therefore it would be sensible to attempt to devclop a localised version of
the precediug theory. Oune possible direction is to use ideas from Segal and
Wilsou, [4], concerning the theory of Grassmannians and the KP hierarchy.
A link exists between the theory, if we insist in equation (1) that o vanishes
in a neighbourlhood of infinity. Then in that neighbourhood, d5¢ = 0 and ¥
lias the general forin of the Segal-Wilson Baker function,

Yt A) = expp (1 + iai/\'i) )

=1

It may well be possible to extend the Baker function to obtain the global ¥
of the Dirac operator.
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An allernative avenue ol approach is to consider what happens if the co-
ordinates #; are complex. The Davey-Stewartson equalions generate similar
constructions to the KP equations, but with the {;-coordinate being com-
plex. In this sense, the DS-equations are inore fundamental than the KP
cquations. By complexilying the other coordinates, it may be possible to
generate higher-dimensional integrable systems.
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