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On group theoretical aspects of the non-linear twistor transform
Sergey A. Merkulov (Glasgow)

0. Introduction. Let X < Y be a rational curve X = CP' embedded into a complex
3-fold Y with normal bundle N = O(1) @ O(1). According to Kodaira [7], the moduli
space of all rational curves obtained by holomorphic deformations of X inside Y is a
complex manifold M of dimension h°(X, N) = 4. More strikingly, according to Penrose
[9] this M comes also equipped with a canonically induced self-dual conformal structure,
and, moreover, any local conformal self-dual structure arises in this way. Later several
other manifestations of this sirange phenomenon have been observed when a complex
analytic data of the form (X < Y, V) gives rise to the full category of local geometric
structures Cye, (more precisely, it is the successful choice of a pair (X, N) consisting of
a complex homogeneous manifold X and a homogeneous vector bundle N on X which
uniquely specifies Cy., — the choice of a particular ambient manifold Y corresponds to the
choice of a particular object in Cye,).

The questions then arise: How is it possible that a complex analytic data of the form
(X, N) can be used as the building block for such basic diflerential-geometric quantities
as melrics, affine connections, curvatures? What is the guiding principle for making a
successful choice of (X, N)? How general is this phenomenon?

In this note we attempt to illucidate these questions by unveiling very strong links
between the (curved, or non-linear) twistor approach to differential geometry and Borel-
Weil approach to representation theory (in this context, see also the works of Baston
and Eastwood [5, 1] on applications of the Bott-Borel-Weil technique to the linear twistor
transform between "flat” models).

1. Complex G-structures. Let M be an n-dimensional complex manifold and V a
fixed reference n-dimensional vector space (typically, V = C*). Let 7 : L*M — M be the
holomorphic bundle of V-valued coframes, whose fibres 7~1(t) consist, by definition, of all
C-lincar isomorphisms ¢ : T\M — V', where T, M is the cotangent space at t € M. The
space L*M is a principle

right GL(V)-bundle with the right action given by R,(e) = g"' oe. If G is a closed
complex subgroup of GL(V), then a complex G-structure on M is a principal holomorphic
subbundle G of £*M with the group G. It is clear that there is a one-to-one correspondence
between the set of G-structures on M and the set of holomorphic sections o of the quotient
bundle # : £L*M/G — M whose typical fibre is isomorphic to GL(V)/G. A G-structure
on M is called locally flat il there exits a coordinale patch in the neighbourhood of each
point { € M such that in the associated canonical trivialization of £*M/G over this patch
the section o is represented by a constant GL(m,C)/G-valued function. A G-structure
is called k-flat if, for each ¢ € M, the k-jet of the associated section ¢ of L*M/G at t is
isomorphic to the k-jet of some locally flat section of £*M/G. 1t is not diflicult to show that
a G-structure admits a torsion-free afline connection if and only if it is 1-flat (cf. [4]). A
G-structure on M is called irreducible if the action of G on V leaves no non-zero invariant
subspaces.

The notion of G-structure is a unifying idea for a variety of popular themes in differ-
ential geometry. For example, (i) if G € GL(n,C) is the standardly represented special
orthogonal group 50(n, C), then the associated G-structure is nothing but a complex Rie-
mannian structure; (ii) if G = CO(n,C) C GL(n,C), then G-structure coincides with the
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complex conformal structure; (iii) if G = GL(2,C)GL(n,C) C GL(2n,C), n > 3, then G-
structure is precisely almost quaternionic structure. In the first two examples G-structures
are always 1-flat, in the third example this is not true — 1-flat GL(2, C)GL(n, C)-structures
are called complex quaternionic structures.

The notion of Ghstructure is proved to very useful in the study of affine connections,
especially in the context of classilying the irreducibly acting holonomies of torsion-free
a{fine

connections [4]. Given an afline connection V on a connected simply connected com-
plex manifold M with the holonomy group G, the associated G-structure Gy C £*M can
be constructed as follows. Define two points u and v of L*M to be equivalent, u ~ v,
if there is a holomorphic path v in M from =(u) to n(v) such that v = P,(v), where
P, : Q;(U)]\l — Q}r(u)M is the parallel transport along 4. Then Gy can be defined, up
to an isomorphism, as {u € L*M | u ~ v} for some coframe v. The G-structure Gy is the
smallest subbuundle of £*M which is invariant under V-parallel translations.

The basic uestion about the local geometry of G-structures — what is the obstruction
for a k-llat G-structure G — M to be (k + 1)-flat? — has been answered by Guillemin [6]
and Singer and Sternberg [10]. The obstruction is given locally by a function on M with
values in the Spencer coliomology 11¥2(g) associated with the given representation of G in
V' (more accurately, with the associated representation of the Lie algebra g in V). In the
next paragraph we recall the definition of 11¥/(g).

2. Spencer cohomology. Let V be a vector space and g a Lie subalgebra of g/(V) ~
V. ® V*. Define recursively the g-modules
g("l) — v

0 = g

g = [@¥VeViInVe oV, k=12,
and define the map

g(k) ® Al—lvt'_)g(k—l) ® Alvm
as {he antisymmetrisation over the last [ indices.
Since 9% = 0, there is a complex

a® @AY Ly g @ Ayt 2y gD g ALY

whose coliomology at the center term is denoted by H*!(g) and is called the (k,!) Spencer
coliomology group. In particular,

H*(g) = 0

H**(g) :Iﬁﬁd“”®NVHid“”®MVﬂ ~ (1)
' linage : g®) @ V* 2 glk-1) @ A2V

In addition to 11*?*(g), the g-module g™ also has a clear geometric meaning. 1If a
G-structure G — M is 1-flat then the set of all local torsion-free affine connections in G is
the afline space modelled on the veclor space of local functions on M with values in g{!).

In particular, if G C GL(V) is such that g") = 0, then any G-structure admits at most
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one torsion-free alfine connection. 1f K'(g) is the g-module ol formal curvature tensors of
torsion-[ree afline conncctions with holonomy in g, t.e.

K(g)=[g@ AV ]n[Ker: VRV @A’V = V@AV,

then

K(g)
g e Vr)

i.e. the cohomology group 11*?(g) represents the pari of I{(g) whicl is invariant under gt")-
valued shifts in a formal torsion-free alline connection with holonomy in g. I'or example,
if (G,V) = (CO(n,C),C"), then gV = V= and 11**(g) is the vector space of formal Weyl
tensors. :

If g = 0, then H**(g) is exactly I'(g), the g-module which plays a key role in
the theory of torsiou-frec affine connections with holonomy in g, especially in the Berger
classification context [2, 3, 4]. The case g} = 0 is generic — there are very few irreducibly
acling Lie subgroups g C gl(V) which have g{!) # 0 and they are all known by now.

H*?(g) =

3. A simple group-theoretical explanation of the non-linear twistor transform:.

Let V be a finite dimensional complex vector space and G C GL(V) an irreducible
representation of a reductive complex Lie group in V. Then G also acts irreducibly in V*
via the dual representation. Let X be the G-orbit of a highest weight vector in V*\0. Then
the quotient X := X /C* is a geueralised flag variely (i.e. a compact complex homogeneous-
rational manifold) canonically embedded into P(V*) and there is a conunutative diagram

X < V*\0
{ }
X <= PV

In fact, X = G,/P, where G, is the semisimple quotient of G and P is the parabolic
subgroup of G, leaving a highest weight vector in V* invariant up to a scale. Let L be the
restriction of the hypérplane section bundle O(1) on P(V*) to the submanifold X. Clearly,
L is an ample homogeneous line bundie on X.

Iu summary, there is a natural map

(G, V)—(X, L)

associating with any irreducibly acting reductive Lie group G € GL(V) a pair (X, L)
consisting of a generelised flag variety X and an ample line bundle L on X. Can this map
be reversed?

According to Borel-Weil (see, e.g., [1]), the representation space V' can be reconstructed
very easily:

V= H%X, L).
What about G7

Theorem 1 (Onishchik 1962) Let G be a simply connected simple complez Lie group, P
a parabolic subgroup of G, and X = G/P the associated generalised flag variety. Then

g g_: I{O(fY, TX),
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where g is the Lie algebra of G. Morcover,
g = HY(X,TX)
unless one of the following holds
(i) G is the representation of Sp(n,C) in C** (in this case WX, TX) =~ sl(n,C));
(ii) G is the representation of Gy in € (MY X,TX) ~ s0(7,C));

(iii) G is the fundamental spinor representation of SO(2n + 1,C) H(X,TX) =~
so(2n + 2, C));

Therefore, if G € GL(V) is semisimple then, with a few exceptions, G can be re-
constructed from (X, L). However, it is often undesirable to restrict oneself to semisimple
groups only (especcially in the context of the Berger holonoiny classification problem).
There is a natural central extension of the Lie algebra H°(X,TX) which is canonically
associated with the pair (X, L).

Fact 2 For any (X,L) g := WY(X,L @ (J1L)*) is a reductive Lie algebra canonically
represented in N%( X, L).

This fact is easy to explain — H(X, L@ (J'L)*) is exactly the Lie algebra of the Lie group
G of all global biholomorphisms of the line bundle L which commute with the projection
L — X [8].

In conclusion, with a given irreducible representation G C GL(V) there is canonically
associated a pair (X, L) consisting of a generalised flag variety X and a very ample line
bundle on X such that much of the original infornation about G can be restored from
(X, L). In the twistor theory context, the crucial observation is that the

g-modules g*) and 11%%(g) also admit a nice description in terms of (X, L).

Theorem 3 For any compact complex manifold X and any very ample line bundle L on
X, there is an isomorphism

g® = HYX, L ® O**'N*), k=0,1,2,...
and an ezact sequence of g-modules,
0—H(g)—H'(X, L @ 0MN*)—HY (X, L@ o*'N) e V", k=1,2,...

where g := H(X,L @ (J'L)*), N = J'L, and H**(g) are the Spencer cohomology groups
associaled with the canonical representation of g in the vector space V := H°(X, L).

Proof. Since L is very ample, there is a natural "evaluation” epimorhism
V®0Ox—sJ'L—0

whose dualization gives rise to the canonical monomorphism

0—N"—V* @ 0y.
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Then one may coustruct the following scquences of locally free sheaves

0L Q@O N LN @V — L@ 'N" @ AY(V") (2)
and
0— LROMIN S LM N*@V* — LQOFN* @AY (V) — L T N* @AY (N*). (3)

Oue may notice that both these sequences are exact. [Iint: for any vector space W oue
lhas W ® A*W mod A*°W ~ W @ @*W mod O*W ]

Then computing H(X, . ..) of (2) and using the inductive definition of g as [g*=" @
VN[V @0t UV*] (with g := g and g(=! := V) imiediately implies the first statement
of the Theorem.

T'he second statement of the theorem follows from (3) and the definition (1) of H**(g).

Indeed, define I5; by the exact sequence

0L @ OH2N* L @ O N* @ V3 Fl—0
The associated long exact sequence implies the following ezact sequence of vector spaces
0—H(X, E)/0[g® ® V*]—HY(X,L ® @"“N")———ﬁli(x, LQOMIN")® V™.
On the other hand, the exact sequence
0—Er—L Q@ O*N* @ AH(V*)—L® 0" !N*® A’ (N*)

implies
1°(X, E¢) = ker : g0 @ A2(V*) =5 g*=2 @ A3(V™).

which in turn implies

H*?(g) = HY(X, E)/0[g™ @ V*].

This completes the proof of the second part of the Theorem. U

Therefore, the pair consisting from a homogeneous-rational manifold X and a holo-
morphic vector bundle bundle £ on X is more than a natural building block for basic
differential-geometric objects. If rank £ > 2, then, following a common practice in complex
analysis, one should replace the pair (X, E) by an equivalent one (X = P(E*), L = O(1))
and apply Theorem 3 to find out which geometric category Cye, may correspond to the
twistorial data (X, ). Applying this procedure, e.g., to the pair (CP',C* ® O(1)), k > 3,
one immediately concludes that Cj., is the category of complexified quaternionic mani-
folds. Also, this purely group theoretical result suggests that there should exist a universal
twistor construction for all torsion-free geometries. I'or details of this construction we refer

to [8].
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