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Two Point Norms for Massless Fields
Timothy R. Field
Mathematical Institute, Oxford, U.K.
cmail: trficld@maths.ox.ac.uk

tn TN 39, 1 described tle action of the quantum complex structure J on any field or potential satislying
the wave equation in flat spacetitne, as an integral over an arbitrary curved spacelike hypersurface. In
the present article I use this result to demonstrate the relationship belween the twistor scalar product for
massless fields, with 2-point norms in the bosouic cases of a inassless scalar field, electromagnetisin and linear
gravity. The 2-poiut norms are autowuatically positive definite for fields of mized frequency, and invartant
under Lhe 15-paramecter couforinal group. They have the added advantage that their computation involves
no extraction ol potentials or positive/negative {requency parts from the principal dynamical fields.

In the casc of gravity I give an interpretation in terins of colierent states and superpositions of spacetimme
geometries.

I also describe the corresponding two point integral for the ferinionic case of a massless neutrino field.

The Heritian, Symplectic, Complex and Metric Structures

To begin with we introduce F as the standard Hermitian Fierz scalar product for a spin %n field ¢,
given by

(r=1) ) s ] '
Fix, ¢):= N/ ¢ 1B K 3pp Lt
£

or for two scalar positive {requency fields ¢ and x

K/qsv.,g—)zvm, K=
b

()
Here ¢ is the n'* Dirac polential for ¢, and « is equal to | or i according as n is odd or eveu. Now F is the
Hermitian structure. Denoting the symiplectic, quantuin comnplex and metric structures by Q, J and (, )
respectively, the schieme for these three basic structures is

F(e,9) = e, 9) = —i[F(p,9) = F(#,¢)]
1 3 1 bl 1 2 1 2
and the positive definite metric or normn, for a mized frequency bosonic state is now,
(ele) = (e, J]#)).
1 2 1 3

Rewmark on localily and complezification. It is worth noting the two distinct types of possible complexification
for spacetime fields, with regard to locality. The complexification of a field itself (to allow for a distinct
autiparticle) is local, as is the splitting of a field into its sell-dual and auti-self-dual parts. However, as the
results above show, the splitting of any field into its positive and negative frequency parts is non-local - that
is to say, J is a non-local operator. It is non-local to the extent that it requires data over an entire Cauchy
spacelike hypersur{ace.

The Scalar Case

We cousider a real Klein-Gordon field of mixed frequency satisfying the massless wave equation. Then
the symplectic form is given by

o, ) = /E(Wud) ~ ¢V, y)d3ne
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which is compatible with the complex structure in that Q(¢,9) = Q(Jé, J¢). Now the lermitian scalar
product F is

F(o, ) = Qa, J[¥]) + i€2(s, ¥)

and the symmelric positive defiutte mebric 1s

60 = W) = 26,0 o« [ [ TR ot Tupte) - T e

where ¥ is a once diflerentiable spacelike hypersurface. The 2-point integrand above represents the proba-
bility current in the product of two configuration spaces. For bosonic fields it is not possible in the relativistic
theory to construct a single point current vector jo(z), which is future pointing, so that j, - d*L* would
represent the positive probability flux. (‘Ihis is in coutrast to the standard non-relativistic Schrodinger pre-
scription of foriming the symplectic probability 3-current j = ¥ Vy* — p* Vi {or some wave function 1.) Thus
we see that the particle number concept, which we obtaiu froin the metric {, ), is non-local in the single
configuration space but focal in L(r) x E(y) - two copies of a single conliguration space. This important
idea as we shall sce carries over Lo the electromagnetic and linear gravity cases also.

The Photon Case l

We consider a generally complex clectromagnelic field,

Iap = paean +Yapean

(so that m an alternative frequently adopted notation ¢ = ¢). The splitting of F into its sell-dual and
anti-sell-dual parts is given siiply by,

1 v
Fh = §(Fab + 1" Fop)

where * denotes the duality transformation, and the splitting into positive and negative frequency parts is
giveu by,
FE = i.(iiJ)[F].
21

Remark on photon states. A physical photon stale can be given in two ways: (1) as a real electromagnetic
field with the relevant complex structure J at hand, or equivalently (2) a positive frequency field with
idependent left and right handed parts. _

Remark on self-duality and helicity. 'I'lie (anti-)sell-dual part of a nassless field is given always by its
{uu)prinsed spiuor part — it is important to realise that the right (left) handed part of the field is given by
the (un)primed spinor part only if the field is of positive frequency.

Remark on complex fields. These allow for Lhie case that the particles associated to the field are not identical
with their antiparticles. In the electromagnetic case thie photon is its own antipartiele, so that F is real for
a physical field. However for its mathcmatical interesl we study Lhe general case of a complex field tensor.

Now thie conserved Fierz scalar product is given by,

Fp,¢) :/VBAIB"),’I &’z
b

wlere 7 is the veclor potential, subject to the Lorenz gauge condition Vg,qﬁl =0 (GL), and ¥ is a spacelike
liypersur(ace.

Note on the gauge coudition: the spinor gauge GL implics that 1 satisfies the wave equation V%5 = 0
and that the divergence of 5 vanishes V40® = 0. Later on we will need to assume the Coulomb gauge:
Nt = (0,A) = f((),A(k)]e””d% - such 1 clearly satisfies the wave equation since the integration is over
{k? = 0} - to obtain consistency with GL we nced that k- A = 0 — the 3-vector potential A and the electric
field are parallel, and the electric, magnetic and momentuin 3-vectors forin a right-handed set.
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Now lrom TN 39 the repolarised potential is given by,

4 l l — - 1 ; -
J[’I//: I(z) = anZ /}3’9 A_'Z(Vb —- V") (&) Pz,

Iu the general case,

V’Cc,r;ﬁ'(x’) d3'CC’

Fp, J[p]) o /[Ele pap ()] P ] AP

1 ’ ’ )
+ f / B 5 D)V )4 (&) P2'CC ) 2P
Tx K

where £, L’ are identical, but in general curved spacelike hiypersurfaces. In the case that ¥ is a flat 3-plane
the second term above vanishes since this contains the factor (z —z')* orthogonal to the integration measure.
The first term above upon interchanging the upper indices A’,C’ is equal to

— i ’ 7 2
B // W+2() tomg (2) 2’ PP (term 1)
Ux D’

- . )
- /./ (PAIII:;( ) ICCIEA'C'ﬂD'A(z,) dB"L'lCD’ P Al {term 2).
Lx ¥ ‘

We claim that (term 2) above is zero : this terin contains V’CA'UD:A(::’)d%'CD’ which by GL equals
VIAA’UDIC‘(:L")(IBI’CD’ which vanishes in the Couloinh gauge. Since the original I'lerz expression was gauge
independent subject to GL holding, and since GL is consistent with the Coulomb gauge, we may assume the
latler gauge to hold when we gauge fix ¥ to be a flat 3-plane. We are left then with (term 1) which fromn
the Dirac chain is equal to

' ~// ¢A’B'(I)¢AC(1’J)(13IICA'd3IAB'
ExE! I '

Now define
P(z,y) = E(z) - E*(y) + B(z) - B*(y).

Then P*(x,y) = P(y,z) and P(x,z) is real. Define
Q(=z,y) = E(z} - B*(y) - B(z) - E*(y).
Then Q(y, £) = —Q(=, y)* and Q(z,z) is purely imaginary. Also define,
C=E-:B.
Now introduce the following géneralised two-point stress-energy tensor for electromagnetism:
Tav(z,y) = pap(z)parp(y).

Note that, even in the 2-point case this tensor retains its symmetry and its trace-frce property, since the
lield spinors ¢ and 1 are symmetric. Now,

<PAB($)¢A'B'(!/)"“”') = woo(T)Poror (¥) + 2p01(x) @01 (y) + w11(x) P11 (y)
1
= 5C() - C"(1)

= %[P(.’l), y) + 1Q(’C, y)]
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Now to calculate the corresponding ¥ part: we have

1 .
Yoor = 5(1)1 +1iDy)

1
1/)011/ = —§D3

1 .
Py = —§(D1 —1D,)

where now D = E+4iB, noting the change in the sign in front of 7 (of course the electric and magnetic vectors
licre are the same as in the ¢ case — there is ouly a single complex electromagnetic field under consideration).
Now, introducing new variables {X,Y} = {x,y} but wilth a free ordering,

Yarp (Y )oap(X)n®nb

v= oo (X)oror (V) 4 2801 (X )Wor (Y) + D1 (X) Y1 (Y)

= %D'(X).D(Y)

= P Y) QU (X, V).

Then, ]
leap(z)@arp (y) + Yarp (Y)dap(X)n*n® (1)

= %(P +1iQ) (=, y) + %(P" +iQ" )X, Y)

which in the case of ordering (X,Y) = (z,y)

= S[P() + P, 2)] + 5l 1) - Q(w,2)]

/ P(z,y)

K(z,y)

Alternatively in the case (X,Y) = (y,z), (1) = P{z,y). Thus both orderings give the same result for the
photon norm {gle) below. This is a reflection of the fact that the photons obey Bose stalistics. More
precisely the 2-photon state represented by Fap ca(z, y) satisfies Maxwell’s equations on the first two indices
with respect to & and on the second two indices with respect to y, and Bose statistics implies Fap. ca(z, y) =
Fetab(y, #). Our norm is in fact the llilbert space norin for Quantum Electrodynaiics, which is closely

related to the expectation of the numnber operator N in the Fock space state coherent to the classical state
{¢,9). In suthmary we have shown

(plp) o // E(z) 'E'(lyx)jﬁix]'n'(y) >0 VE,B

and that this is identical to the Fierz/Twislor scalar product with the relevant complex structure inserted.
(I have shown that the generic 2-point 3-space integral [¢(z)¢(y)/|x — y|? is convergent if and only il
¢ ~ 1/r1*7 for v > 1 at spatial inlinity, though I omit the proof of this here.)

which integrates against symmetric K’ to

Remarks. The invariance under the restricted conlormal group C'l

SU(2,2) 223 50(2,4) =5 ¢

follows automatically from the twistor translation of the Fierz scalar product, and that the action of J
commmutes with any conformal translonisation. In particular the 2-point norm is Lorentz and translation
invariant, as in fact follows mmmecdiatety from the above argument — the current vector in the Fierz scalar
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product is divergence free so one is free Lo boost and translate ¥, belore J is perfortned. 'The photon norm
is thus a property of a given complex electromagnetic field - not of the particular time slice. In this sense
it contains informalion aboul the time evolution of the field, via the requirement that it be constant. It is
also worth noting that the 2-point integral enables one to compute the norin of the field without having to
extract any potentials or positive/negative frequency parls.

The remarks above carry over naturally to the spin-2 case, that is linear gravnty, as we demonstrate
below.

The Gravitational Case

To begin with we integrate by parts once in the Fierz scalar product given earlier to oblain,

Fl,¥) = /EFB'C’D’(I)XJ Cl( )d3 D!

where [ and x arc the first and second potentials for the lincarised Weyl spinor respectively. 1t follows that,
with h = y + ¥

¥, J[y]) o //zxyl_ Bre )'[rlx)“ I“E’hAI) (”3') - 2(1(__)1):_F_,/z130c( ')]43’3'EE’ L PP

where £, X/ arc in general curved but coincident. In the special case where £ is flat this simplifies Lo
1?/} J[¢] // I CIDI ) ( ,) VL-E/’IAD (I’)da'-UIEE dd.'L‘DD .
-z

i . .
Here ' represents a real spin-2 field of mized frequency, and we assume the transverse gauge hgqp - >z = 0.
Then we have
4 ’ '] - ’
Viphis (2)d®c'BE 3PP

Vg ' 1 1 ’ ’ ’
= Viphiy (2)d®2EC 3PP 4 9 eCE 0L, o (o )dP e EF @32 PP

in which the sccond term vanisles smce we can mterclmnge the lower indices A and E by the spinor gauge
condition, leaving a termn involving hDDF’(d )EF which vanishes in the transverse gauge. Then using the
Dirac chain we are left in the transverse gauge siinply with

0(// r ’C’D’('L' E,AD( ')(‘l')Ecl(d)DD'v
Ex¥/

(= )?

A tensorial version of this expression can be oblained as follows. 1n the transverse gauge the linearised
extrinsic curvature is given by

1
M = quqg’nevehc,,

in which the derivative of h arises from the perturbed covariant derivative V.
We now proceed to demonstrate that,

Ficop (2T (') (d)EC (d)PP" = 1, (2)11°(2') B3 &2

Clearly,
Al (2)11%(2") = (g°* — nn®) (g™ — ) nn" (Vehea) (2) (Vo) (2')

which by the gauge choice reduces to,

nn"(Vehe ) () (VA4 (o).
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The spinor part, of our assertion is,

! ’ f
VBB'X(/}!;_)'( )Vep X BE( )nEC nPl"

By the spinor gauge condition on x (from the Dirac chain) we have,

B'E' EC'

olold
o =Vapxgp n vAE‘XEI) n

- EE' B'C’. EE’
Vepxiy n =VEEXap 0

and also, 5 bp’ B DD
VBB'XérD/n = VBD’,?CI'BIN

which together give a contribution
’ ! A 'I _A BDI
(VEE'XEBC )(x’)"DD (VDD'XC%')(I)" :

Now we can interchange the upper indices B and D since this just gives an extra term

(Vepxhs Wa B8 (Vppxd pr)e)n P ePB
in which we may interchange the lower indices I’ and C’ by the spinor gauge condition on ¥, and then this
vanishes since & -1 = 0. Up to an overall numerical factor therefore, our assertion is established.

The conformal invariance of this 2-point gravity norm follows from the saine arguments given for the
photon case above.

In termns of Laplacians we have,

ne (=)
('fllg)) x /I)Iab(z)A"l/ZI)Iab z 27\'2 // m — 17')2 (f)

in which A~/2 acts as a non-local operator. In the vacuum case invariance under the conformal group
holds so that in particular the expression is conserved under time translations. It is noteworthy that one
could calenlate this integral in the presence of matler where the Einstein vacuuin field equations fail to hold.
For the mtegrand only requires a foliation of the spacetime. However in the non-vacuuin case the norm is
certainly not conserved in general. Ouly in the special case that there exists a timelike Kitling vector field
d/0t along which the Lie derivalive of 1l vanishes is the above norin guaranteed to be conserved in the
preschce of matter.

For two distinct fields the above expression could be interpreted as the ‘overlap’ of two neighbouring
spacctinie geomelries, where Lhe consiituent fields themselves are normalised. 1t is this overlap which one
could iiilerprel as a measure of the probability of a transition |11} = |II) where the Dirac kets denote the

1 3

coherent states in the projective Fock space (state space} PF. Now any state |¢) in PF has an unique

decomposilion into coherent states, and thus the submanifold C of colierent states in PF is non-linear. That

is Lo say the complex projective line L in state space joining the colierent states |[1) and |1} lies entirely
1 2

off the coherent state subinanifold apart from at the points |11} and | II) where it intersects C transversally.
H p

Thus we think ol the superposition of two neighbouring spacelime geometries as a point {¢) on L\C and
then the probability of transition Lo |]_1) is the distance d{t,11) with respect to the standard Fubini-Study

metric restricted to the projective line joining [1) to |11). It is important to realize that the nonlinearity of

C is fully present even in the linear gravity. This is a desired feature of our description, since in the presence
of wealk gravitational fields nature in the classical domain does not support superpositions ol neighbouring
well defined classical geometries. It is precisely the space C which corresponds under exponentiation to
these classical geometries ~ the solutions JI of the classical field equation. Moreover, as the early work of

Schrodinger shows, C is unitarily invariant under a wide class of Hamiltonians, in particular all harmonic
oscillator Hamiltonians. Thus a frec colierent stale of the gravitational field remains coherent under its time

cvolubion and is associated at each time to an unique classical geometry. Since the neighbouring coherent
i
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states overlap, according to (1), the colierent stale is [ree to wander within C under unitary evolution, and
so under timne evolution the geomnetry may chaunge, but retain its classical nature.

The Fermionic Case

Let us now consider Lhe corresponding situation for the case of a nassless neutrino lield v4. The Iierz
scalar product is now

Fv, ) = / Tavar LA (5),
Ju

Note here that the current, 4-vector j = v is automaltically a fulure pointing null vector so that the expression
above is positive definite for all v. We can apply the saine repolarisation procedure as belore to give

BB
roryl / - m(z)my)—ﬁmmv@) var Y &g (+0)

where ¥ is a single once dilferentiable spacelike hypersurlace, which is in general curved. In the case that %
is flat we are left simply with

[, MR s
T y) '

(z—y)?

We remark on the physical significance of the above forinula. Suppose we have a neutrino field consisting
of a maxture of both left and right-handed particles. Firstly note that for such a general mixture we only
use a singlc spinor leld v. More precisely both v4 and v4: have positive [requency parts corresponding to
the left and right-handed fields respectively. The standard VFierz 1-point integral (x), because of the Ferini
statistics which ensures the current vector is always future pointing, represents for all v the positive definite
norim which corresponds to the sum of the numbers L and R of lelt and right-handed neutrinos. The eflect
of the quantum complex structure in (++), as one can see from the repolarising action of J in (*), is simply
to produce the difference L — R. The siluation for Bose statislics is reversed in the sense described earlier.

Concluding remarks

I have been able to show that these two-point nortns can be expressed in terms of Dirac’s CP? calculus,
and also as twistor diagramns. In the latter case | have sliown using RP’s article in TN 27 that the action of
tle quantum complex structure J is expressible as an holomorphic link integral in twistor space. Thus also,
from the integral representation of J, is the scalar product of a field with the Green’s function for the wave
operator, a suggestion of Atiyal which is alluded to in RP’s article.

Details of these issues will appear later. /lw ’t; [Lfb&_/ p . ’Cv "\13_&;(-‘4/\?
o i, i (ine Honglotons for i
—
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The Rarita-Schwinger Equation for Einstein-Maxwell Space-times

It will be a familiar fact to readers of Twislor Newsletler that the Rarita-Schwinger
equation (equation (1) below) has "as many" solutions in a space-time M as it has In
flat space-time if M salisfies the vacuum equalions. Also, the Rarila-Schwinger
equation has gauge-solutions, generated by an arbitrary choice of spinor field &',
again provided M is vacuum. From these facts have arisen various atiempls o use
the Rarita-Schwinger equation as a means to generate vacuum solutions.

It is natural to ask (and the question arose afler David Robinson's seminar in Oxtord
on 16/1/96) whether there is a generalisation of the Rarita-Schwinger equation which
stands in the same relation o the Einstein-Maxwell equations as the original does to
the vacuum equations. In fact there is, as is implicit in the theory of N=2 supergravity
and as is therefore probably well-known to supergravity aficionados. My purpose
here is simply to note, in the formalism of 2-component spinors, what these
generalised Rarita-Schwinger equations are.

AR!
The Rarita-Schwinger equation for a spinor field ‘{'3 may be written as the pair of
equations:

QA
VACG’ “}’ )y = O 1a

, C (R ag'
%g V Q' A{)c_ =0 1b
A
and gauge solutions are obtained from an arbitrary spinor field o{ according to

Q
'\{/ AA' = VAA‘MB 2

[t can be checked that (2), for arbitrary X A , solves equation (1a) iff the trace-free-
Ricci tensor vanishes, and satisfies (1b) iff the Ricci scalar vanishes. To generalise
(1) we seek equations for a pair of Rarita-Schwinger fields (or a Dirac-spinor-valued
1-form) whose gauge solutions are generated by a pair of spinor fields o(", )@_‘" (or
a Dirac spinor) according to

g
AT gt = Vaax® - K 49;;8 ﬁﬂ' Ja

g a' - g 3b
,X Aa' :VAA‘Fg +K¢Ai Xp
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Here K is a constant io be determined and dag is a Maxwell field. These
equations are taken from my paper Phys.Letl.121B (1983) 241 where | oblained
them by translating a 4-component-spinor expression given by Gibbons and Hull
Phys.Lett.109B (1982) 190.

By eliminating the Maxwell field between (3a) (respeclively (3b)) and the derivalive
of (3b) (respectively (3a)) we guess the candidate generalised Rarita-Schwinger
equations:

Vot ay + & Awana =0 ta
vh'(Q’XS'A'A) e Em"\l’ (ag Al = o i
%AL v(e e‘APLA)%“r "5 ¢ Ci?,,g ,Xe'a W - O

4c
%A'U Vuz'e ,YC'M@ - " zgme'weq'e o 3

Now the point is that (3a,b) are in fact the gauge solutions of the generalised Rarita-
Schwinger equations (4a-d) provided that the source-free Einstein-Maxwell equations
are satisfied, i.e. provided that

—_ A .
§A&A'A = X C\)A& (bg‘p)") /\: O; VA. (bmg = O 5

(so that, in the usual conventions, e G6).

The equations (4a-d) seem to be the translation into the 2-component-spinor
language of equations given long ago in the supergravity literature by S.Ferrara and
P.van Nieuwenhuizen (Phys.Rev.Lelt 37 (1977) 1669, see also T.Dereli and
P.C.Aichelburg (Phy Lett.80B (1979) 357) and P.C.Aichelburg and R.Guven
(Phys.Rev.D24 (1981) 2066).

Paul Tod
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Geometric issues in the foundation of science
St. John’s College, Oxford, June 25-29 1996

(First announcement)

Geometric Issues '96

The Mathematical Institute
24-29 St Giles

Oxford, OX1 3LB

Fngland

Fax: +44 1865 273583

e-mail: geom96@maths.ox.ac.uk
January 2, 1996

We are planuing a symposium entitled “Geometric issues in the foundations of science”
to celebrate, in the year ol his 65th birthday, Professor Sir Roger Penrose’s outstanding
coutributions to many dilferent areas of mathematics and physics and the 23 years so far
during which he has been enlivening and shaping Oxford mathematics. The conference
will be broadly bhased and draw together the fields to which Roger has contributed. We
altach a provisional programme with a list of those who have agreed to speak.
Applications to participate in the symposiuin may be made on the enclosed forms.
Please address all correspondence, by post, fax or e-mail, to the addresses above. Coin-
pleted application forms should be sent to the above address as soon as possible; we would
like to have the list of applicants in a rcasonably final form by 29th February. We welcome
forios sent by e-mail also. We have to restrict the number of participants to about 150.
Up to date informmation will be posted on the website:

http://www.maths.ox.ac.uk/geom96/geom96 . html

where copies of these documents can be obtained also.

Location and accommodation: The symposium will be held at St John’s College,
Oxford, in the conference facilities in their new Garden Quad buildings.

Board and lodging can be obtained in St Johns. The prices (including VAT) are as
{ollows:

One night’s accommodation: £26.50
Breakfast: £4
Lunch: £6
Dinner: £16
Banquet: £30.

We append some addresses of local bed and breaklasts and hotels in case you wish to make
other arrangemeunts.

Attendance and Registration: The number of participants that we can accomnmodate
is lmited. Although we shall do what we can to accommodale everyone who applies, we
may nol be able to.

There will be a registration fee of 50 UK pounds if submitted by May 1st which will
increase Lo 70 UK pounds aller that date. The registration will be hall price for research
stitdents and the financially challenged.



Financial support: There may be some limited support for participants who will other-
wisc not be able to attend—we do not know lLiow much, if anything, will be available at
this stage, but let us know what you need in case we are able to do something.

Workshop submissions: There will be a limited number of slots for speakers in the
parallel sessions. If you wish to speak, please submit an abstract by February 29th.

The local organizing committee:
Steve Hpggett, Lionel Mason, Paul Tod, Tsou Sheung Tsun, Nick Woodhouse.

The scientific organizing committee:

Abhay Ashtekar, Gary Gibbons, Lionel Mason, Ted Newman, Paul Tod, and
Nick Woodhouse

The honourary committee:

Sir Michael Atiyaly, Sir llermann Bondi, Martin Gardner, Dennis Sciama, John

Wleeler.

Accommodation elsewhere:
Judith & John Goodwin, Tara, 10 Holywell St Oxford OX1 3SA
'Tel: 01865 202953 or 244736

E.Tong, 54 St Jolm St, Oxford OX1 2LQ
lel: 01865 54894

Norham Guest House, 16 Norham Rd, Oxford OX2 6SF
Tel: 01865 515352

St Michael’s Guest House, 26 St Michael’s St, Oxford OX1 2EB
Tel: 01865 242101

More expensive accominodation

Bath Place Hotel, 4 & 5 Bath Place, Oxford OX1 3SU
Tel: 01865 791812
Even more expensive accommodation

The Old Parsonage otel, I Banbury Rd, OX2 6NN
Tel: 310210

Oxford Information Centre 01865 726871



b

The provisional program

Tuesday, 2611 June:

Receplion
IEvening Lecture by Sir Michael Atiyah (Trinity Cambridge)

Wednesday, 2611:

9-10: N.J.Hitchin (University ol Cambridge)
10-11: S.I¢.Donaldson (University of Oxford)
11.30-12.30: A.Connes (College de France)
Lunch

2-3: A.Ashtekar (Pennsylvania State University)
3.30-1.30: G.Veneziano (CERN)

Thursday, 27th:

9-10: Il.Iriedrich (Max Planck Insitute, Potsdain)
10-11: R.S5.Ward (University of Durham)
11.30-12.30: C.R.LeBrun (SUNY at Stonybrook)
Afternoon: Parallel sessions: 2-5

1. Mathematical aspects of Twistor Theory.

2. Fundamental questions in quantum mechanics.

Friday, 28t1:

9-10: A.kert (The Clarendon Laboratory, Oxford)
10-11: S.Hameroll (Tucson, Arizona)

11.30-12.30: A.Shimony (Boston University)
Afternoon: Parallel sessions: 2-5

3. Approaches to Quantum Gravity.

4. Geomelry and gravity.

Iivening: Conference dinner

Saturday, 29th:

9-10: P.Steinhardt (University of Pennsylvania)
10-11: D.W.Sciama (S.I.S.5.A, Trieste)

11.30-12.30: S.W.Hawking (University of Cammbridge)
Afternoon:

2-3: G.1B3.Scgal (University of Cambridge)
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Geometric issues 1n the foundation of science
St. John’s College, Oxford, June 25-29 1996

Application and accommodation reservation form
NAME:
DEPARTMENT:
INSTITUTION:
ADDRESS:

TELEPIIONE: (office) (home) (FAX)
E-MAIL:

Please specily on which nights you would like accommodation in St John'’s College:

Arrival date:

Departure date:

Total number of nights:

Total cost of accommodation at £26.50 per night: £

Please specily the meals you would like with an ‘x’ below:
Breakfast (£4 each): Wednesday ( ), Thursday ( ), Friday ( ), Saturday ( ), Sunday ( ).
Lunch (£6 each): Wednesday ( ), Thursday ( ), Friday ( ), Saturday ( ).
Dinner (£16 each): Wednesday ( ), Thursday ( ), Saturday ( ).
Conference dinner at £30: Iriday( )

Please state any special dietary requirements:

Total cost of meals: £
Regisiration fee: £

Total sum: £

We liope to be able to accommodate all who apply. If we can accomunedate you, we
will write and invoice you for the above sum and expect you to confirm by paying the
registration fee and an accommodation deposit of 50 pounds by May 1st 1996. We will let
you know as soon as possible if there are any difficulties.



26

In search of a twistor correspondence for the
KP equations

S.R.Barge (barge@maths.ox.ac.uk)

1 Introduction

This article summarises work done in an attempt to develop a twistor corre-
spondence for the Kadomtsev-Petviashvili equations,

(duz + Guuy — u,“)l — 3021122 =0,

wlere 6% = —1 for the KPI equalion and ¢? = +1 for the KPII equation, and
other related equations as yel unattainable as reductions of the anti-self-dual
Yang-Mills equations. The tnotivation comes from [2] and the work done on
developing the Dirac operator and the nonlocal Riemann-Hilbert problem is
adapled from work in [1] and [5]. :

We shall take as our twistor space O(n), the twisted line bundle of Chern
class n, fibred over CP', which is viewed stereographically as C U oo. The
Riemann sphere will be given coordinates A on C and X = A" on C =
CU co — 0. The bundle O(n) can then be given coordinates (¢, A) on the
fibres over C and (p/, N') = (pA™", A71) on the libres over C'. It can be shown
that an element of the space of holomorphic sections of the bundle is of the
form

=) LA, (L) e O
1=0

Lot the IKPII case, we consider the coordinates ({;) to be real.

2 The Dirac Operator

The standard Ward construction involves solving the equation dgf = 0 on a
vector bundle 2. The idea of Mason, in [2], was to replace the dp-operator
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with a Dirac operator ., where

ne(23)()

where « is a smooth function on O(n). Mason and Woodhouse, in [3], show
that if we imposc certain symmetry conditions on « and ¢, the we can derive
thie equations of the KP hierarchy. Tlhese couditions are;

i) d=¢,

1) (N A) = o(\A),
112) o = exp(fr — p)og(A, A).

In the next section, we proceed in the opposite direction, and summatise a
method of deriving the Dirac operator with the given symmetries from the
operators ol the IKP hierarchy.

3 Derivation of the Dirac operator

Consider the equation Ly = 0 where L is the first operator in the KP hi-
erarchy, L = Jy — 07 + u, where u(t) € L' N L} (R?) and ¢ = (¢4,t). If we
assume that u(t) is zero in a neighbourhood of |t| = oo, then ¢ ~ exp pu; as
[t] = oo. If we write ¢ = e2¢, then ¢ salislics '

[0+ ) = (D24 N)] §(t: 1) = u(t)(t; A). (2)

As detailed in Wickerhauser, [5], there is a unique solution to this equation,
satisfying ¢ — 1 as [¢| = oo.

We shall denote by ¢ the Fourier translorm of ¢ with respect to the
variable £ = (£, &;) € R?, defined by

~

HEN) = /R e~ N)dt,  dt = dtydiy.

Define the polynomials P(€) = €2 — &, and Py(§) = P(i& + A, i& + A?). By
taking Fourier transforms of equation (2), one obtains

) = i L eddudl (6N
ff)(t,/\)_1+G¢—1+4ﬂ2/R2ef e
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We can make ||G|| less than unity by decreasing ||u||pr + ||ullz2. We can then
write ¢ = (I — G)7'1, and hence

0z¢ = (I = G)71(0:G)¢.
After a little work, we oblain the expression
(0:1G)d = ao(A) exp(ia — pa),

wliere

ap(A) = ;—1 /Wexp(pg — )u(t)o(t; A)dt.

T

We now consider thie behaviour of v(t;2) = (I — G) Vexp(irz — p2). 1t is
bounded and satisfies equation (2) with the boundary condition v(¢;X) ~
exp(fiz — piz) as |t| = oco. Deline 0(t; A) = exp(u2 — gi2)r(t; A). This has the
boundary condition #(¢;A) = 1 as |t| = oo, and satisfies the equation

[0+ 2)" = @+ 22)] 55 0) = ()t 1), (3)
Bui #(1; A) is the unique solution to this problem, therefore
F39(1; X) = explfia — pa)ao(A)g(t; A) = 0. (4)

As u is real-valued, it follows that ¢(A) = ¢(A) and ap(A) = ag(A) and hence
we obtain the conjugale equation

exp(ta — p2)ao(A)$(A) + Drg(A) = 0.

Thus far we have only cousidered the variables {; and t;. We now wish to
include the t3 dependence of ¢, arising fromn the second operator in the KP
hierarchy,

. 3 3
, 1\’[:()3—8'13+§u81+§u1—v,
where v is deflined in terms of u by the compatibility conditions. Writing
equation (4) with gz = pzexp(—A3(3) and multiplying both sides by exp U3,
we then apply Lj to both sides, giving that ay(X; t3) = a(A)exp —(A*—A3)t3
and hence

D36(4: \) + expliis — pz)ao(\)b(t; 1) = 0, (5)

where ¢ is now an eleiment of R3. It follows that if ¢exp p, satisfies the first
(n — 1) operators in the KP hierarchy, equation (5) holds, wilh n replacing
the subscript 3.
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4 The KPI equation

Whereas the inverse scattering for the KP1I equation produces a d-bar prob-
Jemn relating ¢(A) and ¢(X), where ¢ is nowhere analytic in A, the KPI equa-
tion gives a substantially different result. The first operator in the KPI
hierarchy is given by L = 0, — 07 + u, so proceeding as in the KPII case,
taking si3(A) = (Mg + A%, — At3). The problem arising in the fact that for
KPLL, Py(€)7! has discrete singularities for all A, but in the KP1 case, Py(€)™!
hhas continuous singularities for real A\. This causes the Green’s function to
be undefined on the real A-axis. The resulling calculation leads to ¢ being
a scclionally meromorphic function, satislying a nonlocal Riemann-Hilbert
problem on the real M-axis,

(b4 = )G = [ O R exp{u(x) = w0} - ()
$4+(4-) being holomorphic in the upper (lower) half-plane.

At this time it is unclear as to the connection between the two results.
Oue fecls that they may be parts of a larger construction (for complex ¢,;7)
which reduces to the d-bar relation when #; € R and to the nonlocal Riemann-
ilbert problem when some ¢; are imaginary.

5 The twistor correspondence

The main problem with this theory is its global nature. The Ward corre-
spondence for the anti-self-dual Yang-Mills equations is a local construction,
therefore it would be sensible to attempt to devclop a localised version of
the precediug theory. Oune possible direction is to use ideas from Segal and
Wilsou, [4], concerning the theory of Grassmannians and the KP hierarchy.
A link exists between the theory, if we insist in equation (1) that o vanishes
in a neighbourlhood of infinity. Then in that neighbourhood, d5¢ = 0 and ¥
lias the general forin of the Segal-Wilson Baker function,

Yt A) = expp (1 + iai/\'i) )

=1

It may well be possible to extend the Baker function to obtain the global ¥
of the Dirac operator.
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An allernative avenue ol approach is to consider what happens if the co-
ordinates #; are complex. The Davey-Stewartson equalions generate similar
constructions to the KP equations, but with the {;-coordinate being com-
plex. In this sense, the DS-equations are inore fundamental than the KP
cquations. By complexilying the other coordinates, it may be possible to
generate higher-dimensional integrable systems.
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On group theoretical aspects of the non-linear twistor transform
Sergey A. Merkulov (Glasgow)

0. Introduction. Let X < Y be a rational curve X = CP' embedded into a complex
3-fold Y with normal bundle N = O(1) @ O(1). According to Kodaira [7], the moduli
space of all rational curves obtained by holomorphic deformations of X inside Y is a
complex manifold M of dimension h°(X, N) = 4. More strikingly, according to Penrose
[9] this M comes also equipped with a canonically induced self-dual conformal structure,
and, moreover, any local conformal self-dual structure arises in this way. Later several
other manifestations of this sirange phenomenon have been observed when a complex
analytic data of the form (X < Y, V) gives rise to the full category of local geometric
structures Cye, (more precisely, it is the successful choice of a pair (X, N) consisting of
a complex homogeneous manifold X and a homogeneous vector bundle N on X which
uniquely specifies Cy., — the choice of a particular ambient manifold Y corresponds to the
choice of a particular object in Cye,).

The questions then arise: How is it possible that a complex analytic data of the form
(X, N) can be used as the building block for such basic diflerential-geometric quantities
as melrics, affine connections, curvatures? What is the guiding principle for making a
successful choice of (X, N)? How general is this phenomenon?

In this note we attempt to illucidate these questions by unveiling very strong links
between the (curved, or non-linear) twistor approach to differential geometry and Borel-
Weil approach to representation theory (in this context, see also the works of Baston
and Eastwood [5, 1] on applications of the Bott-Borel-Weil technique to the linear twistor
transform between "flat” models).

1. Complex G-structures. Let M be an n-dimensional complex manifold and V a
fixed reference n-dimensional vector space (typically, V = C*). Let 7 : L*M — M be the
holomorphic bundle of V-valued coframes, whose fibres 7~1(t) consist, by definition, of all
C-lincar isomorphisms ¢ : T\M — V', where T, M is the cotangent space at t € M. The
space L*M is a principle

right GL(V)-bundle with the right action given by R,(e) = g"' oe. If G is a closed
complex subgroup of GL(V), then a complex G-structure on M is a principal holomorphic
subbundle G of £*M with the group G. It is clear that there is a one-to-one correspondence
between the set of G-structures on M and the set of holomorphic sections o of the quotient
bundle # : £L*M/G — M whose typical fibre is isomorphic to GL(V)/G. A G-structure
on M is called locally flat il there exits a coordinale patch in the neighbourhood of each
point { € M such that in the associated canonical trivialization of £*M/G over this patch
the section o is represented by a constant GL(m,C)/G-valued function. A G-structure
is called k-flat if, for each ¢ € M, the k-jet of the associated section ¢ of L*M/G at t is
isomorphic to the k-jet of some locally flat section of £*M/G. 1t is not diflicult to show that
a G-structure admits a torsion-free afline connection if and only if it is 1-flat (cf. [4]). A
G-structure on M is called irreducible if the action of G on V leaves no non-zero invariant
subspaces.

The notion of G-structure is a unifying idea for a variety of popular themes in differ-
ential geometry. For example, (i) if G € GL(n,C) is the standardly represented special
orthogonal group 50(n, C), then the associated G-structure is nothing but a complex Rie-
mannian structure; (ii) if G = CO(n,C) C GL(n,C), then G-structure coincides with the
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complex conformal structure; (iii) if G = GL(2,C)GL(n,C) C GL(2n,C), n > 3, then G-
structure is precisely almost quaternionic structure. In the first two examples G-structures
are always 1-flat, in the third example this is not true — 1-flat GL(2, C)GL(n, C)-structures
are called complex quaternionic structures.

The notion of Ghstructure is proved to very useful in the study of affine connections,
especially in the context of classilying the irreducibly acting holonomies of torsion-free
a{fine

connections [4]. Given an afline connection V on a connected simply connected com-
plex manifold M with the holonomy group G, the associated G-structure Gy C £*M can
be constructed as follows. Define two points u and v of L*M to be equivalent, u ~ v,
if there is a holomorphic path v in M from =(u) to n(v) such that v = P,(v), where
P, : Q;(U)]\l — Q}r(u)M is the parallel transport along 4. Then Gy can be defined, up
to an isomorphism, as {u € L*M | u ~ v} for some coframe v. The G-structure Gy is the
smallest subbuundle of £*M which is invariant under V-parallel translations.

The basic uestion about the local geometry of G-structures — what is the obstruction
for a k-llat G-structure G — M to be (k + 1)-flat? — has been answered by Guillemin [6]
and Singer and Sternberg [10]. The obstruction is given locally by a function on M with
values in the Spencer coliomology 11¥2(g) associated with the given representation of G in
V' (more accurately, with the associated representation of the Lie algebra g in V). In the
next paragraph we recall the definition of 11¥/(g).

2. Spencer cohomology. Let V be a vector space and g a Lie subalgebra of g/(V) ~
V. ® V*. Define recursively the g-modules
g("l) — v

0 = g

g = [@¥VeViInVe oV, k=12,
and define the map

g(k) ® Al—lvt'_)g(k—l) ® Alvm
as {he antisymmetrisation over the last [ indices.
Since 9% = 0, there is a complex

a® @AY Ly g @ Ayt 2y gD g ALY

whose coliomology at the center term is denoted by H*!(g) and is called the (k,!) Spencer
coliomology group. In particular,

H*(g) = 0

H**(g) :Iﬁﬁd“”®NVHid“”®MVﬂ ~ (1)
' linage : g®) @ V* 2 glk-1) @ A2V

In addition to 11*?*(g), the g-module g™ also has a clear geometric meaning. 1If a
G-structure G — M is 1-flat then the set of all local torsion-free affine connections in G is
the afline space modelled on the veclor space of local functions on M with values in g{!).

In particular, if G C GL(V) is such that g") = 0, then any G-structure admits at most
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one torsion-free alfine connection. 1f K'(g) is the g-module ol formal curvature tensors of
torsion-[ree afline conncctions with holonomy in g, t.e.

K(g)=[g@ AV ]n[Ker: VRV @A’V = V@AV,

then

K(g)
g e Vr)

i.e. the cohomology group 11*?(g) represents the pari of I{(g) whicl is invariant under gt")-
valued shifts in a formal torsion-free alline connection with holonomy in g. I'or example,
if (G,V) = (CO(n,C),C"), then gV = V= and 11**(g) is the vector space of formal Weyl
tensors. :

If g = 0, then H**(g) is exactly I'(g), the g-module which plays a key role in
the theory of torsiou-frec affine connections with holonomy in g, especially in the Berger
classification context [2, 3, 4]. The case g} = 0 is generic — there are very few irreducibly
acling Lie subgroups g C gl(V) which have g{!) # 0 and they are all known by now.

H*?(g) =

3. A simple group-theoretical explanation of the non-linear twistor transform:.

Let V be a finite dimensional complex vector space and G C GL(V) an irreducible
representation of a reductive complex Lie group in V. Then G also acts irreducibly in V*
via the dual representation. Let X be the G-orbit of a highest weight vector in V*\0. Then
the quotient X := X /C* is a geueralised flag variely (i.e. a compact complex homogeneous-
rational manifold) canonically embedded into P(V*) and there is a conunutative diagram

X < V*\0
{ }
X <= PV

In fact, X = G,/P, where G, is the semisimple quotient of G and P is the parabolic
subgroup of G, leaving a highest weight vector in V* invariant up to a scale. Let L be the
restriction of the hypérplane section bundle O(1) on P(V*) to the submanifold X. Clearly,
L is an ample homogeneous line bundie on X.

Iu summary, there is a natural map

(G, V)—(X, L)

associating with any irreducibly acting reductive Lie group G € GL(V) a pair (X, L)
consisting of a generelised flag variety X and an ample line bundle L on X. Can this map
be reversed?

According to Borel-Weil (see, e.g., [1]), the representation space V' can be reconstructed
very easily:

V= H%X, L).
What about G7

Theorem 1 (Onishchik 1962) Let G be a simply connected simple complez Lie group, P
a parabolic subgroup of G, and X = G/P the associated generalised flag variety. Then

g g_: I{O(fY, TX),
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where g is the Lie algebra of G. Morcover,
g = HY(X,TX)
unless one of the following holds
(i) G is the representation of Sp(n,C) in C** (in this case WX, TX) =~ sl(n,C));
(ii) G is the representation of Gy in € (MY X,TX) ~ s0(7,C));

(iii) G is the fundamental spinor representation of SO(2n + 1,C) H(X,TX) =~
so(2n + 2, C));

Therefore, if G € GL(V) is semisimple then, with a few exceptions, G can be re-
constructed from (X, L). However, it is often undesirable to restrict oneself to semisimple
groups only (especcially in the context of the Berger holonoiny classification problem).
There is a natural central extension of the Lie algebra H°(X,TX) which is canonically
associated with the pair (X, L).

Fact 2 For any (X,L) g := WY(X,L @ (J1L)*) is a reductive Lie algebra canonically
represented in N%( X, L).

This fact is easy to explain — H(X, L@ (J'L)*) is exactly the Lie algebra of the Lie group
G of all global biholomorphisms of the line bundle L which commute with the projection
L — X [8].

In conclusion, with a given irreducible representation G C GL(V) there is canonically
associated a pair (X, L) consisting of a generalised flag variety X and a very ample line
bundle on X such that much of the original infornation about G can be restored from
(X, L). In the twistor theory context, the crucial observation is that the

g-modules g*) and 11%%(g) also admit a nice description in terms of (X, L).

Theorem 3 For any compact complex manifold X and any very ample line bundle L on
X, there is an isomorphism

g® = HYX, L ® O**'N*), k=0,1,2,...
and an ezact sequence of g-modules,
0—H(g)—H'(X, L @ 0MN*)—HY (X, L@ o*'N) e V", k=1,2,...

where g := H(X,L @ (J'L)*), N = J'L, and H**(g) are the Spencer cohomology groups
associaled with the canonical representation of g in the vector space V := H°(X, L).

Proof. Since L is very ample, there is a natural "evaluation” epimorhism
V®0Ox—sJ'L—0

whose dualization gives rise to the canonical monomorphism

0—N"—V* @ 0y.
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Then one may coustruct the following scquences of locally free sheaves

0L Q@O N LN @V — L@ 'N" @ AY(V") (2)
and
0— LROMIN S LM N*@V* — LQOFN* @AY (V) — L T N* @AY (N*). (3)

Oue may notice that both these sequences are exact. [Iint: for any vector space W oue
lhas W ® A*W mod A*°W ~ W @ @*W mod O*W ]

Then computing H(X, . ..) of (2) and using the inductive definition of g as [g*=" @
VN[V @0t UV*] (with g := g and g(=! := V) imiediately implies the first statement
of the Theorem.

T'he second statement of the theorem follows from (3) and the definition (1) of H**(g).

Indeed, define I5; by the exact sequence

0L @ OH2N* L @ O N* @ V3 Fl—0
The associated long exact sequence implies the following ezact sequence of vector spaces
0—H(X, E)/0[g® ® V*]—HY(X,L ® @"“N")———ﬁli(x, LQOMIN")® V™.
On the other hand, the exact sequence
0—Er—L Q@ O*N* @ AH(V*)—L® 0" !N*® A’ (N*)

implies
1°(X, E¢) = ker : g0 @ A2(V*) =5 g*=2 @ A3(V™).

which in turn implies

H*?(g) = HY(X, E)/0[g™ @ V*].

This completes the proof of the second part of the Theorem. U

Therefore, the pair consisting from a homogeneous-rational manifold X and a holo-
morphic vector bundle bundle £ on X is more than a natural building block for basic
differential-geometric objects. If rank £ > 2, then, following a common practice in complex
analysis, one should replace the pair (X, E) by an equivalent one (X = P(E*), L = O(1))
and apply Theorem 3 to find out which geometric category Cye, may correspond to the
twistorial data (X, ). Applying this procedure, e.g., to the pair (CP',C* ® O(1)), k > 3,
one immediately concludes that Cj., is the category of complexified quaternionic mani-
folds. Also, this purely group theoretical result suggests that there should exist a universal
twistor construction for all torsion-free geometries. I'or details of this construction we refer

to [8].
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Abstract

We investigate the cohomology of a certain elliptic complex defined on a compact
quaternionic-Kahler manifold wilh negative scalar curvature. We show that this par-
ticular complex is exact, with the possible exception of one term.

Let (M, g) be an oriented 4k-dimensional compact quaternionic-IKKahler manifold having
negative scalar curvature. In [2] we proved a rigidity theorem for such manifolds which
was, it cssence, a consequetice of the vanishing of a certain cohowmolgy group on the twistor
space Z, of M. The paper was largely devoled to the proof of a vanishing theorem for the
coliomolgy of the first term of a particular complex on M, the required vanishing theorem
on Z being deduced by the Penrose transform. This note is an extension of that work in
that we use the same techuniques to show that all the cohomalogy of the complex vanishes,
with the possible exception of one ters, so that the complex is exact except possibly at
the right. We have not been able to establish whether the final term of the complex has
non-trivial colhiomology. '

Since the preparation of this article it has been brought to our attention that a similiar
result has been proved, though in a diflerent way, by Nagato and Nitta.

As in [2], we shall inake extensive use of the methods and techniques developed by Bailey
and Lastwoood in [1], these being based on the abstract index notation of Roger Penrose
[3]. In this notation the indices are used as ‘place-markers’ and do not indicate a choice

of basis. Thus the £, Il bundles of Salamon [4], are written as OA, o” respectively. The

(complexified) tangent bundle of M is then 0° = 0" @ 0* “/ 0", The Levi-Civita
counnection on M is written V, =V . We shall take the Riemann curvature tensor to be
given by

2V Vyw = Ry twy (1)

so that, in our couvention, the standard metric on the sphere has positive curvalure. (This
differs from the convention adopted in [1] which was based on that of [3]. This latter is
essentially a relativity book.) The square brackets in the definition of the Rietann tensor,
denotes anti-symmetrisation. Round brackets will be used for symmetrisation. For more
details on the notation and techniques used we refer the reader to [3].
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When written in abstracl index notation, the complex we consider is defined on M by the
following

(A4l Vg’?“ (A} AL ) Vgé” (A AL D)
0 — I(M,07" ™) 2 p(, 0, ) P(M, 0, ") —
AI
\vd n+2k " ,
Bax g A Ansae)
= I(M’O(Bx---ﬂul )—0 (2)

’ f
(Al”'An+2) .

Here, for example, the bundle Oy, s is A2 E*®S™2 I (or its sheaf of smooth sections),
1922

AI
and I'(M, V) is the space of global simooth sections of the bundle V over M. The map VAl

toal 1 '

is then ™" V. with eh’ being the (covariantly constant) symplectic form on I1*. This
complex was studied by Salamon in [5] and shown by himn to be an elliptic coniplex. Since
M is compact we may use Hodge theory [6] to examine the cohomology of this complex. It
is well known that the cohomology of the first termn vanishes for negative scalar curvature.
The vanishing of the cohomology of the second terin was proved in [2], but can easily be
obtained from the proof of theorem (0.3) with the appropriate changes. For terms other
than the last Hodge theory implies that each cohomology class has a unique representative
[ which salislies

. (AL AL)
(a) f E l (M) O[B:.«-Bgil)
(Ay A --Ap)
(b) V(B: fsl-'.n.il =0 : (3)
AC'A;...A;
(C) V/ﬂlc’fBQH.B,,. =0

Al A’
whetel <m <2k and p—-m=n. lf welet Dy = VBT“ and Dy = VB;'+2 in (2), then with

m = 1, (b) is the abstract index version of Dy f = 0 and (c) is that of Dgf = 0, D§ being
the adjoint of the mapping Dy.

We shall take T4 to be the positive definite inner- product, where T is the quaternionic

conjugate of v, on the bundle 04, so that u?%, is positive if u # 0, and similatly for other
AB'

tensors. The L%-norm of a tensor v = v o

. for examnple, is then

lolP= [, 0 )

with the integral taken over the manifold M. With this convention, one can use integration
by parts over M and quickly obtain (c) above as the abstract index version of Djf = 0,
when m = 1. We shall show that these terins all vanish, so that the above complex (2) is
exacl, except possibly at the right. We note the following elementary facts.

1

Al A
0 . . . . . . . . - .
Lemima 0.1 If S P is symmelric in ils final p indices and Ug,. is antisymmetric in

-Bm
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tls final m indices, then

' l =p

(]}+1)‘S(A0..AAP) _ (1)—{-1 -—Z AOA. 1 vty (5)
(m -+ I)U[BU.--Bm] = UBO...B,,. + Z(—l)iUﬁ‘-Bu...Bl...Bm (6)

It is then quite casy to obtain the following.

Lemma 0.2 If f satisfies the condilions of (3) then

¢ b oAt '
A A2...A

/\l Al A
P+DIV, T, s o W= PN gy Sy o I

I

and V0 f L7 s symanelric in its primed indices.
BBy...Bm -

. Al AL Al oAlAl .
Proof  For the first part we put S°° 7 1;0f9,l...sp) in (5) and using (b) of (3) we get
AL ALAL =p Ay Al A'AL Ay
(P + 1)V[go fBl,..Bn.] - Ze VA'[uo fBl...Bm]
=1
[Bo

f Bl and integrating the result over M,

I

Contracting both sides of the above with V

. . . . Al Al
one qu1ckly obtains the first part. The second pa,rt can be obtained by putting S ° 7 =

o faaz Ar " i (5) and using (b) of (3).

We can now state our main result.

Theorem 0.3 Let M lbe a compact quaternionic-Kdihler manifold of dimension 4k, for
k> 1, and let A = R/8k(k + 2), where 1% is its (non-zero) scalar curvature. If f is a

harmonic element of I'(M, O(A Bp)l), t.e. satisfies the conditions of(3), and if 1 < m < 2k,
then
(1; + 2) Bo Bi-BmlA'aj Al o m c' BBy..Dim Al AL o
AU Y =V, S
2(I)+ 1) “ Al f “ 2(7n+ 1) ” I f H
(r+2)
A7 (2k—m) || f| (M

(m+1)
Thus if R < 0 then f = 0.
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I’roof  We have

(Bo ..IJ,,,]A'A;..,A;‘ 2 By B,...Bm]I\"A,'Z...A;, ~c!
“ V H = ' (vl{’ / )(VC'[BOfl?l...Bm]Af)...A;)
By B KA AL Ry o
- / / VI\"VC'[BO fﬂl,..BmlA’ Y

i

By B KAy AL By
- /1 SR,

By ~c'

+V Vo) (8)

!
By . Eim]A;...AP

where the second line above is obtained from the first by using integration by parts over
the manifold. The latter integral on the right is

}_/fBlH.Bml\'IA;...A;,E- Vu(:vvlfc' _ %/fa;...s,,,/qz pV V 'f_c' ,

9 KICT T pt T (By” By Bml Al AL, {Bo” By..BmjAL.. AL
I I !
= I
[’30 ..Bm)

the final expression being obtained from the previous one by using integration by parts
again. Using the first part of lewuna (0.2) and rearranging, (8) becomes

(p+2) By 1. Bmla'A) By..Bm I’ A o
2(p+1) ! V/\' / /f V Ve IBofB, Bl AL Al (9)

Examining the latter integrand we sec that

c! 1 By -’
V vcl)[UOf] BmlAL. AL (Ve Vens, / 'oal
~BmlAL. A m 4+ 1 [R4Y 07 By...OmA,... AL
1:"1 —C’
10
+ E:I C’)B fBOB,...B,-...B,,,A;...A;J) ( )
1=
Now by delinition
By Bqg Bg
et Vehng VB,-(I\"vc') - DI\"C’ B’

(I'or the definition and properties of the curvature operators see [1]) The second operator
on the lelt above is 1(V VBD +Vv_. .V °) and the first part of this sum annihilates f

PRSI N Bict el

by (¢) of (3). Iquation (9) can now be rewriticn

(p+2) {Bg Bi-Bin]A’ Al AL 1 By..BmK'Al . Al Be  -cf
2o 1) v, r o= - /f O S )

m41 Bo” By Bm AL . Al

P
; By..BmK'Al.. 4} By '
(‘l) /f (DI(’C’ B,-f f, )

BoBy..B, . BpAl. . Ay

; ; B,...Bml\"A;...A;, By =C'
1n+l Zl =1 /f (vBiC’v""onBI---B‘ Br. A, A')

™ 2... p
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Using the symmetry in the primed indices given by the latter part of lemma (0.2) we mnay
commute the final K and C" in the final integral above aud, alter another application of
integration by parts, this final integral hecomes
!

v

BB By Bm KAy A

By’

J

By Bu K Ay A
f /JUBI...I')I'..BmI\"A;...A;,)
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With this in mind we may now rearrange the above equation to obtain

([, + 2) 1By B HmlA'ALa, m C! BBy BmAl. AL 1 /
MmN - |V - — n
2(p+ 1) I wt I +2(1n, + 1) ¥, I m+ 1 )
(11)
where R(f) is given by
B VB‘...U,,,I\"AQ...A;, By =cC' i=m i By =C' -
H(f) =/ (Dl\"C’ BofBl...BmA;...A;, + Z(—l) DK’C’ B, fBDBI...B'-A..BPA,IZ...A;,)

i=1
The evaluation of the action of the curvature operators is an clementary exercise. We have

By =c' -

= —-20k(p + 2)'[31

K'C' By’ By..BmAl

! -t al !
b A, HmK'AL. A

P

and the other operator gives
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j=p A YY) '
QA AL Ay

= 2/\§ Te !
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J=p ' YRR '
Al AlCAT L
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- (_1) ZAZE(K: EC')Q'IEI...Bm
=t

By =c'

(_l)iA(l’ + 2)-;*01“.3,,, KIAL.. A}

K¢ B, DO...fJ'-..,BmA’T”A;,

so that R(f) = —A(p+ 2)(2k — m) f

S Substituting this into (11) completes

the prool. O
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A Nonlinear Graviton from the Sine-Gordon
equation

Maciej Dunajski

In TN 30 [1] Lionel Mason pointed out that certain integrable systems

may be encoded within a geometry of the nonlinear graviton. This is true
at least for integrable equations arising from SL(2,C) anti-self-dual Yang-
Mills equations (ASDYM). The purpose of this note is to describe how this
construction works, illustrating the method with the example of the Sine-
Gordon equation. .
Let M be a real four-manifold with a volume form v. Let V; = (W,W, Z| Z)
be real, independent, volume preserving vector fields on M. Define f2 =
v(W, W, Z, Z). Mason and Newman’s [2] form of the nonlinear graviton
theorem states that if

L=W-)Z, M=2Z-\W (1)

commute for each value of A € CP!, then f~1V; is a normalized null tetrad
for an anti self dual vacuum metric. The metric has a signature (+ 4+ ——).
ASDYM possess a Lax formulation isomorphic to that of the ASD Einstein.
We use z# = (w, @, z, 2) as coordinates on R* that are independent and real
for signature (++——). ASDYM are equivalent to the commutativity of the
Lax pair

L=Dy,-AD;, M=D,-ADj. (2)

Here D, = 8, — A, is a covariant derivative. We fix the gauge group to be
SU(2) and put A, = A®,0,, where

0 i 0 1 i 0
G=4 g 02T 21 0 ) BT e i

We impose symmetries in the d,, and 8y directions so that, in an invariant
gauge, A%, are functions of (z,2). The passage to ASD gravity is based
on re-expressing 0, as real hamiltonian vector fields X;, on ¥ = CP! with



s

respect to a symplectic structure Qy = i(1 4 £€€)~2(d€ A d€). Hamiltonians
hy are found from the Mdbius action of SU(2) on a Riemann sphere,

_ErE €€ 2

2= =, 32‘1‘;5?

> Xp, (he) = 2¢4h,.
1+ €8 1+ €€ tofa) = 2eap

(3)
Now D, become volume preserving vector fields on M = R? x CP! with
v =dz Adi Qg Weidentify D, with V;;

l =

W= -A%Xn, W=-AXn, Z2=0,- A% Xn, Z=208:—A*X,.

A covariant metric on M is conveniently expressed by a dual frame ey, such
that ey, (V;) = 6;;. A simple calculation yields

f2 = 2AawAbu76abchm

ew = —f7 A ;(9chsdf + BehydE — 2eq ho(A%,dz + A®;d7))
= —f"?A%;Dghy,
ey = JTEAG(OghedE + OghodE - 2eq5°he(A%,dz + A®:d3))
= f72A%,Dgh,,
ez = dz, efzdi, (4)

where Dy = dy — A%,dz"* @ X;, is the form valued operator acting on
functions. Note that Dy decomposes to Dy + Dy, where

Dy = (d—iA%,(1+£6)°0hedz?) @ O = da€ ® &,
Dy = (d€+iA%,(1+€6)*0chads") @ O; = dal © O;. (5)

Finally we consider the metric
ds® = f2dz @ d5 + [~2A®3 A, Dghy ® Dghy. (6)

This may be viewed as a metric on the total space of the 3-bundle associated
to a YM bundle. An infinitesimal gauge transformation A%, — A4°%, +
T(€qp® AP, F + 0,F?), where F* are functions of z and Z, is equivalent to
the diffeomorphism of R? x C P! given by y¥ — y” + 7F° X}, (y"). Tensor
objects transform by Lie derivative along F*X,,. As a consequence Dg
undergoes the same type of transformation as a covariant deriative .

Singularities in {6) which come from the base space may be removed by
imposing the boundary conditions on the YM connection. However we are



left with singularities of the vector fields X}, for £ being real or purely
imaginary.

To establish the connection with Sine-Gordon, we express A%, in terms of
its solutions. This reduction was noted by a number of authors. We use a
gauge choice due to Ablowitz and Chakravarty [3].

Set A; = 0. ASDYM with G = SU(2) are solved by anzatzs

A, =cospoy+sing oy, Ag=oy, A,=1/20;¢03 (7)

provided that ¢ satisfies 3,;¢ = 4 sin ¢.
Using (7) we obtain: f2 = 2(1 + ££)~!sin ¢, d4€ = d€ + i£d;¢d 2, and

1 ) . —4
ds? = T ([(l —€)2cot ¢ + (1 —-€)]dal @ dat

+ (cot ¢(1 = E)(1 =€) +i[(1+E)(1 - &) = (1 = D)1 +€))]) da @ dal

+{(1-€)cotd+i(1 - £)|dAE® AL + 2sin ¢ dz® dZ)  (8)

Now we can use the whole machinery (Backlund transformations, topological
conservation laws, etc.) known from the theory of Sine-Gordon to deal with
(8). If one takes a solution describing the interaction of half kink and half
anti-kink (two topological solitons traveling in 2 — Z direction and increasing
from 0 to 7 as 2z + Z goes from —oo to 0o) then the singularity in sin¢ = 0
may be absorbed by a conformal transformation of z + 2.

Many thanks to Lionel Mason for much help and guidance.
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Abstracts

Michael Murray and Michael Singer: “Spectral curves of non-integral
hyperbolic monopoles.” The twistor description of SU,-monopoles on hyper-
bolic 3-space is developed and some consequences discussed. It is shown that
in a precise sense, any appropriately decaying hyperbolic monopole is deter-
mined by its asymptotic values, and also that such monopoles determine and
are determined by their spectral data (which reduces to a complex algebraic
curve when n = 2), This paper provides the hyperbolic analogue of the work of
Hitchin and others on euclidean monopoles and generalizes that of Atiyah and
Braam-Austin on integral hyperbolic monopoles.

L.J.Mason: “The vacuum and Bach equations in terms of light cone cuts.”
Light cone cuts are the intersection of the light cones of space-time events with
an initial data surface which is usually taken to be null infinity. These are
determined by a ”cut function,” a function of the space-time coordinates and
the sphere of generators of null infinity. The Bach equations and the confor-
mal vacuum equations are shown to lead to a single scalar ”main” equation on
the cut function. In simplified cases, i.e., when the Weyl curvature is either
small or self-dual, this equation can be integrated to give a simple scalar con-
formally invartant elliptic equation on the sphere of null directions. It has the
remarkable property that the general solution of the Einstein vacuum equations
in these cases can be derived from the solution to this auxiliary equation in
two dimensions. Nevertheless, the main equation is sttll a necessary condition
and it is conjectured that it is also sufficient to imply the Bach equations in
general and supporting arguments are given. It is also shown how to extend
the Kozameh-Newman framework to the case of light cone cuts of a spacelike
Cauchy hypersurface. The analogous procedures for Yang-Mills are also dis-
cussed. A conformally invariant formalism for calculations on null infinity is
described in an Appendix. This is used for all the calculations which are only
described in brief form in the main text. Copywrite 1995 American Institute of
Physics.

T.N.Bailey, M.G.Eastwood, A.R.Gover and L.J.Mason: “The Funk
Transform as a Penrose Transform.” The Funk transform is the integral trans-
form from the space of smooth even functions on the unit sphere $? C R? to
itself defined by integration over great circles. One can regard this transform
as a limit in a certain sense of the Penrose transform from CP, to CPP5. We
exploit this viewpoint by developing a new proof of the bijectivity of the Funk
transform which proceeds by considering the cohomology of a certain involutive
{or formally integrable) structure on an intermediate space. This is the simplest
example of what we hope will prove to be a general method of obtaining results
in real integral geometry by means of complex holomorphic methods derived
from the Penrose transform.
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