Twi§tor New§letter  Ge4]: achug i19)

M.athemaj((cal‘ Instétut_e_ Ox{or—qL E'ﬁ‘a_"ﬂ




)
1
Lacidence between Complex Null Kaye

7/«9& Ludmhwxc@ /‘u&/ﬁaj*oM @ejﬂ)@ww C(,)'MXAQQ,% y\/uﬁ(/ zlc.‘aﬁw
p/zﬂw()ﬂ/k MM CMuJM @/Lo(ffa/j&mﬂ I ﬂ/ﬁ\aﬁ “t’qif } o
Wemcinats o ben, TLe dlrcctune, thed asiiye
/{)«&M illerancs lo T gxm‘ﬁu¥aﬁ a wdh s calis &;Z.jfvdt(‘d .
The diceastan et be plraaed elonmcy of ccrmpadlifecd
complen. Mindeorwrathe apace CAGT and Lo cvvoccatsd
(grogecteoe) mwtn %ac@ (T e {M cwatance wtl
<L CWL %J%’\\Q/@,Qg,éébtm_’a}" conse A Qﬁi&c(g Tlewnt owek cated alt
The ewnd,

/R% o foy L owsan a (W’utﬂ% Cmﬂx@w.) quqﬁoc(&@éc )
A f’u“% \ X ow (O /\/ﬂ# My @ owador P@g:}gz&fdﬂd’k e
forma of & pain 7= (2, w), whow 7T, wePT?
wt;d’b Z mcuum)é el W/ (ce. e W«x :[)> 1 a,(/«‘(hﬂ' ,:ugé/»&l
e [Mon o @M 5w a%&/umca o o wbeins .
6&/\&&,[ o{M %Mg e the glow W < PTM(J& »
{?CWW& wﬂu&u%j\, o (jie:wj. Ze P T} vt Livny
/’b&d)*%m—/tmj/ C&Q ODOM oﬁf&g A1 a/ﬁ} }{C_ C M#, TL,

/ - . C | GM
ZePT o called the M%t&fz@&m@d@ and \/\/gio
L THet i venows devadsof teidinco aclatioy Lol
ellveon- Acyg ew C M#) ol T wbeadl ol ekl wc it

& \ 3

' Af&owg ne L cApan s ’\} - W\CLCLMVLC_Q/’)) cowd [3- bvecicloaccl ",
Twoe goaly T=(z,w) amd & = (Y, V) arw g-oneideat
\/:, \W/ CJJL&%/LCW_F‘_“_ .A >-> % s .
weledy vedut f the yein Y07 of
\/ amd W/ COL(CL%/IMP v\%»ﬂA o uvwﬁéjoi '
Loy @53 “tg\/(u,} oAl /_d/(ﬂ (,mﬂiﬂf'gﬁ V"‘C‘Ou‘“ /- §

‘% YUZ: \/nWQAa o ¢

o .
I o e

. ) A - N
@a QoMY fi))’g/\ fu&D ).

_ .\A\f[ vl \\ i
ncitepo |

-ty w]
S



L
Cf;w@ wctdewce belveew Mand A G o condition. Yoal e
va@«;@@ﬁv\&«;\g& Aoy W eowd § Lo @ M ave (FM e
D \) cowomon ., (Soc chus thoe Micugiion éﬂ TREF
L m TN 38 pp. 30— 36
] N ot Tt 1l ﬂ@mcz @ a(//ﬂou{ AN et
| ealbly ek walfl o flmed 2 cho

W /t\f v
RN . ) ._. U -
SR <Mj>iﬂ61d€é&, )5 Lacl. ey o CP* Lol
réﬁk’/u EPZ, TJQM Oat g Lrecauo &ufp c}é/d& «Qﬁaté 65
poncls § w-omelded o G- cclelendd Wil oo CPT auy
(s a(jaﬁ%i\j. Sl fd’zg& w2l oo aruiise @f}l&ealé W—C;L‘J\(i//u\ggg /:LQ
covelion of 2biong wcidiuc dova 2ot privds & ouodtl nanifud
bttt ay wse gl 00 bre weleq Amtg%
Q*Mub/z )/\«M) MQJO‘% anch Ajt% vwc,g)b,w% w:(iﬁ chgl
O fod X atighlounia T Y (o De ane conciomed wilf.
C%WQ&CMQ (b‘@/&ah@%j 06/‘ /1,62/3_.4 Md/g Mh/) WQ 6’ch Ullf
geN? MOM 06' M&é W} MM\ K/aww( ( e ‘QWM\/{
To- &615“}5’_1_@ . Wo Vo A %{’Q) alrcgt w e ¥ 4 A
POt @ N e ablogmal fo rhe diedtion of X o

(<L Tonans Rodlo, Spinens 8 Spacstin Il 2 76 ). o
’\%—O@MEEW&@M %&CKQ C»'ﬂAc‘f/CE-Q “6;/\/]7 o cnd OK ¢
e wergih g ot o . Anc Cogy wayb N0
e Theet W/VQ_ D»x@jg%CQ @(4%@0/& MLWUJW /L(YMG—J (/‘wﬂ L’g/
Q/Q*‘LLLQ;L'Lwn&A g @9 otreCse that Q. ranx 0{" Wl 16y (\dW/C?«uA
-6\'@7 Cc@ /‘Y,a‘*’/@ ?f cvw:/c S VLO: e CU*@%%%:] WOLO@? m‘( o Cﬁ aJ(Z U/"LL*LL) (v(
a L Mtiﬁf( @C“Qﬁj\ OK/KCW‘* S il g-ouc CQ, Tl 'y e
ey @ regrended by the encd §oo L ETA .2

( N (fjb/_ szju(ﬂ du«%:(w ;é~/uud<1 e Lebre N- (ﬁ(b»d oL Cw Chy oy awct
(3 -'ng Qnld oy om{t&b\?fﬁ wal ot Uede tlorgrelion. GMTM') H Lcg,
(UQ o g 4) )10 ¢ e ?S/-/) ~y & ff’[!‘[}{'?LL/M;’k\y’ (Z} K &,*L\(jl (f (i (u"zc;uu C‘t})u
- (/ ( Zl A >§,) e ae o \,?‘ T <§§"M)L:ﬁé*;x,. {;@?_ @,(';f' e g«a/}mao )u
o ((,’C‘;L(/-L(,(\ZJ . F e ‘U(LC Y e ‘/Mfd\/&j VMjg{ = () ‘(Lct’{ cm(@
o dopnce by oco Cocldmiug, e 1 ol g o Zﬂ}f ”/Lu‘ff/%ﬁa}’écmg
C j‘ at U ceewons T (e v Cle thaw Tt wepeect “{ 8 atnsa it




S
Mt{ux ol s p’@wi} e ne A6 (@‘V\(j—;;‘(;\(‘,]‘)\
L W (fgr szr caﬁafo vweedepce éy;aotm\ Mo 7
v ditesd aa thy o HC@,[\J)N”U T doow 3 = Z et
+L oo e w = \/\//WV\/ UMMMW Canal Lz/fv%
f%ww T/@wujd Hoo tond T gy oo beceoues oy mosliical.
o aud 8 W* /(}ch va on Tl O:,()a/uw(}acmdbd QLW%UQ/UL“(Z

_ = Y
{/—7 ¢ ' 7 . i- — 3
3'\\4‘_2_ 1) { ! .
Z’L.\ | | '37 ] .
! WI\ i . /
— | W ! .
= ] W
WTL U}\C(dﬂ\(t VJ'Q&H) (V\C(déu\\t gz““\j‘)‘ (:V\('(\Ch)‘\f

Yﬂmd{er\cé }D Zwee,\ he(ﬂkﬁouv(y\j thgk}rg

\J\/JACJ C&M WOV%L wccdewcg ¢ T@M L, G ccmﬂﬁg;\

W@M 0o ot e powccly T emd I o
@ W e Conmenon. [ L MW@G Lol 3MJ W Ay e
Q‘*:/‘;ZV %F C‘j_ gt WM = M “twcl den ce. \EQUE[.)(WJZ-“X
G enc s 17 Ay ngmw weols
unadﬁ/y\ca (w(c! %Lj c ngbm% ok Gﬁw&k 1t
(o cutieriy C&&i‘ ; M@LJ N
e aduatione w q W @7{ wéaf
wﬁwgﬁ gcﬂ P P cmcup\g au ok CQJL WWL/UZJ/WQO—QJ ,é\o&iw;
T g el G b wed dewc
@%& C?W/Q Co o s, @h\% %ucrigq @qqi all. fbw
Tt of aipaco oing gurmitiy , ¢ <on Lty of
CK/U G A 4@7;} a Jacobr &z@(ﬂ “gim% vt‘(j(}w S (%_;zf\“
m*i} . W% iy Lo @ 6wwé
S ‘f@laj&&dzwgw ,Q(@Mui/ T, ot 54\0 cm
@LQ MW uﬂﬁb O‘Mz con othi éfj -CL{C(L[CL ( (L/(
ﬂ,\;} (Y we K fh AU (Lbjga qz,\[( icxyﬁ b/ d& ‘jlo (/M)t
69 v dw Q»chuvug Lour QW | R
A &bl‘outc&j@t JC«M,Q A T / ﬂj 7'/ ( (F .. 7
%@W} MJDVT/(JA f °f ¢ T
\T)U gy \/L\L/{L r Ol g WEc\’\ (rte ‘1\ i ﬂucr\cxu(( lél\r(/

tiav. ‘/@X/ \./Y\LL(,W Q}J\Q»X deﬁ LVUL@ PC*N’(/C a WWoe ('{J\ /j )

wmﬁ(%“n al cagi o e ST GV N

T



L‘ i

Ton W caqt O‘éw‘y‘tj 'Mﬂfmcp) CQL,Q, Q < '&goéj
W Lofo-t 67’ cow e dy L«)—(/ﬂ\, d? o m;g @OudL \13 .{ar\%e
6€K) S ‘Qf’%d@u@«,@ }:ZUZ:W:WH\/\/ > frow

o PT. dn tﬁ&j?ﬂm v{w&&m&)wﬁm
%a/\wq WWW)MJMWdJ prs v/
Vo cateswa 0{ v ot wbicd b@ﬁ Qa_owk P /‘UAC‘LM \
A Adarer frow- @, Thest ane SEEgm I @% -
Ll tho Aamga ary e al | amd Ured occast <y i e
.0 Duq@/&wﬁ Wdfﬁ&/@~ wd tﬁ»ccﬁkﬁ(/ﬁ\ Y, /U—QGQQQW 4o

[ Torms %Ww\oﬁm) (e cam wuki

W= |

Wa §Z7% + Z%8Wy + SZ5 §We =0 .
To ngj o dien , we baoe
\/\/xx SZK - *’Z(xg\/\/m -
The condilion for weak umeidence b £llon ZHVi0,le
ZX S W, = O

Wi g Z(X: O
Cu'gu\(j\, 1o WU@J@> ara wdeod ecé/cu,&&ﬁb»«)b 7—0'/&\0?‘«5‘“@
W‘”‘_‘{; weddence ol mmundd 0 lo ocond onden, e condbion
G et e o tho fuadnate solotim

§7% SWy=0
/W\M/Gj M . (Foy eed /@%M /La/(‘jd T Agcuatlon Lo tlo Q-‘“‘*{,
Muﬂ/dv W"‘:sz > gwu\: EZM J
@M¢€ tla @L@;%o{ ks biscalon wpace A g«j’( LM#
(/‘ﬁ Lo W Ao 0‘6) Mo | Le, 0-6/) COW?Q@’P reeedd 2% Cr ML) _7;&:4‘
shace <o - bmenaiona /, T hact 3 of @am{{,)/ 0{ A Ut
ok u}uz}v,Q e cdeak okt [ 4 L g e henpf AL e UMFAR
ob QU‘O“ MLD@WL /MCL.M/L‘AK'@@L{Z] @Cﬁ o nd J:)[% ) UJQ c;av:' U:w,gg
© (//\ &j{x ) LJM}EE:H/(?G& ay W Coiow. ‘T’,éﬂf,b@ g 6’0 (iu;L}Zlaz& q'
ol A ,@%DZ;z il of A Tt e - teedewt cottte Lack,

o Y \We=0, e



5
conethon “adlon U\Jf WJ (}fjm%t
P R e

Bu, e fix e el o ool 7
Mf)ma/&@ MO”K A b %M:f //05~/“
S i g
F ] M A W&% ((l,w'\/u@,aﬂ Lm
QWCOMMJ@ Yy o by M i Py
Hrough [7 andt allowug 6o &, jusabers 4o dilwn
t@am% Wof Fo [ ey Moty that M
@ wrhom comabructed - %&1
&gaCUWWMB%& oo T, R
M&MMJLWWtMWGAQa/&JF 'Iiﬁ«ué?@ CUM//

M % w—&ﬁjﬂ &f%@w

Hc)cc}@/d%; U&p &‘@4% u&uvob/%g ﬂ&eu)q
é@&&m&»ﬁiﬁw A T ‘tg\wv,u@bw&m
conical Simgulopity X [ Tho
W No-eally of iy oup La o
/‘LQM@W ‘XS\N%“O _
TM ey can. abos M W@j W?\ Y
/@{jsccco towg M o m%/wc@ s a Q&W
o Lpersucface Y (poeibly S - T for anph)
iﬂk%mﬁj VT and WT™ ane ) mevpoctisely e
Csiseq B cwey W CRCT ' -
vl o W : %W&MKC
L et dy iy R
A bed ceGope 5y %M&’j Q:SF ﬁ%‘m&m Tk g i

Livcni e | Mg N
w cwlatine (o tle cloteaof 9 I¢ ¥, Wiefﬁm ﬁfit@

Abweling clavga,
mew&‘@ (WW‘%MM&&W%WH




6

Coherent States and Fubini-Study Geometry
Timothy R. Field
Mathematical Institute, Oxford, U.K.
email: trfield@inaths.ox.ac.uk

In this article 1 derive the geomelry of the submanifold of colierent states for a bosonic quantum field
theory. The approach taken is to view the coherent state submanifold, which we shall denote by C, as
embedded in an infinite dimeusional comnplex projective space CP® - the quantum-mechanical state space,
or projective Fock space. The metric on the ambient state space is the familiar Fubini-Study metric, and we
use this to calculate the induced metric on C. There are some technicalities associated with the fact that in
physics one is dealing typically with an infinite dimensional Fock space of states, which itsell is built up from
an infinite dimensional single particle Hilbert space H!. Ilowever it is in practice reasonable to assuine that
the underlying single particle Hilbert space is separable, that is to say any vector can be decomposed along
countably and possibly infinitely inany basis states, as for example occurs in the Fourier series analysis of
an oscillator with boundary conditions. In the case of a state not built up in this way one can always argue
via continuity in the relevant function space.

We begin with the basic notation and definitions.
1. Fock Space and Abhstract Index Notation

Let V denote the Hilbert space of real solutions to some classical linear field equation, and define the
single particle Hilbert space as
H=VoC.

Now introduce the notation for the n-fold tensor product of H wilh itself,
"= HE"

where ® denotes the symmetric tensor product for bosons and antisymmetric tensor product for fermions.
Then H* is said to be the n-particle Hilbert space, and we define Fock space as the Hilbert space

F=CoHON' D . OH"® ...

in which C represents the vacuuin state or H°. Now we define X} to be the positive and negative frequency
n-particle Hilbert spaces respectively,
H=H;ydH-

giving rise to the associated positive and negative frequency Fock spaces Fi. We shall use the abstract index
notation for elements of H so that we write

ren.

We take M to have a countably infinite basis, so that the index on € can be thought of as running over the

nalural numbers. For a positive frequency field we shall use an unpriined Greek index so that for example
£ eny.
Now a state vector in Fock space F; can be written

l€) = (€,67,€%7,..)

where £%° € 7{_2‘r and so on.
The evaluation of the squared Hilbert space norm of a vector [€) in F is according to

112 = EE 4+ €%60 +E%PEp + ...



o

(for further details of this index notation and the relation to the complex structure involved in the fre~
quency splitting see Geroch 1971). For any o € ?{1 we define creation and annihilation operators Cq, A
respectively, according to

Coa®|€) = C(o)y = (0,0%€, V25 ef) \f3alxeP) )y

A%5l6) = A@E)0 = (€43, VIEHG,, VIEH 5, )

and these obey the CCR . )
[C(e), Ce")] =0

[A(5), A(s")] = 0
(4%, Cp) = 65 == [A(6),C(0)] = (0 - 7)
The creation and annihilation operators are adjoints of each otlier, so that for any vector |¢) € F we have

(Clo)y, 8) = (¥, A(5)4)-

2. Cohierent States

Now we define the space of coherent states. There are many different characterizations of coherent states
within the context of quantum field theory. To begin with we give the definition in terms of ezponentiation
of the single particle Hilbert space. We begin with a vector

éa € rHl
and we wish to infer from this, uniquely, an element of state space PF, said to be the state coherent to £°

and which we shall denote P|{.). Here P is the quotient map by complex scalar multiples. The exponential
map e is defined by

£ s e€%) = (1,€%, 696V, ., €% €YVl ) = &) € F

in which the terin containing vn! has n indices. Now |£,) is said to be a coherent state vector and P takes
this to the associated complex ray in Fock space. It is crucial to understand that

Poe(AE") = P oc(u?)
for £ # 0 holds if and only if A = pu. For the vacuum parts of both vectors e(A&?) and e{pé®) are unity
and so if these vectors are proportional then we must have {g — A\)€® vanishing, which implies the property
claimed. Note however, that although A€?, u£® define different vectors in H! for A # p, they define the same

single particle states for all non-zero values of A, . This is because the single particle states are elements of
PH' and not H!. In summary we must beware of the following property,

Changing the phase or scale of a single particle state vector changes its associated coherent state.

In terins of fibre bundles, for an (n + 1)-diinensional single particle Hilbert space with corresponding
state space C'P" we consider the universal bundle U

O:U - P!

over tLlie state space, defined so that the fibre above any point or state is precisely the ray in the Hilbert
space it represents. Now the map e defined above is a map from the bundle to Fock space

e U F
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and this is non constant along each fibre [171(s) for all s € PH'. At first sight this may seem a little pedantic
but this idea is essential to the discussion which [ollows.

We now examnine the action of the creation and annihilation operators acting on coherent states. For
T € H} and |¢.) defined as before we Liave

A(F)|e) = (€ - 7)[9e)

or equivalently A

A%e) = 9% [¥e)
so that coherent states are eigenstates of the annthilation operator . The action of the creation operator is
via differentiation with respect to H!. For any ¢* € H}P we have

E(@)be) = (0,0, VEalay?, . a/\/fn = 1)leley? 92, )

where n factors appear in the general teru, or equivalently

~ _ dw}c)
Caly) = oot
For convenience we shall set .
A= €% = ¢
Then we have
(Yelthe) = e

and we must divide by this factor to calculate the expected value of any operator from its matrix element
with a coherent state vector.
Another important fact about colierent states is that they provide a resolution of unily

] pele(el =1 (+)
teEA

for somne index set A, and that the above equation determines p, uniquely (see for examnple Klauder and
Skagerstamn 1985). This uniqueness property is in spite of the fact that the coherent states are not mutually
orthogonal, and are indeed in a sense over complete. In fact, in our Hilbert space notation we have

(Eclbe) = e¥ €

and clearly this can never equal zero. The unique resolution of unity implies that we can expand any state
vector as a superposition of coherent states in a unique way. This imiplies the following.

Lemuna 1. The submanifold of colierent states is non-linear inside state space PF. That is to say,
given any two distinct coherent state vectors |€), |€;), the superposition

Alér) + plé2)

1s a coherent state vector if and only if exactly one of A or yu vanishes.

Proof. This follows imrmediately {rom the uniqueness of decomposition of any state vector into coherent
states.

3. The Fubini-Study Geometry

The projective forin of the Fubini Study metric on C'P" which one most usually encounters in the
context of quantum theory (see for example Hughston 1996) is given by

ds? = 3k—lw
(272,)*
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where Z“ are homogencous coordinates for CP™ with a = 0,1, .., n, and & is the holomorphic sectional
curvature, which in subsequent calculations we shall take to equal one. For our purposes in the application
to coherent states it will be useful also to have Lhis metric expressed in nor-homogeneous coordinates. This
is because if we set Z° to be the coordinate of the vacuum part of a coherent state then, as lollows [rom
above this coordinate is necessarily non-vanishing. ‘I'hus the colierent states form a submantfold of the affine
part ol the projective Fock space, the latter consisting of all elements of the form

{(l’ﬁaméab)”')} =:A ) C=(C%™

aud whose compactification is

{P(Olwu)wab: )} = B= CPOO,

thiat is to say states for which the probability of no quanta being present is zero. Note here that the image
ol any state vector |¢) under the creation operator C(o) always lies within the compactification,

Clo)) € By ¥ [¥) € Fy, o €My

From now ou we deal with colierent states viewed as forniing a submanifold of 4 and we shall make use ol
the following standard result.
Lemma 2. The equivalent non-projective formn of the Fubini Study metric on CP" is given by

ds? = 4 L COCa)dCdln — (C*dCa)(CadC?)
(1+¢*Ca)?

where (* = Z2*/Z° fora = 1,2,...,n.
We shall also require the following standard

Definition 1. A complex manifold M is said to be Kdhler if it comes equipped with an Hermitian
metric hog with ds? = hapdz® @ dzP such that the associated real 2-form

Q = ihopdz™ Adz”
is closed. Then § is said to be a Kahler form for M.
This is equivalent to the existence ou M of a KKahler scalar function K which is real valued, such that
Q=i00K ¢ hap = 0,05 K ().

Thus we have the consequence that a complex subinanifold N of a Kihler manifold M is itself Kihler, since
one sunply restricts the function K down to N to find the induced Kahler metric according to (). In the
case of the Fubini-Study wetric on CP" the Kaller scalar function takes the form

K = 4k~ ogL + k(I P + 13 + ... + 1CM)

where (* are inhomogeneous coordinates on C P, that is (* = Z%/Z° as above.
The following result also will be of interest with regard to the theorem to follow.

Lemima 3. Let Q be a positive (1, 1)-fornt on a complex manifold M. Then Q is a Kahler formn for M
il and only if for all zo € M there exist holomorphic ‘Euclidean’ coordinates 2!, ...2" around xg such that

Q= ihapdz® Adz?

hapr = 8up + O(|2]?)  at =g,

and thus the Kahler metric osculutes to the flat Euclidean metric to second order.
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Proof. The umplication towards  being a Kahler formn is clear. In order to prove the reverse imnplication,
begin with holomorphic coordinates z!, ..., 2" such that dz', .., dz" give an orthonormal basis of T} , , the
dual tangent space to M at zg. Then this implies that

Q = ihapdz® Adz?

where

hapr = bap + O(|2])

= dopr + 8 (aqap2? +ahuap ") +O(|2]%).

1<v<n
That € 1s real inplies
p -
aw,ap, = Ay!fr -

Furthermore the Kahler condition
(9/10,[;/ _ 6/:7(31

Jz7 leo = 0z Iz,

nnplies that
Goyp! = G(ay)p’

Now we define our holomorphic Euclidean coordinates z* to be
NI N 508" 1 50
zr =z +§72‘='a-70p1 z'Zz

which completes the proof of the lemma. qed
4. Geouetry of Coherent States

We are now ready to state our main result. This is a global geometrical property which, from Leinma
3, is a special case of a flatness property which applies locally to any Kahler manifold.

Theorem 1. The metric induced on the coherent state submanifold from the ambient Fubini-Study
ruetric on the quantum mechanical state space is intrinsically flut. Moreover the coordinates £ on the single
particle Hilbert space H' are complex Euclidean coordinates for the coherent state submanifold.

Suppose instead we take the point of view that we begin with the coherent state submanifold and decide
a priori to place on it the complex Euclidean metric, giving us Cg say. Tlen we have the following equivalent
result.

Theoremn 2. The Euclidean coherent state submanifold has an isornetric embedding into the Fubini-
Study state manifold

i
Ce—Frs,
where 1 is the inclusion map, and is in this case an isometry.

We note that the theorems is independent of the details of the single particle Hilbert space H'. We give
three proofs of this result, each of which uses a different technique.

Coordinate Proof. From the way that we defined cohereut state vectors, we may regard £€* € H' as
cotnplex coordinate functions for the coherent state submanilold. It will be lielpful to introduce some further
notation. We define s

o £ &

Y

so that £(*) is the tensor contribution to the coherent state vector [£.) which lies in #?, there being n factors
in the symimetrized tensor product above. Similarly we defline £(,). Then selting A = £*€, we calculate

. 1
E(n)é(n) = —A"

n!
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Now restricted down to the coherent state submanifold C we can calculate the tangent vector {o a cohierent
state induced by an eletnent d€ of T*H. The component in H" of the (dual) tangent vector is given by

det) = %dga&ﬂ@mfa)

and similarly for the complex conjugate. Now to insert into the Fubini-Study line element we shall need to
find the coordinate inner product of a tangent vector witl itsell. Note that the contribution to this of any
pair of vectors lying i distinct H™ vanishes, as follows from our expression {or the Hilbert space normn given
earlier. The essential point here is that when evalualing the muer product of two Fock space vectors in the
abstract dex notation, one contracts over vectors and their conjugates with tlie same nuniber of indices.
Thus we have

— n t " 73 n=2tex g
df("’déw:‘55,,3‘(7?1—)![1\ PETdEa + (n — 1)A" T2 E%dEq )]

for all n > 1. We shall also need the coordinate inner product

(n) f_(uéﬂé_(s) ) n

Cpydett) = g e 28 T gefegBer b
E( ) { (mn) \/l_l_‘ \/7-17 6 E 6 5

1 B
:5(") L ad a \n-—l
(,”) ("__ 1)'(6 é )1
aud suuilarly
(ny 1

(,”) N (n _ 1)!(£ad€—a)1\"—l

EMdE ) = 6
foralln > 1. Now we refer back to our expression for the Fubini-Study line element given in non-hoinogeneous
cootdinates derived above. In this expression a vector £ lies in the Fock space and so is given by the collection
{e™)} for all values of n. Thus to evaluate the line element induced on the coherent state subinanifold ¢ we
must sum over all | <1, n < oo in the above identities. In doing this we obtain

% dEM dE(ny = M (dEdEq + [dE*Eul?)

and

5 Enydét™ = et €, de”

together wilh its coruplex conjugate. Also for the denominator in the Fubini-Study line element we lave
stimply R
L+ B €M = .

m,n

Hence our induced line elernent becomes
. 4 - o , o 1 F
ds* = o [N (dE by + |dEEul?) — M e dEu]’]

which is simply

ds? = 4dE>de,,.
This completes the coordinate proof. 3

Algebraic Proof. This is sonewhat more general than the coordinate proof above in that it is valid for
any quantum field theory including the possible presence of interactious. For we shall assume only the CCR
for the creation and annihilation operators, together with the fact that the coherent states are eigenstates of
the annihilation operator, for this defines the coherent states uniquely (Klauder and Skagerstam 1985). Vor
a complicated Lagrangian including interactions the precise details of A% and Cp of course will change but
the fundarmental algebraic relation (CCR) between them and the deliniug properties of the colierent states
are always those given above.
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We shall adopt the Dirac notation for state vectors according to
Z% e ), Zo o (P
In this notation the Fubini-Study line element becoines

dyldp)  (pldv)(dpl)
(V1) (Vo)

dst s = 4! )

Now we abbreviate so that |¢) € F denotes the state vector coherent to ¥* € H'. Then recall that

A%N) = 1) «— (PP = (¥]Ca

together with

d
Calty = 9, (ya= =

{dy|
dy bo

dya

It follows that

|dy) = Caly)dé®

and correspondingly )
(dg] = dpp(v|A°.

Now using the CCR
(4%, Ca) = 85

we calculate

(dy|dy) = dppdd™(P|AP Ca|ih)
= dpd¢*(P|[AP, C.] + Ca AP |)
= [d¢*dda + (¢ dbp)(add™)[(¥|¥).

Sumnilarly we calculate

(¥ldg) = (¥|Cal¥)dé™ = (¢|dalv)dd™
= (V[¥)(dads”).
Therefore the line element induced on C reduces simply to
dst 5 = 4(d¢ dd,)’

as required. g

Kahlerian Proof. We recall the Kaliler scalar function for CP" where now we take n to be countable
infinity, Rg. For A C F delined in section 3 we have

K =4log(l+ €W + 4692+ . ad inf)

where £U) = £%1-9 35 before. Now for C we have for the coherent state vector associated to v eH!
) )%t
o =
Vit
and therefore

. AJ
(3))2 —
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where as before A = ¥“t,. Swinming over j all the way to infinity (to suin to infinity is in fact necessary
for flatness) we obtain the remarkably simple relation

Klc =4A
and then the induced metric on C is given by
}laﬂ/ = 480(55!(1!}71/_)7) = 4(5051

as required. g

We liave remarked earlier that the coherent state submanifold C is non-linear, in the sense that the
complex projective line joining two distinct coherent states lies entirely in the complement of C except at
its Lwo intersection points which are the coherent states themselves. Tlus is an algebraic result whose proof
relies upon the uniqueness of decomnposition ol any given state into coherent states. It suggests the following
geonietrical property of the coherent state submanifold.

Proposition 1. Given any two distinct coherent states the complex projective line joining them inter-
sects C transversally, that is to say, the line joining the two coherent states does not lie in the tangent space
to C at erther intersection point.

Proof. We make essential use of the main theorem. Since € is hoinogeneous we may assuine that one
of the coherent states is the vacuum state, that is P|0) where |0) is the element of Fock space which is the

expouential of the origin in the vector space H'. Then from the main theorem the intrinsic geodesic distance
s from P|0) to P|&.), &€ # 0 is given by
s = 202,

Now recall (cf. Hughston 1996) that the geodesic distance 6 between the two states in PF with respect to
the ambient Fubini-Study metric on PF is determined by

(€:10){0l¢c)
(010} (e €

where we take  to be the principal value determined from the above equation,

(14 cosf) =

b =~

0<e<n
so that the cross ratio expression above fixes § uniquely. Now clearly

(0]0) = (0[¢c) = (£.J0) = 1

and therefore
8 =cos” (2 —1), 0<O<m

fromn which it follows that

o A ~1/2
Hence we obtain

= (A

ds eh— 1

Thus clearly d/ds is a monotone decreasing function beginning at d0/ds = 1, where A = 0, and decaying
to zero as A tends to infinity. Now tangency at P|€.) would require d0/ds = 1 for some A # 0 and this is
clearly not possible from the forin of the function d/ds. This completes our proof.

I'lie method above also proves another result which one expects intuitively from the non-linear picture

of C.



14

Corollary. The geodesic distance along the projective line in PF joining two distinct coherent states
is always strictly greater than the intrinsic geodesic distance within C.

The theorem also proves the following simple geometrical properties of C.

Lemma. The intrinsic C geodesic distance between two coherent states is given by the Hilbert space
norm of the difference field of the two corresponding vectors in ‘H'. Thus the C distance of a coherent state
from the vacuum state is equal to its Hilbert space norm.

Lemma. The overlap (.|y.) of two normalized coherent state vectors is equal to the cosine of the angle
these states subtend at the vacuum state.

Discussion

These results illustrate the geometrical character of two emergent linear structures in quantum theory.
One is able to simply add solutions of a classical linear field equation to obtain a new classical field, and
as we have seen the geometry of the associated coherent states is Euclidean, with the vector solutions in
fact serving as Euclidean coordinates. On the other hand one can take any two distinct coherent states and
superpose them in the quantum mechanical sense of joining them with the unique complex projective line in
the ambient Fubini-Study geometry of the underlying state space. Then we have seen that this superposition
is necessarily non-coherent, or in familiar language non-classical. Such features as these are notably fully
present even in a linear theory of gravity, and this is in accordance with common experience, since one does
not observe classical superpositions of weak gravitational fields. Thus a preferred basis of states is given,
namely the coherent states, together with a unique probability distribution for the associated resolution of
unity, and this in turn gives rise to unique coherence transition probabilities. The geometry clearly illustrates
how a quantum superposition of distinct classical geometries is outside the classical domain.

PF=cp”
bls P\ ID= 2D */“J‘hzo

-

/

N [ = €+ (-
C2E™ o, vied

p N;\ \

An interesting application of this geometry to a problem in stochastic state vector reduction is currently
being pursued in collaboration with L. P. Hughston, to whom I express thanks for valuable discussions in
respect of the work presented here.
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Where are the Twistors in the Null-Surface Formulation of GR?

Simonetta Frittelli*, Carlos N. Kozameh®, Ezra T. Newtnan®
¢ Departrnent of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA.
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(July 30, 1996)

We give a brief review of the null-surface approach to general relativity and then speculate on a
possible connection between this approach and twistor theory.

We first briefly review a formulation of GR (the Null-Surface Formulation of GR), whose basic variables are families
of surfaces on a four-manifold, M, and a scalar function. The metric appears as a derived concept obtained from the
assumnption that the surfaces are characteristic surfaces of some conformal metric. The scalar function plays the role
of a conformal factor converting the conformal metric into a vacuurn metric. No proofs are given, as they have already
appeared in the literature. We then speculate on the relationship of this reformulation of GR with twistor theory.

The null-surface approach to general relativity rests essentially on the introduction of two real functions, Z and {2,
living on the bundle of null directions over Mj;i.e., on M x §? with z% in M, and ¢ on S%. These two functions capture
the information contained in an Einstein metric: Z(z%, () encodes the conformal structure of the Einstein space-time
and singles out a preferred member of the conformal class of metrics, while Q(z®,() represents the appropriate
conformal factor that turns the preferred member into an Einstein metric. In the following, we show how these two
functions are introduced.

On a manifold M consider an S*-family of functions u = Z(z%, () = constant such that the equation

9 (%) Z,a (2,0 2 (29,() = 0 (1)

can be solved for a metric ¢%¢(z®) for all values of ¢. The surfaces Z(z% () = const. are then null surfaces of the
metric g°®. For every fixed value of (, the equation Z(z®, () = u represents a null foliation of the spacetime (M, g*°).
It is an interesting kinematical problem (also studied by L. Mason [1]) to derive the conditions on the function Z that
imply the existence of a g®® that satisfies Eq. (1). We approach this problem by resorting-to a special set (families)
of null coordinate systems (u, R,w,®) = 6*(z%), i = 0,1, +, —, on M defined by the transformation

(u,R,w,o) = (2,802,82,82) (2)

Eq. (2) should be interpreted as a coordinate transformation z® — 6 for every fixed value of (; i.e., a family of
coordinate transformations dependent on (. Using the gradient basis §*,,, the metric g%® can be expressed in the new
coordinates as g/ (') = 8%, &, g°%(x).

By repeated differentiation of Eq. (1) with respect to ¢ and (, and using the independence of the metric on the
variable {, we obtain our two main results [2]. First, the metric components g*/ are all expressible in terms of the
two quantities, Z and 0 = /g% and their derivatives; explicitly we have ¢ = Q2% (Z). Second, we find that

and Z are not arbitrary nor independent of each other. They must satisfy two coupled complex differential equations,
referred to as the metricity conditions.

The metricity conditions constitute the requirement on Z in order for a metric g*® to exist and not depend on ¢

and such that Z = const. are characteristic surfaces of the metric, for every value of (. They leave  undetermined
up to a factor dependent only on z°.

On this kinematical scheme we impose the (trace-free) vacuum Einstein equations by 6¢6% (R — $9.R) = 0. In
terms of the variables Z and 2 this equation takes the following formn:

D2 - Q=0 | 3)

where D = 2 A =32Z and

*e-mail: simo@artenis.phyast.pitt.edu
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The two complex metricity conditions and equation (3) constitute a set of coupled differential equations for the
variables Z and Q that are completely equivalent to the vacuum Einstein equations.

Though any vacuum Einstein space-time can be investigated in this manner we make the specialization, here, to
asymptotically flat vacuum space-times. In this case the geometrical meanings to the various quantities become more
focused and clearer and the differential equations become easier to handle. We begin with the fact that now null
infinity, T+, exists. It can be coordinatized with a Bondi coordinate system, -

(2,¢,0) (%)

with u € R, the Bondi retarded time, and (¢,({) € S? labeling the null generators of Z*. With this notation we can
give a precise meaning to the null surfaces described by v = Z(z*,(); they are taken to be the past null cones of the
points (u, ¢, () of Zt. In addition to this meaning of Z, there is a dual meaning, namely, if the space-time point z° is
held constant but the (¢, () is varied over the S?, we obtain a two-surface on I, the so-called light-cone cut of Z+. It
consists of all points of T reached by null-geodesics from z°. Z is then referred to as the light-cone cut function. We
now have a geometric interpretation, not only of Z(z°,(), but also of both, w = 3Z(z%,¢) and R = 38Z(z%,(). w is
the “stereographic angles” that the light-cone cuts make with the Bondi u = const. cuts (i.e., it labels the backward
direction of the null geodesics from Z% to z2, and R is a measure of the curvature of the cut and, thus, a measure of
the “distance” from Z% to z* along the null geodesic. Any null geodesic can be labeled by the five parameters, its
intersection point with 77, i.e., (u,(, (), and its “null angle”, (w,®).

In the special case of asymptotic flatness, we obtain a considerable simplification in the two metricity conditions;
by differential and algebraic manipulation, they can be expressed as a single equation of the form

352 = 8°6(Z,() + 8*6(Z,() + DN, A) (6)

where o is a free function of (u,() (the Bondi shear, as characteristic data) on R x S2. D is an (explicitly known)
non-linear polynomial in A and its derivatives and linear in derivatives of In). A paper on this is in preparation.
Egs. (3) and (6) are the Einstein equations (including the free data) for asymptotically flat-space-times.

We point out several items of potential interest.

1. There is a very straightforward perturbation scheme (off flat space) for these equations [3].

2. There is a canonical choice of interior space-time coordinates z°, (essentially the coefficients of the first four
spherical harmonics in the expansion of Z) so that there is no gauge freedom [4].

3. All conformal information of the space-time is contained in knowledge of the function Z(z?, (, [data]). The four
functions 6*(z*, (, [data]), which are defined geometrically on %, and describe the interior of the space-time are
obtained from derivatives of Z. In turn, they can, in principle, be inverted leading to

z* = z°(6,(, [data)), . (7)
the location of space-time points in terms of information on Zt. If Eq. (7) is written as

z* = 1%(R,u,w,(, [data]), (8)

we have the explicit form of all null geodesics; fixed values of (u,w, ) in the parameter space of null geodesics
picks out the geodesic while R is the geodesic parameter, which is affine length for our special metric g%/ in the
conformal class.

4. The work described here is the (in no way obvious) generalization of the study of self-dual space-times via the
good cut equation, 8*Z = ¢(Z, () which in turn led to the first insights into asymptotic twistor theory [5].

It is this last remark that raises the issue of what relationship does the present work have with twistor theory?

The answer is that we simply do not know, though there are a few suggestions, which we now discuss, of a possible
connection.

a. Flat and asymptotically flat twistor theory is clearly intimately concerned with null geodesics and the associated
self- (or anti-self-) dual blades; we have, in our generalization, via the function Z(x%, ¢, (), a complete description
of all null geodesics with the facility to manipulate them and to add and study any further conformally invariant
structures associated with them, e.g., geodesic deviation vectors between different members. In particular, we
could have and study deviation vectors at null infinity that make self- (or anti-self-) dual blades with the tangent
vectors at null infinity.
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b. The light-cone cuts of T for the flat and asymptotically flat self-dual space-times led directly to a definition of

C.

In

asymptotically flat twistors, namely the curves on complexified T+ defined by u = Z(xz%, ¢, () holding z* and
fixed were the twistor curves. We do not know how this can be related or extended to the general asymptotically
flat space-times.

the case of asymptotically flat self-dual space-times, though there was a complete description of the light-cone
cuts of interior space-time points (and thus the description of the associated twistor lines) on Z7, for a variety
of reasous (e.g., the googly problem) it was of great interest to study the behaviour of the light-cone cuts (and
twistor lines) in the limit as the interior points approached I7. This limit is singular and its study was very
difficult and inconclusive. Part of the difficulty was that we did not know how to introduce (interior) Bondi
coordinates in place of the z% so that the limit could be easily achieved. We have, in both the self-dual and the
full vacuum case, recently seen how the Bondi coordinates could be introduced and, thus, we have the real hope
of being able to study the structure of the light-cone cuts in any of the cases as the interior points z* approach
Z*. This transformation to Bondi coordinates is given in the following fashion. If the Z(z®,(,() is a known
function of the local coordinates z¢, then the Bondi coordinates, y* = (u,,7,,(,) are given implicitly in terms
of the z® by the equations

Ug = Z((Ea,<3,<_ﬂ)
0=02Z(z%¢,,(,), andec.c 9)
TB :662(IG7CB7C_B)'

Using these relationships and the known asymptotic form [6,7] of the metric we expect that we will be able
to write the Z asymptotically (but explicitly) in terms of inverse powers of the r_ for space-timme points near
I*. This, then, would hopefully allow us to see how the limit behaves. Again, though we do not know what
relationship this might have with twistor theory, we feel that there is considerable hope from this approach.

d. There is a version of our Eq. (6) that has a chiral appearance, so that it formally resembles the self-dual case. It

should be looked at carefully, although we suspect that its resemblance to the self-dual case is purely notational
and that it may have no deeper significance.
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(6] E. T. Newman and R. Penrose, J. Math. Phys. 5, 863 (1966).

[7) E. T. Newman and T. W. J. Unti, J. Math. Phys. 3, 891 (1962).
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Heavenly hierarchies and curved twistor spaces

Maciej Dunajski Lionel J. Mason

The anti-self-dual vacuum equations (ASDVE) share many properties
with lower-dimensional integrable systems. It is therefore reasonable to hope
that some constructions well known from the theory of such integrable mod-
els are also present in the ASDVE. Boyer and Plebanski [1] obtained an in-
finite number of conservation laws for the ASDVE equations and established
some connections with the nonlinear graviton construction. Some of their
results were later rediscovered and extended in various papers of Strachan
and Takasaki. With the appropriate symplectic structure, the sequence of
conserved quantities should lead to a hierarchy of evolution equations that
are ‘hidden symmetries’ for the ASDVE equations.

In what follows, the hierarchical structure of the ASDVE in the heav-
enly form due to Plebanski is constructed by looking at ways of generating
sequences of solutions to the linearized heavenly equations. This approach
is motivated by that in [5] for the treatment of ASDYM hierarchies.

We use the formulation of the ASDVE condition in [4]. All the spinor
indices are assumed to be concrete and indices are raised and lowered with
€AB = €[aB], €0 =1 according to the usual Penrose and Rindler conventions.
We work in the holomorphic category. Let M be a complex four-manifold
equipped with a holomorphic volume form r. Choose a normalised null
tetrad V 4 4» which consists of four independent and volume preserving vector
fields. We will also require that the null tetrad contracted with the volume
form yields one. The ASDVE on the metric for which V 44+ are a null tetrad
arise as a consequence of the integrability of the distribution spanned by the
Lax operators Ly = TI’AIVAAI

(La,Lp] =0 (1)
where 74" = (=1, ) is a constant spinor; all local solutions of the ASDVE
arise in this way. Part of the residual gauge freedom in (1) is fixed by
selecting one of Plebanski’s coordinate systems, (w, z, @, 7) =: (w4, w4) for
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the first equation and setting

v - thbai_Qwiau'J aw
AL T Q,00; ~ Q305 9

N

— 9’0 BC_0 ) )
dwAduwB ouC  fwh
and coordinate system (w, z,z,y) =: (w®,z4) for the second where
Vg = ( —0y Oy + Oyy0; — O4y0, )
Oy 0, — Ogy0; + O:0,

’ a a 220 9
= ( €BABrg GuA T €BCzAGzg Jrc )
These choices lead to heavenly equations.
Qg ~ Quallz =1 First (2)

Ow + Oy + 60,0, — 052 =0  Second (3)

Both (2) and (3) were originaly derived from the formulation dual to (1).
The one forms e?4" dual to the tetrad V 44 are used to construct the two
form B(A) = nanpeaped A eBB = eABy(.,-,La,Lp) = ryng LB
which can be used as a set of basic variables in GR. Equation (1) becomes

dg()\) = 0, B AT =0, (4)

where in the first equation X is regarded as a parameter and not differ-
entiated. The closure condition is used to introduce w?, canonical co-
ordinates on the the spin bundle, holomorphic around A = 0 such that
d2(A) = dw? A dwy. The various forms of the heavenly equations can be
obtained by adapting coordinates etc. to these forms.

Equations (2), (3) admit Lagrangian formulations

Lo = Qv - 5(039)?),

where 0 = eA'®V 41 = d2®8,+dw@0,, 8 = P @V gy = d7®8;+db©;
and forms are multiplied by exterior multiplication and

Lo = %e(azef - %(ae) A (3:0) A e A el

where 8, = ePVVpy = dz2® 9, — dw ® dy. Note that e0" A e?‘{ can be
replaced by dz A dy in the second Lagrangian as it is multiplied by dw A dz.
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A symplectic form on the space of solutions can be derived from the
boundary term in the variational principle and is given by

2 1 '3 ’ " /

Q6,8 6,0Q) = 5/ e!' g A eBY A (e 50V 40612 — e 510V 41:6,0),
oM

and similarly for the second equation. They coincide with the symplectic

form on the solution space to the wave equation on the ASD background.

Recursion relations

First we observe that the linearized solutions to (2) and (3) satisfy the wave
equation on the ASD background given by Q and O respectively.

Var VA Q = V4. V360 = 0. (5)

From now on we identify tangent spaces to the moduli spaces of solutions to
(2, 3) with the space of solutions to the curved background wave equation,
W,. The linearised vacuum metrics corresponding to 6§ and 4O are

W aape = a0 ViarVewdQ, k' aups =040pV a0V e 0.

We are now able to generate new linearized solutions from old ones. Given
¢ € W, we use the first of these equations to find h!. If we put the per-
turbation obtained in this way on the LHS of the second equation and add
an appropriate gauge term then we get ¢’ - the new element of W, that
provides the d© which gives rise to h,’l{, = hib + V(aVsy- This reduces to

VarVar¢=VayVged' (6)
Define a recursion operator R: W, — W, by
Vard = VayR¢ (7)

so formally R = (V 40/) ' oV 41-. From this definition and from (1) it follows
that if ¢ belongs to W, then so does R¢ . Because [R, V)] =0 on W,,
we have R%0Q) = 40. ’

Define, for i € Z, a hierarchy of linear fields, ¢; = Ri¢y. Put & =
> b A* and observe that the recursion equations are equivalent to L 4& =
0. Thus ¢ is a function on P7. Conversely every solution of L4® = 0
defined on a neighbourhood of |A| = 1 can be expanded in a Laurent series
in A with coefficients being a series of elements of W, related by the recursion
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operator. The function @ can be thought of as a Cech representative of the
element of H(PT,0(-2)) that corresponds to the solution of the wave
equation ¢ {here PT is the twistor space of M).

It is clear that a series corresponding to R¢ is the function A~!'®. Note
that R is not completely well defined when acting on W, because of the
ambiguity in the inversion of V 4. This means that if one treats ®(A) as a
twistor function on PT, pure gauge elements of the first sheaf cohomology
group HY(PT,O(-2)) of the twistor space corresponding to M are mapped
to nontrivial terms. Note, however, that the action of R is well defined
on twistor functions. By iterating R we generate an infinite sequence of
elements of H!(PT,O(-2)) belonging to different classes.

By a formal application of Stokes’ theorem

QR¢, ¢) = Q(¢, RY'). (8)

We can construct an infinite sequence of symplectic forms QF(¢, ¢') =
Q(R*¢, ¢') which play a role in the bihamiltonian formulation.

Twistor surfaces

We can use R to build a family of foliations by twistor surfaces starting from
a given one. Put wf! = w® = (w, z); the surfaces of constant w§' are twistor
surfaces. We have that VAgfw(I,; = 0 so that in particular VM/VAO,wg =0

and if we define w? = Riwg! then we can choose w = 0 for negative i. We
define

o0
wh = wf + ) WA 9)
i=1

We can similarly define &4 by &' = % and choose ! = 0 for i > 0. Note
that w? and ©“ are solutions of L 4 holomorphic around A = 0 and A = co
respectively and they can be chosen so that they extend to a neighbourhood
of the unit disc and a neighbourhood of the complement of the unit disc.
We have that P7 can be covered by two sets, U and U with Al <1+e€
on U and |A| > 1 — ¢ on U with (w?, ) coordinates on U and {(@*,A~!) on
U. PT is then determined by the transition function @® = f8(w?, 7 4) on
Uunu.

Newman et. al. [6] make equation (2) A-dependent and show that w4 may
be found by integrating the hamiltonian system which has € as its hamilto-
nian. In their treatment XA plays the role of time. We give an analogous
interpretation of the 2ud equation.
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Choose a spinor say ka4 = (0,1), in the base space and parametrize a
curve by the coordinates

aar _ Ot Al A AV A
= , T =wh = (w,2), 27 =¢" = (—y, 1)

xT =
87(A/ T At =K 7t

where 241" gives the initial point on the curve, while z4% is a tangent vector
to the curve. To procede further, ie to find higher terms in {9) we do one of
the following (all give the same answer).

a) Insert the 2nd heavenly tetrad into the recursion relations and solve

for wgl
; ) 00 00
wh = g4l + A0 + /\QEBAW + /\36BA GaBT + ... (10)

Note that (7) is used to find the fourth term in the series, since the
third one is the definition of ©.

b) Use the globality and the degree two homogeneity of (A}

o 8kde/\de
R Y
7 AY ka’{(AlldWA{z...d'ﬂ'Alk NA::"A:
k
0 for k > 2
= ZE‘:ABd&},‘A /\d&}f_i = { ~_‘230101 f()r k _ 2 ' (11)

i=0
¢) Make the 2nd equation 74/, i.e. A-dependent. Define X 44" = Ow™ B 1.
Continue the curve to another order in A so that to order A2
BA 90
('hB‘)' -

We then put the space-time metric into a standard, 2nd heaveuly form
with respect to the coordinates X A4’

XAl' — IA\’ + /\IAO, XAO' — zAU" + A

9%/
XAV X BY

which forces us to introduce ©', differing from © by terms of order A

ds? = e 4 gd XAV dXPY 4 dXx AV dx BY
O (XA ma) = Oz + Mr(zY).

We find © and can then iterate the process to obtain the subsequent
orders in X 44", The parameter A plays the role of time and 8 plays the
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XM= (w, 2) X "k ety

XN’= const  geodesics on space-titne

CP'

role of a time dependent hamiltonian. In homogeneous coordinates,
O is homogeneous of degree —4 in w4. The construction may be
summarized by the following

. ' / . / 8(—)' : or 88’
XAl — XA() , XAO — EBA 5B o = T, XA — SXAT
(12)
Dot means differentiation with respect to A. The last equation {which
gives the recursion relations) is valid up to the addition of f(XA1).

The first two equations can (for those familiar with edth= ) be written
as

Pt =at' VA0, or BXAY = (X4 8},

where IT = 7478V 44 A VA5 is a (homogeneous) Poisson structure
defined on the spin bundle tangent to the a-planes. Note that it
projects down to zero by the twistor fibration.
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Hierarchies

Finally we embed (1) in an infinite system of overdetermined PDEs. The
associated linear system is

Lais = (AVai~ Dai-1)s =0, (13)
where

1. s = s{(zA4" 4k 7 4) is a function on a spin bundle over M x X, where
/ ’ . —
gAA Ay = pAA A4 are coordinates on the M x X and X = C2(»—1)
is a space of parameters (“times”), and

Ai _ AA' AL Al
= OA'OAZ--'OA".LA".+l~"LA£1$
for 1 = 0, 1 are coordinates on M and for ¢ > 1 are coordinates on X.

’ / 1 ’
2. Vaai = LAX...l,/é\"“lOA"...OA"VAA«(A{Z.“A;‘)7
Vari = Vai, Vagi = Daiy.

_ A A
3. Laay..ay) =7 Vapa,. ay Lai=7"Vaai

Compatibility conditions for (13) yield

(Vai, Vil =0, (14)
[Dai-1,Dpj-1) =0, (15)
(Vai, Dgj-1] = [VBj, Dai-1] = 0. (16)

In what follows we shall give the appropriate generalisation of the second
heavenly formulation; the first hierarchy is a consequence of a different gauge
choice. (15) is used to fix D4;—| = Jai—1- Equation (16) implies that we
can put Va4, = 04; + [4i—1, V] for some vector field V. In the basic tetrad
for the second leavenly equation we see that V = €4530/3x40/0zp, i.e.
V is the hamiltonian vector field of @ with respect to the Poisson structure
€4B0/0x4 N O/O0zp = O; A Oy. The higher flows of the second heavenly
hierarchy are, after redefinition of ©, given by reducing (14) to give

8A1-83j*1® — 8BjaAi—l@ + {8,41-_16),83]-4@},,33 = (). (17)

The sub-hierarchy [L 4, L,] = 0 gives the recursion relations (7), which now
generalize to

V4i0Bj-19 = D4;_108jO = D4i-1R0B;-10. (18)
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Let eA42-4n be the set of one forms dual to Vaaa,. a,- In the adopted
gauge

0*e
§rDi—19,C0 "

An analogue of the formulation (4) may be achieved by introducing a two
form homogeneous of degree 2n in 74

eAVi = gl AV _ gpAicl | (ACy, Di

E(n)(z\) = EAB”A’-'-WA'“WB’-'-WB;IBAAI"'A;' A 61‘38’...8’,1 (19)

which satisfies dX(A) = 0, Z(A) A £(X) = 0. The second equation follows
from the choice of gauge while the closure condition is equivalent to (17).

The corresponding twistor space is obtained by factorizing the spin
bundle M x X x CP! by the twistor distibution L 4;. The resulting twistor
space is still three-dimensional however has it a different topology as the
holomorphic curves corresponding to points of M x X have normal bundle
04(n).

Define a conjugate recursion operator RE") = DA,-,lR(,-)DAi_l_l and
rewrite (17) in the bihamiltonian form

0B;j(04i-10) = Dpi—108;0 = V4;0p;10 =

VaiR ' 0py© = RV 4,050 ©.
The comparison with the KdV hierarchy

Shj1 - D&
du du
suggests that D4;—; and V4, play the role of first and second Poisson op-
erators, while the solutions of the wave equation correspond to (functional
derivatives of) different hamiltonians.
Observe that Zinzo{a,q1;+j_m_1@, 6Bm—16}y:1: = aBjaAi_le. This, with

the definition wgj(A) = Y7, _; Opm-10A™1, gives another form of the 2nd
hierarchy

Utjzg

955 WA (N) = (0 (N), A7 wp; (W)} (20)

Finally we would like to make a few remarks about where the above ideas
could be applied.

e WDVV-the scaling reduction of the equation of associativity in the
theory of Frobenius manifolds [2] coincides with Painleve VI for n =
3. It seems likely that a general case (which may be viewed as a
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higher order analogue of the Painleve equations) can be obtained as a
reduction of higher flows in (17). Another possibility is that the Lax
representation of the N-wave system lifted to the spin bundle will give
rise to that of WDVV.

e Closely related to the previous is Krichever's work on Witham hier-
archies in the context of equations of hydrodynamic type. In his ap-
proach [3], there is a closed two-form of an arbitrary homogeneity
associated to each flow. This suggests an analogy with (19).

e In the last TN MD showed how V 44/ can be constructed from a solu-
tion of the Sine-Gordon equation. The same construction applies to
KdV and NIS. It should be possible to obtain a recursion operator for
these soliton equations from (7). In 5] such a reduction was imple-
mented from the ASDYM recursion operator.

Many thanks to George Sparling for discussions about 2nd equation.
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Formal Adjoints and a Canonical Form for Linear Operators

Suppose E and F are smooth vector bundles on an oriented smooth manifold M.
Let vol denote the bundle of volume forms on M. The formal adjoint of a linear
differential operator L : ¥ — F is the differential operator L* : F* ®vol —+ E* ®vol
characterised by the equation

/ (L*o,7) = / (0,L7) for o € (M, F* @ vol) and 7 € ['.(M, E).
M M

If F=E*®uol, then L” : E — F and there is a canonical decomposition
L=L,+L_= 2[L+L']+ 2[L — L*]
into self-adjoint and skew-adjoint parts. If £ and F' are tensor bundles on a Rie-
mannian manifold, then L may be written in terms of the Levi-Civita connection
and a formula for its adjoint determined by integration by parts. Suppose, for
example, that E and F are both trivial and L is second order. Then we may write
L=S5%V,V,+T"V, +R,
where the tensor S°® is symmetric. Adopting the convention that V, acts on
everything to its right, we can re-express L in the form
L =V,5%V, + (T*Vy + V,T%) + R
where T® = L(T® —~ (V,5%)) and R = R — V,T*. This is congenial since clearly
= V5%V, — (T*Vy + VsT?) + R.
In particular,
L, =V,5*Vy+R and L_ =TV, + V,T".
This generalises immediately to give:

Proposition . A self-adjoint k** order linear differential operator taking functions
to functions on an oriented Riemannian manifold has even order and may be ca-
nonically written in the form:

kJ2
Z VaVi- Ve Sy el vy,
S———
i
for suitable symmetric tensors S“b cef9 A skew-adjoint k** order linear differ-
ential operator taking functions ta functions on an oriented Riemannian manifold
has odd order and may be canonically written in the form:
(k—1)/2
Z v vb (V Aab -cdef---g + Aab -ede f-- gvd)v Vf v
‘—-w—’

for suitable symmetric tensors A“” edef-g

Now suppose M is an even-dimensional oriented conformal manifold. Graham,
Jenne, Mason, and Sparling [2] have shown that there is a conformally invariant
operator which, with respect to any Riemannian metric in the conformal class,
takes the form

L = A™? 4 lower order terms.
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Since L takes functions to volume forms, so does its adjoint. The self-adjoint part
L, of L is therefore also conformally invariant. As a conformal analogue of A™/2
we may as well replace L by L. Write this differential operator in the form given
by our Proposition. The scalar part S(g is a conformal invariant since it may
be obtained by applying L to f = 1. We may subtract this part and obtain the
following result conjectured to us by Tom Branson.

Theorem . The operator A™? admits a self-adjoint conformally invariant modi-

fication of the form f v V,(Q%(V,f)) for a suitable (n — 2)"? order differential
operator () : A1 — A"~L,

His motivation for this conjecture comes from the case of the sphere where the
form of the operator may be verified directly. On the sphere, the operator controls
the embedding Li/z <« el (Orlitz class) as a limiting case of the sharp Sobolev

embeddings L2 < L% forr < n/2 (equivalently, comparing an L? norm with
the complementary series norm). See [1] for further discussion.
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Geometric i1ssues in the foundation of science
Oxford 1996

As miany readers know, the above conlerence took place last June and was
deemed a success. lloger Peurose, looking impossibly young for his 65 years,
managed to attend all the talks, mcluding those in the parallel sessions —
without apparent recourse Lo the many-world thesis!

The proceedings of this conference will be published by the Oxford Univer-
sity Press. The intended content is listed below.

Plenary talks

A. Ashtekar: Geomelric tssues in quantum gravily

M. F. Atiyah: Roger Penrose, a personal reminiscence

A. Conues: Gravily coupled with maller and the spectral action principle

S.K. Donaldson: Quantum field theory and four manifold topology

A. Ekert: From quantum code-making to quantum code-breaking

H. Friedrich: The Einstein equations and conforinal struclures

S. Hamerofl: Is consciousness a self-organizing process in fundamental
spuce-tiine geometry? The microtubule connection

S.W. Hawking: Loss of information in black holes

N.J. Hitchin: Geowmnetry of the space of framings

C.R. LeBrun: On {-dimenstonal Einstein manifolds

R. Penrose: Twistor theory: whence und whither?

D.W. Sciama: Decaying neutrinos and the geometry of the universe

G.B. Scegal: Generalisations of manifolds

A. Shimony: Physicdl tinplications of objective transiency

P. Steinhardt: Penrose tilings and quasicrystals revistted

G. Veneziano: Quantum-geomelric origin of all forces in string theory

R.S. Ward: Integrable systems and twislors

Parallel sessions
Quantuin theory and beyond

A. Hodges, L. llughston, L. Kau{lman, L. Smolin
Geomelry and gravily '

B. Carter, G. Gibbons, E. Newtan, G. Sparling
Fundamental guestions in quaniuin mechanics

J. Anandan, M. Berry, R. Jozsa, L. Vaidman
Mathematical aspects of twistor theory

T. Bailey, S. Merkulov, S. Gindikin, A. Trautinan

For [urther information, please contact us at: geom906@math.ox.ac.uk or
Geotnetric Issues Y6, Mathematical [nstifute, 24-29 St. Giles’, Oxford OX1
LB, Umted Kingdom.



TWISTOR NEWSLETTER No. 41

CONTENTS

Incidence between Complex Null Rays

Roger Penrose
Coherent States and Fubini-Study Geometry

Tim Field
Quantum Electrodynamic Birdtracks

Louis H. Kauffman

Where are the Twistors in the Null-Surface Formulation of GR 7

Simonetta Frittelli

Carlos N. Kozameh

and Ezra T. Newman
Heavenly Hierarchies and Curved Twistor Spaces

Maciej Dunajski

and Lionel J. Mason
Formal Adjoints and Canonical Form for Linear Operators

Michael Eastwood

and Rod Gover
Puzzles

~ Conference Proceedings

15

23
26

35
37

38

Short contributions for TN 42 should be sent to
Maciej Dunajski
Twistor Newsletter Editor
Mathematical Institute
24-29 St. Giles’
Oxford OX1 3LB
United Kingdom
E-mail: tnews@maths.ox.ac.uk
to arrive before the 15th December 1996.



