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Abstract

We investigate the cohomology of a certain elliptic complex defined on a compact
quaternionic-Kahler manifold wilh negative scalar curvature. We show that this par-
ticular complex is exact, with the possible exception of one term.

Let (M, g) be an oriented 4k-dimensional compact quaternionic-IKKahler manifold having
negative scalar curvature. In [2] we proved a rigidity theorem for such manifolds which
was, it cssence, a consequetice of the vanishing of a certain cohowmolgy group on the twistor
space Z, of M. The paper was largely devoled to the proof of a vanishing theorem for the
coliomolgy of the first term of a particular complex on M, the required vanishing theorem
on Z being deduced by the Penrose transform. This note is an extension of that work in
that we use the same techuniques to show that all the cohomalogy of the complex vanishes,
with the possible exception of one ters, so that the complex is exact except possibly at
the right. We have not been able to establish whether the final term of the complex has
non-trivial colhiomology. '

Since the preparation of this article it has been brought to our attention that a similiar
result has been proved, though in a diflerent way, by Nagato and Nitta.

As in [2], we shall inake extensive use of the methods and techniques developed by Bailey
and Lastwoood in [1], these being based on the abstract index notation of Roger Penrose
[3]. In this notation the indices are used as ‘place-markers’ and do not indicate a choice

of basis. Thus the £, Il bundles of Salamon [4], are written as OA, o” respectively. The

(complexified) tangent bundle of M is then 0° = 0" @ 0* “/ 0", The Levi-Civita
counnection on M is written V, =V . We shall take the Riemann curvature tensor to be
given by

2V Vyw = Ry twy (1)

so that, in our couvention, the standard metric on the sphere has positive curvalure. (This
differs from the convention adopted in [1] which was based on that of [3]. This latter is
essentially a relativity book.) The square brackets in the definition of the Rietann tensor,
denotes anti-symmetrisation. Round brackets will be used for symmetrisation. For more
details on the notation and techniques used we refer the reader to [3].
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When written in abstracl index notation, the complex we consider is defined on M by the
following

(A4l Vg’?“ (A} AL ) Vgé” (A AL D)
0 — I(M,07" ™) 2 p(, 0, ) P(M, 0, ") —
AI
\vd n+2k " ,
Bax g A Ansae)
= I(M’O(Bx---ﬂul )—0 (2)

’ f
(Al”'An+2) .

Here, for example, the bundle Oy, s is A2 E*®S™2 I (or its sheaf of smooth sections),
1922

AI
and I'(M, V) is the space of global simooth sections of the bundle V over M. The map VAl

toal 1 '

is then ™" V. with eh’ being the (covariantly constant) symplectic form on I1*. This
complex was studied by Salamon in [5] and shown by himn to be an elliptic coniplex. Since
M is compact we may use Hodge theory [6] to examine the cohomology of this complex. It
is well known that the cohomology of the first termn vanishes for negative scalar curvature.
The vanishing of the cohomology of the second terin was proved in [2], but can easily be
obtained from the proof of theorem (0.3) with the appropriate changes. For terms other
than the last Hodge theory implies that each cohomology class has a unique representative
[ which salislies

. (AL AL)
(a) f E l (M) O[B:.«-Bgil)
(Ay A --Ap)
(b) V(B: fsl-'.n.il =0 : (3)
AC'A;...A;
(C) V/ﬂlc’fBQH.B,,. =0

Al A’
whetel <m <2k and p—-m=n. lf welet Dy = VBT“ and Dy = VB;'+2 in (2), then with

m = 1, (b) is the abstract index version of Dy f = 0 and (c) is that of Dgf = 0, D§ being
the adjoint of the mapping Dy.

We shall take T4 to be the positive definite inner- product, where T is the quaternionic

conjugate of v, on the bundle 04, so that u?%, is positive if u # 0, and similatly for other
AB'

tensors. The L%-norm of a tensor v = v o

. for examnple, is then

lolP= [, 0 )

with the integral taken over the manifold M. With this convention, one can use integration
by parts over M and quickly obtain (c) above as the abstract index version of Djf = 0,
when m = 1. We shall show that these terins all vanish, so that the above complex (2) is
exacl, except possibly at the right. We note the following elementary facts.

1

Al A
0 . . . . . . . . - .
Lemima 0.1 If S P is symmelric in ils final p indices and Ug,. is antisymmetric in

-Bm
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tls final m indices, then

' l =p

(]}+1)‘S(A0..AAP) _ (1)—{-1 -—Z AOA. 1 vty (5)
(m -+ I)U[BU.--Bm] = UBO...B,,. + Z(—l)iUﬁ‘-Bu...Bl...Bm (6)

It is then quite casy to obtain the following.

Lemma 0.2 If f satisfies the condilions of (3) then

¢ b oAt '
A A2...A

/\l Al A
P+DIV, T, s o W= PN gy Sy o I

I

and V0 f L7 s symanelric in its primed indices.
BBy...Bm -

. Al AL Al oAlAl .
Proof  For the first part we put S°° 7 1;0f9,l...sp) in (5) and using (b) of (3) we get
AL ALAL =p Ay Al A'AL Ay
(P + 1)V[go fBl,..Bn.] - Ze VA'[uo fBl...Bm]
=1
[Bo

f Bl and integrating the result over M,

I

Contracting both sides of the above with V

. . . . Al Al
one qu1ckly obtains the first part. The second pa,rt can be obtained by putting S ° 7 =

o faaz Ar " i (5) and using (b) of (3).

We can now state our main result.

Theorem 0.3 Let M lbe a compact quaternionic-Kdihler manifold of dimension 4k, for
k> 1, and let A = R/8k(k + 2), where 1% is its (non-zero) scalar curvature. If f is a

harmonic element of I'(M, O(A Bp)l), t.e. satisfies the conditions of(3), and if 1 < m < 2k,
then
(1; + 2) Bo Bi-BmlA'aj Al o m c' BBy..Dim Al AL o
AU Y =V, S
2(I)+ 1) “ Al f “ 2(7n+ 1) ” I f H
(r+2)
A7 (2k—m) || f| (M

(m+1)
Thus if R < 0 then f = 0.
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I’roof  We have

(Bo ..IJ,,,]A'A;..,A;‘ 2 By B,...Bm]I\"A,'Z...A;, ~c!
“ V H = ' (vl{’ / )(VC'[BOfl?l...Bm]Af)...A;)
By B KA AL Ry o
- / / VI\"VC'[BO fﬂl,..BmlA’ Y

i

By B KAy AL By
- /1 SR,

By ~c'

+V Vo) (8)

!
By . Eim]A;...AP

where the second line above is obtained from the first by using integration by parts over
the manifold. The latter integral on the right is

}_/fBlH.Bml\'IA;...A;,E- Vu(:vvlfc' _ %/fa;...s,,,/qz pV V 'f_c' ,

9 KICT T pt T (By” By Bml Al AL, {Bo” By..BmjAL.. AL
I I !
= I
[’30 ..Bm)

the final expression being obtained from the previous one by using integration by parts
again. Using the first part of lewuna (0.2) and rearranging, (8) becomes

(p+2) By 1. Bmla'A) By..Bm I’ A o
2(p+1) ! V/\' / /f V Ve IBofB, Bl AL Al (9)

Examining the latter integrand we sec that

c! 1 By -’
V vcl)[UOf] BmlAL. AL (Ve Vens, / 'oal
~BmlAL. A m 4+ 1 [R4Y 07 By...OmA,... AL
1:"1 —C’
10
+ E:I C’)B fBOB,...B,-...B,,,A;...A;J) ( )
1=
Now by delinition
By Bqg Bg
et Vehng VB,-(I\"vc') - DI\"C’ B’

(I'or the definition and properties of the curvature operators see [1]) The second operator
on the lelt above is 1(V VBD +Vv_. .V °) and the first part of this sum annihilates f

PRSI N Bict el

by (¢) of (3). Iquation (9) can now be rewriticn

(p+2) {Bg Bi-Bin]A’ Al AL 1 By..BmK'Al . Al Be  -cf
2o 1) v, r o= - /f O S )

m41 Bo” By Bm AL . Al

P
; By..BmK'Al.. 4} By '
(‘l) /f (DI(’C’ B,-f f, )

BoBy..B, . BpAl. . Ay

; ; B,...Bml\"A;...A;, By =C'
1n+l Zl =1 /f (vBiC’v""onBI---B‘ Br. A, A')

™ 2... p
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Using the symmetry in the primed indices given by the latter part of lemma (0.2) we mnay
commute the final K and C" in the final integral above aud, alter another application of
integration by parts, this final integral hecomes
!

v

BB By Bm KAy A

By’

J

By Bu K Ay A
f /JUBI...I')I'..BmI\"A;...A;,)

- f(VB‘,C,

= (- [V S

t

P)(VBOCIJTEQ )

B ...[J...Eml(’A’T..A;)

. ¢! BHy..BmAl. . Al
==V, f B &

With this in mind we may now rearrange the above equation to obtain

([, + 2) 1By B HmlA'ALa, m C! BBy BmAl. AL 1 /
MmN - |V - — n
2(p+ 1) I wt I +2(1n, + 1) ¥, I m+ 1 )
(11)
where R(f) is given by
B VB‘...U,,,I\"AQ...A;, By =cC' i=m i By =C' -
H(f) =/ (Dl\"C’ BofBl...BmA;...A;, + Z(—l) DK’C’ B, fBDBI...B'-A..BPA,IZ...A;,)

i=1
The evaluation of the action of the curvature operators is an clementary exercise. We have

By =c' -

= —-20k(p + 2)'[31

K'C' By’ By..BmAl

! -t al !
b A, HmK'AL. A

P

and the other operator gives

By =Ay--Ay

B =P Al

{ p V] ]

= =2A

f ¢ B; Ze(l\"
=1

_Q' A} ...A;..,A;,

. £
K'ct b7 By..B;. By Q' By B . Bm

j=p A YY) '
QA AL Ay

= 2/\§ Te !
_ 5(1\" C’)Q’fu_.n,...B,...B,,.
=1

J=p ' YRR '
Al AlCAT L
3 A 3

_ 1—1¢ P
- (_1) ZAZE(K: EC')Q'IEI...Bm
=t

By =c'

(_l)iA(l’ + 2)-;*01“.3,,, KIAL.. A}

K¢ B, DO...fJ'-..,BmA’T”A;,

so that R(f) = —A(p+ 2)(2k — m) f

S Substituting this into (11) completes

the prool. O
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