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Heavenly hierarchies and curved twistor spaces

Maciej Dunajski Lionel J. Mason

The anti-self-dual vacuum equations (ASDVE) share many properties
with lower-dimensional integrable systems. It is therefore reasonable to hope
that some constructions well known from the theory of such integrable mod-
els are also present in the ASDVE. Boyer and Plebanski [1] obtained an in-
finite number of conservation laws for the ASDVE equations and established
some connections with the nonlinear graviton construction. Some of their
results were later rediscovered and extended in various papers of Strachan
and Takasaki. With the appropriate symplectic structure, the sequence of
conserved quantities should lead to a hierarchy of evolution equations that
are ‘hidden symmetries’ for the ASDVE equations.

In what follows, the hierarchical structure of the ASDVE in the heav-
enly form due to Plebanski is constructed by looking at ways of generating
sequences of solutions to the linearized heavenly equations. This approach
is motivated by that in [5] for the treatment of ASDYM hierarchies.

We use the formulation of the ASDVE condition in [4]. All the spinor
indices are assumed to be concrete and indices are raised and lowered with
€AB = €[aB], €0 =1 according to the usual Penrose and Rindler conventions.
We work in the holomorphic category. Let M be a complex four-manifold
equipped with a holomorphic volume form r. Choose a normalised null
tetrad V 4 4» which consists of four independent and volume preserving vector
fields. We will also require that the null tetrad contracted with the volume
form yields one. The ASDVE on the metric for which V 44+ are a null tetrad
arise as a consequence of the integrability of the distribution spanned by the
Lax operators Ly = TI’AIVAAI

(La,Lp] =0 (1)
where 74" = (=1, ) is a constant spinor; all local solutions of the ASDVE
arise in this way. Part of the residual gauge freedom in (1) is fixed by
selecting one of Plebanski’s coordinate systems, (w, z, @, 7) =: (w4, w4) for
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the first equation and setting

v - thbai_Qwiau'J aw
AL T Q,00; ~ Q305 9

N

— 9’0 BC_0 ) )
dwAduwB ouC  fwh
and coordinate system (w, z,z,y) =: (w®,z4) for the second where
Vg = ( —0y Oy + Oyy0; — O4y0, )
Oy 0, — Ogy0; + O:0,

’ a a 220 9
= ( €BABrg GuA T €BCzAGzg Jrc )
These choices lead to heavenly equations.
Qg ~ Quallz =1 First (2)

Ow + Oy + 60,0, — 052 =0  Second (3)

Both (2) and (3) were originaly derived from the formulation dual to (1).
The one forms e?4" dual to the tetrad V 44 are used to construct the two
form B(A) = nanpeaped A eBB = eABy(.,-,La,Lp) = ryng LB
which can be used as a set of basic variables in GR. Equation (1) becomes

dg()\) = 0, B AT =0, (4)

where in the first equation X is regarded as a parameter and not differ-
entiated. The closure condition is used to introduce w?, canonical co-
ordinates on the the spin bundle, holomorphic around A = 0 such that
d2(A) = dw? A dwy. The various forms of the heavenly equations can be
obtained by adapting coordinates etc. to these forms.

Equations (2), (3) admit Lagrangian formulations

Lo = Qv - 5(039)?),

where 0 = eA'®V 41 = d2®8,+dw@0,, 8 = P @V gy = d7®8;+db©;
and forms are multiplied by exterior multiplication and

Lo = %e(azef - %(ae) A (3:0) A e A el

where 8, = ePVVpy = dz2® 9, — dw ® dy. Note that e0" A e?‘{ can be
replaced by dz A dy in the second Lagrangian as it is multiplied by dw A dz.
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A symplectic form on the space of solutions can be derived from the
boundary term in the variational principle and is given by

2 1 '3 ’ " /

Q6,8 6,0Q) = 5/ e!' g A eBY A (e 50V 40612 — e 510V 41:6,0),
oM

and similarly for the second equation. They coincide with the symplectic

form on the solution space to the wave equation on the ASD background.

Recursion relations

First we observe that the linearized solutions to (2) and (3) satisfy the wave
equation on the ASD background given by Q and O respectively.

Var VA Q = V4. V360 = 0. (5)

From now on we identify tangent spaces to the moduli spaces of solutions to
(2, 3) with the space of solutions to the curved background wave equation,
W,. The linearised vacuum metrics corresponding to 6§ and 4O are

W aape = a0 ViarVewdQ, k' aups =040pV a0V e 0.

We are now able to generate new linearized solutions from old ones. Given
¢ € W, we use the first of these equations to find h!. If we put the per-
turbation obtained in this way on the LHS of the second equation and add
an appropriate gauge term then we get ¢’ - the new element of W, that
provides the d© which gives rise to h,’l{, = hib + V(aVsy- This reduces to

VarVar¢=VayVged' (6)
Define a recursion operator R: W, — W, by
Vard = VayR¢ (7)

so formally R = (V 40/) ' oV 41-. From this definition and from (1) it follows
that if ¢ belongs to W, then so does R¢ . Because [R, V)] =0 on W,,
we have R%0Q) = 40. ’

Define, for i € Z, a hierarchy of linear fields, ¢; = Ri¢y. Put & =
> b A* and observe that the recursion equations are equivalent to L 4& =
0. Thus ¢ is a function on P7. Conversely every solution of L4® = 0
defined on a neighbourhood of |A| = 1 can be expanded in a Laurent series
in A with coefficients being a series of elements of W, related by the recursion
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operator. The function @ can be thought of as a Cech representative of the
element of H(PT,0(-2)) that corresponds to the solution of the wave
equation ¢ {here PT is the twistor space of M).

It is clear that a series corresponding to R¢ is the function A~!'®. Note
that R is not completely well defined when acting on W, because of the
ambiguity in the inversion of V 4. This means that if one treats ®(A) as a
twistor function on PT, pure gauge elements of the first sheaf cohomology
group HY(PT,O(-2)) of the twistor space corresponding to M are mapped
to nontrivial terms. Note, however, that the action of R is well defined
on twistor functions. By iterating R we generate an infinite sequence of
elements of H!(PT,O(-2)) belonging to different classes.

By a formal application of Stokes’ theorem

QR¢, ¢) = Q(¢, RY'). (8)

We can construct an infinite sequence of symplectic forms QF(¢, ¢') =
Q(R*¢, ¢') which play a role in the bihamiltonian formulation.

Twistor surfaces

We can use R to build a family of foliations by twistor surfaces starting from
a given one. Put wf! = w® = (w, z); the surfaces of constant w§' are twistor
surfaces. We have that VAgfw(I,; = 0 so that in particular VM/VAO,wg =0

and if we define w? = Riwg! then we can choose w = 0 for negative i. We
define

o0
wh = wf + ) WA 9)
i=1

We can similarly define &4 by &' = % and choose ! = 0 for i > 0. Note
that w? and ©“ are solutions of L 4 holomorphic around A = 0 and A = co
respectively and they can be chosen so that they extend to a neighbourhood
of the unit disc and a neighbourhood of the complement of the unit disc.
We have that P7 can be covered by two sets, U and U with Al <1+e€
on U and |A| > 1 — ¢ on U with (w?, ) coordinates on U and {(@*,A~!) on
U. PT is then determined by the transition function @® = f8(w?, 7 4) on
Uunu.

Newman et. al. [6] make equation (2) A-dependent and show that w4 may
be found by integrating the hamiltonian system which has € as its hamilto-
nian. In their treatment XA plays the role of time. We give an analogous
interpretation of the 2ud equation.
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Choose a spinor say ka4 = (0,1), in the base space and parametrize a
curve by the coordinates

aar _ Ot Al A AV A
= , T =wh = (w,2), 27 =¢" = (—y, 1)

xT =
87(A/ T At =K 7t

where 241" gives the initial point on the curve, while z4% is a tangent vector
to the curve. To procede further, ie to find higher terms in {9) we do one of
the following (all give the same answer).

a) Insert the 2nd heavenly tetrad into the recursion relations and solve

for wgl
; ) 00 00
wh = g4l + A0 + /\QEBAW + /\36BA GaBT + ... (10)

Note that (7) is used to find the fourth term in the series, since the
third one is the definition of ©.

b) Use the globality and the degree two homogeneity of (A}

o 8kde/\de
R Y
7 AY ka’{(AlldWA{z...d'ﬂ'Alk NA::"A:
k
0 for k > 2
= ZE‘:ABd&},‘A /\d&}f_i = { ~_‘230101 f()r k _ 2 ' (11)

i=0
¢) Make the 2nd equation 74/, i.e. A-dependent. Define X 44" = Ow™ B 1.
Continue the curve to another order in A so that to order A2
BA 90
('hB‘)' -

We then put the space-time metric into a standard, 2nd heaveuly form
with respect to the coordinates X A4’

XAl' — IA\’ + /\IAO, XAO' — zAU" + A

9%/
XAV X BY

which forces us to introduce ©', differing from © by terms of order A

ds? = e 4 gd XAV dXPY 4 dXx AV dx BY
O (XA ma) = Oz + Mr(zY).

We find © and can then iterate the process to obtain the subsequent
orders in X 44", The parameter A plays the role of time and 8 plays the
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XM= (w, 2) X "k ety

XN’= const  geodesics on space-titne

CP'

role of a time dependent hamiltonian. In homogeneous coordinates,
O is homogeneous of degree —4 in w4. The construction may be
summarized by the following

. ' / . / 8(—)' : or 88’
XAl — XA() , XAO — EBA 5B o = T, XA — SXAT
(12)
Dot means differentiation with respect to A. The last equation {which
gives the recursion relations) is valid up to the addition of f(XA1).

The first two equations can (for those familiar with edth= ) be written
as

Pt =at' VA0, or BXAY = (X4 8},

where IT = 7478V 44 A VA5 is a (homogeneous) Poisson structure
defined on the spin bundle tangent to the a-planes. Note that it
projects down to zero by the twistor fibration.
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Hierarchies

Finally we embed (1) in an infinite system of overdetermined PDEs. The
associated linear system is

Lais = (AVai~ Dai-1)s =0, (13)
where

1. s = s{(zA4" 4k 7 4) is a function on a spin bundle over M x X, where
/ ’ . —
gAA Ay = pAA A4 are coordinates on the M x X and X = C2(»—1)
is a space of parameters (“times”), and

Ai _ AA' AL Al
= OA'OAZ--'OA".LA".+l~"LA£1$
for 1 = 0, 1 are coordinates on M and for ¢ > 1 are coordinates on X.

’ / 1 ’
2. Vaai = LAX...l,/é\"“lOA"...OA"VAA«(A{Z.“A;‘)7
Vari = Vai, Vagi = Daiy.

_ A A
3. Laay..ay) =7 Vapa,. ay Lai=7"Vaai

Compatibility conditions for (13) yield

(Vai, Vil =0, (14)
[Dai-1,Dpj-1) =0, (15)
(Vai, Dgj-1] = [VBj, Dai-1] = 0. (16)

In what follows we shall give the appropriate generalisation of the second
heavenly formulation; the first hierarchy is a consequence of a different gauge
choice. (15) is used to fix D4;—| = Jai—1- Equation (16) implies that we
can put Va4, = 04; + [4i—1, V] for some vector field V. In the basic tetrad
for the second leavenly equation we see that V = €4530/3x40/0zp, i.e.
V is the hamiltonian vector field of @ with respect to the Poisson structure
€4B0/0x4 N O/O0zp = O; A Oy. The higher flows of the second heavenly
hierarchy are, after redefinition of ©, given by reducing (14) to give

8A1-83j*1® — 8BjaAi—l@ + {8,41-_16),83]-4@},,33 = (). (17)

The sub-hierarchy [L 4, L,] = 0 gives the recursion relations (7), which now
generalize to

V4i0Bj-19 = D4;_108jO = D4i-1R0B;-10. (18)
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Let eA42-4n be the set of one forms dual to Vaaa,. a,- In the adopted
gauge

0*e
§rDi—19,C0 "

An analogue of the formulation (4) may be achieved by introducing a two
form homogeneous of degree 2n in 74

eAVi = gl AV _ gpAicl | (ACy, Di

E(n)(z\) = EAB”A’-'-WA'“WB’-'-WB;IBAAI"'A;' A 61‘38’...8’,1 (19)

which satisfies dX(A) = 0, Z(A) A £(X) = 0. The second equation follows
from the choice of gauge while the closure condition is equivalent to (17).

The corresponding twistor space is obtained by factorizing the spin
bundle M x X x CP! by the twistor distibution L 4;. The resulting twistor
space is still three-dimensional however has it a different topology as the
holomorphic curves corresponding to points of M x X have normal bundle
04(n).

Define a conjugate recursion operator RE") = DA,-,lR(,-)DAi_l_l and
rewrite (17) in the bihamiltonian form

0B;j(04i-10) = Dpi—108;0 = V4;0p;10 =

VaiR ' 0py© = RV 4,050 ©.
The comparison with the KdV hierarchy

Shj1 - D&
du du
suggests that D4;—; and V4, play the role of first and second Poisson op-
erators, while the solutions of the wave equation correspond to (functional
derivatives of) different hamiltonians.
Observe that Zinzo{a,q1;+j_m_1@, 6Bm—16}y:1: = aBjaAi_le. This, with

the definition wgj(A) = Y7, _; Opm-10A™1, gives another form of the 2nd
hierarchy

Utjzg

955 WA (N) = (0 (N), A7 wp; (W)} (20)

Finally we would like to make a few remarks about where the above ideas
could be applied.

e WDVV-the scaling reduction of the equation of associativity in the
theory of Frobenius manifolds [2] coincides with Painleve VI for n =
3. It seems likely that a general case (which may be viewed as a
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higher order analogue of the Painleve equations) can be obtained as a
reduction of higher flows in (17). Another possibility is that the Lax
representation of the N-wave system lifted to the spin bundle will give
rise to that of WDVV.

e Closely related to the previous is Krichever's work on Witham hier-
archies in the context of equations of hydrodynamic type. In his ap-
proach [3], there is a closed two-form of an arbitrary homogeneity
associated to each flow. This suggests an analogy with (19).

e In the last TN MD showed how V 44/ can be constructed from a solu-
tion of the Sine-Gordon equation. The same construction applies to
KdV and NIS. It should be possible to obtain a recursion operator for
these soliton equations from (7). In 5] such a reduction was imple-
mented from the ASDYM recursion operator.

Many thanks to George Sparling for discussions about 2nd equation.
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