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In this paper we consider collision of two gravitational plane wave which
has the same polarisation. We know that in the region of collision of the
colliding plane wave, there admits two commuting killing vectors along the
wave fronts, which are preserved from the two initial plane waves. Einsteins
Field Equation, when reduced by two commuting and orthogonally transitive
Killing vectors, which is the Yang’s Equation, indicates a ASDYM gauge field
in a corresponding subset U in complexified Minkowski Space M [1]. With
the aid of Ward’s Correspondence, a correspondence between the gauge field,
and hence the metric function, and the vector bundle E over a reduced twistor
space R can be established. In this paper, we would like to look at describing
the metric function of the collision region using the initial metric data of the
incoming wavefronts. The crucial point is to describe the vector bundle E
over R using the metric functions on the initial surface.

1 Background Mathematical Concepts

We begin with the general metric for space-time which admits two orthogon-
ally transitive Killing vectors.

ds* = — gy dzdy + Q2dudv (1)

where g, are 2 by 2 matrix function of u and v, and 2 is a function of u and
v. We write the matrix ¢, as ¢ = g(u, v). We usc the coordinates (u, v, ., y).
We have also that det g = (u+ )% The Killing vectors are in this case =
and 5—1 ([1] and [4])

Using the coordinates above, we arrive at the collision region as shown
as the figure (1). This figure obscures two coordinates, as we will find that



flat spacetime

Figure 1: Colliding Gravitational Plane Wave

the essential part of the reduced Einsteins Equation are concern only on that
two coordinates. Also, we focus on the highlighted region.

The Reduced Einsteins Field Equations are two equation on the space of
orbits of the Killing Vector fields. The essential one is comformally invari-
antly and hence can be reduced to {1]

8y (T97'ug) + 0y (19 0ug) =0 (2)

and the second equation can be solved once this is solved.

Equation (2) is the Yang’s Equation. The equation on Complexified
Minkowski Space M is a ASDYM equation on some open set U € M the
Minkowski space. Here U is defined by the region of collision outside sin-
gularity. One can construct ®, the gauge field from matrix g(u, v) which is
ASD in U given equation (2).

One can also get equation (2) by allowing the gauge field @, to be in-
variant along the two vectors X = 56— and Y = a% of Minkowski space. One
can then reduce the ASDYM equation by quotient with respect to the two
commuting vectors, to obtain equation (2).

From M, we define the correspondence space F = M x S¢, where S, =
CP'. We define F = (u,v,p0) = M x S.. Here we have ;o = (e and
M = {(u,v): (u,v,y,0) € U}. pis an invariant spectral parameter with
respect to the vectors X and Y.

Reduced twistor Space I? is the quotient of PT with respect to the two
vector fields in PT, which we called X" and Y. They are representation of
the Lie Algebra of X and V" iu PT. It turns out that we can form R by the
foliation of 17 by the two vector fields, V4 and V. The coustant of foliation



w satisfies
1Ly
Vow = (28u + o (u - 1) 8,,) w=0 - (3)
Koo
Viw = (20, + 2 (4 = 1) 8, ) w = 4
W - (b ~1)8,)w=0 | (4)
solving yields
u+ v’

We can see that {w} = CP'. Details of this foliation can be found in [2].
Our assumption is that U, and hence M is connected, as shown in figure

(1). w can therefore either represent one point in R or two. Consider the

region of interest {from figure(1). We complexify the coordinates u and v. We

make M = U x V, where U and V are open, and (a, %] C U and (b, %] Cb.
So w represent one point if
w=2u (6)

where u € U, or
w = —2v (7)

where v € V. Since a + b < 1, we have that the two sets B, and B,, where
B, = {w:w=2u,u€ U} and B, = {w:w= —2v,v € V}, are mutually
exclusive. Hence explain the non-Hausdorff structure of R. [2]

2 Mechanism of the Initial Value Problem

We define the incoming wave metric function as gq and ¢y, such that

9(n3) = o0 ®
g(%,v) = g1 (v) (9)

These are the metric functions before collision. (refer to figure (1). And we
label the functions By (u,w) and By (v, w) as

— — 10
2V w - 2ugo Jdu (10)

1 Jw—-1 _ dg
Bulv,w) = 2V w+ 20! l_% (11)

By (u,w) =




Notice that the terms \/—L and w+2v are just < and p respectively when

v =1 and u = ;. We shall call them a(w, u) and b(w,v). These functions

are are doubled valued, and contains a choice of branches.

Choose two base points (ug, 2) and ( ,vo) in U x V. These are points on
one ol each initial surfaces. We write down three matrices Py{w), Pp(w) and
Q(w). The P,(w) matrices are of the form.

Pexpv:%[ / Bodu} Pcmpu_ [ ﬁ Bldv} (12)
uo——b— 5UV0

2
In this case, there are four choices considering the branches of a(w,u) and
b(w, v) in the equations. Out of the four, they form pair of twos which are

the same, due to the integrability condition. We label the two as P, (w) and
P_(w). We put Q(w) as

Pexpy—y, [~/ Bodu] (13)
T
or

Pexpy,—y, [—/ Bldv] (14)
mn

The two integrals are the same, by the integrability condition.

We now put w = ’f———‘;{‘T into the matrices Py (w), P_(w) and Q(w) to form
F (1), F_(;1) and G(p). Note that functions Fy; F_ and G are well-defined
functions of u.

The final three matrices are important. We would later carry out a

Ricmann-Hilbert Splitting to get the solution to Einsteins Field Equation.

3 Vector Bundle £ over R

Ward’s Correspondence, when reduced by the two vectors X and Y, leads
to a correspondence between a vector bundle F over I? and the solution of
g(u,v) on M. [2]. The definition of the vector bundle E is defined as the
solution space of the Lax Pair, which are the pair of equations

1 1
Lys = {20,,_ + —(/1,2 - 10, + (1 - /—)g“lgu} s =10 (15)

Lis = {20 + LG =10, + (1~ g Jv}bao (16)

over cach foliation of constant w. The integrability of the Lax Pair is provided
by the equation (2). Using the transformation 1 — w, the Lax Pair becomes

: 1 1
L()S = {(91, -+ § (1 - ;1—,) g~|gu} s =10 (17)
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Lis = {a,, + % (1-p) g-lg,,} s=0 (18)
with the double value function p = /%22t
Local trivialisations of F over R can be formed by the following way:
Take the solution of the Lax Pair on two points, one on each of the initial
surfaces, namely (uy, %) and (%,vg). These choice can defined consistently a
local trivialisation for a pair of open sets of R, which we called X, and Yy
respectively. They can be represented by w in sets X and Y respectively,

which are open subsets of w-CP' = S,,. We have

X=5,-Tx (19)
Y=5,-Ty (20)
'y is a cut on from w = 2ug to w = —1 and 'y is a cut on from w =1 to

w = 2vug inclusive. We choose the cuts so that I'y and I'y do not cross. Note
that X C S, represents two sets X1 C S, and similarly Y € S, represents
two sets Yy € R.

Transition functions are calculated by parallel propagating the solution
vectors of the Lax Pair from one point to another along the leaf of constant
w. Using equation (17) and (18), one can arrive at transition matrices by
using path-ordered integrals. Integrability condition given by equation (2)
further splits the rank two path-order integration further into a product of
two path-order integral or rank one, one in the u complex plane and one in
the v complex plane. Hence we get expressions of (12), (13) and (14). It can
be seen that there are only three essential transition matrices to describe the
bundle E over I? with respect to the local trivialisations. They are P, (w),
P_{w) and @Q(w) from the above.

The equation w = 'il’{'ff‘z—z induces amap 7 : B — S,. By the Ward’s
Correspondence, we know that the pull back bundle of F, n*(F) is trivial.
Therefore, we have Riemann-Hilbert problem on the transition functions F
and G of the pull-back bundle 7*(E) over S,,.

4 Riemann-Hilbert Problem

Let 7y = o~ X4) and Wy = n~1(Y,). We know that on on Ty W, F'y ()
splits like

Fy (1) = Kw (1) ™ K (1) (21)
where I(yw (ye) is holomorphic in W, and Kp(s1) is holomorphic in T, Also
on T_NW_, ['_{(;1) splits like

F_(1) = Lw (1)~ Ly (1) (22)
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where Ly {u1) is holomorphic in W_ and Ly (p) is holomorphic in 7.
Now the transition function M(u) on (T UW,) N (T- UW_) can be
constructed, which splits as

M(p) = Le()G(w) Kz (1) = Hp' (Ha(p) (23)

Finally, we put
g(u,v) = [Hz" (=) HA+D)] lo=(un) (24)

It can be checked that g(u,v) satisfies equation (2}, and hence is a solution
of the reduced Einsteins Field Equation.

The whole procedure shows that, in the case of colliding plane wave, it
is theoretically possible to derived from the data of the two incoming wave.
The metric of the collision region shown in figure (1) is derived from the
initial data from metric go(u) and g¢;(v), which are taken from the initial
surfaces of collision. '
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