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Initial Value Problem of the Colliding Plane
Wave

Key-Yong, Tee
Mathematical Institute, Oxford

October 20, 1996

In this paper we consider collision of two gravitational plane wave which
has the same polarisation. We know that in the region of collision of the
colliding plane wave, there admits two commuting killing vectors along the
wave fronts, which are preserved from the two initial plane waves. Einsteins
Field Equation, when reduced by two commuting and orthogonally transitive
Killing vectors, which is the Yang’s Equation, indicates a ASDYM gauge field
in a corresponding subset U in complexified Minkowski Space M [1]. With
the aid of Ward’s Correspondence, a correspondence between the gauge field,
and hence the metric function, and the vector bundle E over a reduced twistor
space R can be established. In this paper, we would like to look at describing
the metric function of the collision region using the initial metric data of the
incoming wavefronts. The crucial point is to describe the vector bundle E
over R using the metric functions on the initial surface.

1 Background Mathematical Concepts

We begin with the general metric for space-time which admits two orthogon-
ally transitive Killing vectors.

ds* = — gy dzdy + Q2dudv (1)

where g, are 2 by 2 matrix function of u and v, and 2 is a function of u and
v. We write the matrix ¢, as ¢ = g(u, v). We usc the coordinates (u, v, ., y).
We have also that det g = (u+ )% The Killing vectors are in this case =
and 5—1 ([1] and [4])

Using the coordinates above, we arrive at the collision region as shown
as the figure (1). This figure obscures two coordinates, as we will find that



flat spacetime

Figure 1: Colliding Gravitational Plane Wave

the essential part of the reduced Einsteins Equation are concern only on that
two coordinates. Also, we focus on the highlighted region.

The Reduced Einsteins Field Equations are two equation on the space of
orbits of the Killing Vector fields. The essential one is comformally invari-
antly and hence can be reduced to {1]

8y (T97'ug) + 0y (19 0ug) =0 (2)

and the second equation can be solved once this is solved.

Equation (2) is the Yang’s Equation. The equation on Complexified
Minkowski Space M is a ASDYM equation on some open set U € M the
Minkowski space. Here U is defined by the region of collision outside sin-
gularity. One can construct ®, the gauge field from matrix g(u, v) which is
ASD in U given equation (2).

One can also get equation (2) by allowing the gauge field @, to be in-
variant along the two vectors X = 56— and Y = a% of Minkowski space. One
can then reduce the ASDYM equation by quotient with respect to the two
commuting vectors, to obtain equation (2).

From M, we define the correspondence space F = M x S¢, where S, =
CP'. We define F = (u,v,p0) = M x S.. Here we have ;o = (e and
M = {(u,v): (u,v,y,0) € U}. pis an invariant spectral parameter with
respect to the vectors X and Y.

Reduced twistor Space I? is the quotient of PT with respect to the two
vector fields in PT, which we called X" and Y. They are representation of
the Lie Algebra of X and V" iu PT. It turns out that we can form R by the
foliation of 17 by the two vector fields, V4 and V. The coustant of foliation



w satisfies
1Ly
Vow = (28u + o (u - 1) 8,,) w=0 - (3)
Koo
Viw = (20, + 2 (4 = 1) 8, ) w = 4
W - (b ~1)8,)w=0 | (4)
solving yields
u+ v’

We can see that {w} = CP'. Details of this foliation can be found in [2].
Our assumption is that U, and hence M is connected, as shown in figure

(1). w can therefore either represent one point in R or two. Consider the

region of interest {from figure(1). We complexify the coordinates u and v. We

make M = U x V, where U and V are open, and (a, %] C U and (b, %] Cb.
So w represent one point if
w=2u (6)

where u € U, or
w = —2v (7)

where v € V. Since a + b < 1, we have that the two sets B, and B,, where
B, = {w:w=2u,u€ U} and B, = {w:w= —2v,v € V}, are mutually
exclusive. Hence explain the non-Hausdorff structure of R. [2]

2 Mechanism of the Initial Value Problem

We define the incoming wave metric function as gq and ¢y, such that

9(n3) = o0 ®
g(%,v) = g1 (v) (9)

These are the metric functions before collision. (refer to figure (1). And we
label the functions By (u,w) and By (v, w) as

— — 10
2V w - 2ugo Jdu (10)

1 Jw—-1 _ dg
Bulv,w) = 2V w+ 20! l_% (11)

By (u,w) =




Notice that the terms \/—L and w+2v are just < and p respectively when

v =1 and u = ;. We shall call them a(w, u) and b(w,v). These functions

are are doubled valued, and contains a choice of branches.

Choose two base points (ug, 2) and ( ,vo) in U x V. These are points on
one ol each initial surfaces. We write down three matrices Py{w), Pp(w) and
Q(w). The P,(w) matrices are of the form.

Pexpv:%[ / Bodu} Pcmpu_ [ ﬁ Bldv} (12)
uo——b— 5UV0

2
In this case, there are four choices considering the branches of a(w,u) and
b(w, v) in the equations. Out of the four, they form pair of twos which are

the same, due to the integrability condition. We label the two as P, (w) and
P_(w). We put Q(w) as

Pexpy—y, [~/ Bodu] (13)
T
or

Pexpy,—y, [—/ Bldv] (14)
mn

The two integrals are the same, by the integrability condition.

We now put w = ’f———‘;{‘T into the matrices Py (w), P_(w) and Q(w) to form
F (1), F_(;1) and G(p). Note that functions Fy; F_ and G are well-defined
functions of u.

The final three matrices are important. We would later carry out a

Ricmann-Hilbert Splitting to get the solution to Einsteins Field Equation.

3 Vector Bundle £ over R

Ward’s Correspondence, when reduced by the two vectors X and Y, leads
to a correspondence between a vector bundle F over I? and the solution of
g(u,v) on M. [2]. The definition of the vector bundle E is defined as the
solution space of the Lax Pair, which are the pair of equations

1 1
Lys = {20,,_ + —(/1,2 - 10, + (1 - /—)g“lgu} s =10 (15)

Lis = {20 + LG =10, + (1~ g Jv}bao (16)

over cach foliation of constant w. The integrability of the Lax Pair is provided
by the equation (2). Using the transformation 1 — w, the Lax Pair becomes

: 1 1
L()S = {(91, -+ § (1 - ;1—,) g~|gu} s =10 (17)
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Lis = {a,, + % (1-p) g-lg,,} s=0 (18)
with the double value function p = /%22t
Local trivialisations of F over R can be formed by the following way:
Take the solution of the Lax Pair on two points, one on each of the initial
surfaces, namely (uy, %) and (%,vg). These choice can defined consistently a
local trivialisation for a pair of open sets of R, which we called X, and Yy
respectively. They can be represented by w in sets X and Y respectively,

which are open subsets of w-CP' = S,,. We have

X=5,-Tx (19)
Y=5,-Ty (20)
'y is a cut on from w = 2ug to w = —1 and 'y is a cut on from w =1 to

w = 2vug inclusive. We choose the cuts so that I'y and I'y do not cross. Note
that X C S, represents two sets X1 C S, and similarly Y € S, represents
two sets Yy € R.

Transition functions are calculated by parallel propagating the solution
vectors of the Lax Pair from one point to another along the leaf of constant
w. Using equation (17) and (18), one can arrive at transition matrices by
using path-ordered integrals. Integrability condition given by equation (2)
further splits the rank two path-order integration further into a product of
two path-order integral or rank one, one in the u complex plane and one in
the v complex plane. Hence we get expressions of (12), (13) and (14). It can
be seen that there are only three essential transition matrices to describe the
bundle E over I? with respect to the local trivialisations. They are P, (w),
P_{w) and @Q(w) from the above.

The equation w = 'il’{'ff‘z—z induces amap 7 : B — S,. By the Ward’s
Correspondence, we know that the pull back bundle of F, n*(F) is trivial.
Therefore, we have Riemann-Hilbert problem on the transition functions F
and G of the pull-back bundle 7*(E) over S,,.

4 Riemann-Hilbert Problem

Let 7y = o~ X4) and Wy = n~1(Y,). We know that on on Ty W, F'y ()
splits like

Fy (1) = Kw (1) ™ K (1) (21)
where I(yw (ye) is holomorphic in W, and Kp(s1) is holomorphic in T, Also
on T_NW_, ['_{(;1) splits like

F_(1) = Lw (1)~ Ly (1) (22)
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where Ly {u1) is holomorphic in W_ and Ly (p) is holomorphic in 7.
Now the transition function M(u) on (T UW,) N (T- UW_) can be
constructed, which splits as

M(p) = Le()G(w) Kz (1) = Hp' (Ha(p) (23)

Finally, we put
g(u,v) = [Hz" (=) HA+D)] lo=(un) (24)

It can be checked that g(u,v) satisfies equation (2}, and hence is a solution
of the reduced Einsteins Field Equation.

The whole procedure shows that, in the case of colliding plane wave, it
is theoretically possible to derived from the data of the two incoming wave.
The metric of the collision region shown in figure (1) is derived from the
initial data from metric go(u) and g¢;(v), which are taken from the initial
surfaces of collision. '
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Divergence-free geodesic congruences in R?

Twistor theorists are familiar with the problem of finding shear-free null geodesic
congruences in Minkowski space and its solution by the Kerr Theorem. Many will
know the reiated problem of finding shear-free geodesic congruences in the (flat)
Euclidean space of three dimensions, R3, which in turn is solved by a 'mini-Kerr'
theorem (see e.qg. my §l1.1.12 and §11.1.13 in Further advances in twistor theory vol
/1) Here | want to consider a similar-sounding prablem, namely that of finding all
divergence-free geadesic congruences in R3. This problem may be thought of arising
from a very degenerate case of the steady Euler equations for an incompressible
fluid. In terms of the fluid velocity vector u and pressure p these are

(UaV)U = -Vp and Vau =0 (1)
The degenerate case | have in mind is p = constant, which is not interesting for a fluid
mechanic! Then (1) collapses to the geodesic equation for a divergence-free u and
u.u is constant along the flow. By rescaling u we can take it to be a unit vector, then
any other solution is obtained by rescaling with a function constant along u. The
problem is therefore o solve

(U V)u=0; Vau =0; uu=1 2)
| claim the solutions are given by the following proposition:
Proposition
The solutions of (2) fall into two classes:
(a) for one class choose a curve x(s) parametrised by path length s and with its
Serret-Frenet frame (1,n,b); for each s take the normal plane orthogonal to t; in the
normal plane take the straight-line congruence parallel to b. This is the desired
congruence.
(b) in terms of standard Cartesian coordinates (x,y,z) the vector field u is given by

u = (cos(f(2)), sin(f(z)), O)
for arbitrary f(z).
I have two rather 'bare-handed' ways of proving this. However the result, on the one
hand, looks like something which should be in Darboux and, on the other hand, looks

as if there should be a mini-twistor-space proof.

Paul Tod
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‘Special’ Einstein-Weyl spaces

In this nole, | will describe a class of 'special’ three-dimensional Einstein-Weyl
spaces which turned up in joint work with Chave and Valent [1] and Gauduchon [2].
They can be thought of as coming from hyper-Kahler metrics with a tri-holomorphic
homothetic vector field (recall this is a vector field such that the Lie derivative of the
metric along it is a constant but non-zero multiple of the metric). Determination of
them reduces to solving a single, second-order, non-linear PDE, equation (11)
below, which must, for the usual reasons, be completely integrable.

We start by considering a system of equations: suppose ,, &,, &, and a are 1-forms
on R¥ and K is a function on R3 and consider the system;

de,=ane +Keya e,
de,=ane,+ K/es,\ e, 1
deg=aney+Ke A€,

| claim that, given a solution of this system, the metric h defined by
h=(e)?+(e,)?+(e,)? 2

together with the 1-form a, defines an Einstein-Wey! struclure on R (recall this is a
pair consisling of a conformal metric, here h, and a torsion-free connection which
preserves the conformal metic; here a defines the difference between this
connection, call it the Weyt connection, and the Levi-Civita connection of h; finally
the Ricci lensor of the Weyl conneclion is proportional to h).

Furthermore, for this EW space, the scalar curvature of the Weyl connection is
S = 3K¥2 3

This is not too difficult to see. Also it draws attention to a conformal rescaling
invariance in the system (1).

Now it is natural to ask whether every (three-dimensional) EW space can be written
like this. Certainly we must have the scalar curvature positive by (3), but there are
more conditions which follow as integrability conditions for (1). Differentiating again

in (1), we find a necessary condition which is the vanishing of the quantity Q defined
by

Q=dK+aK +xda 4
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where the ¥ is dual w.r.t. the volume defined by h. | have written the condition in this
way because it might appear that more conditions can arise by differentiating Q. This
isn't the case because of the Bianchi identity for the Weyl conneclion which here, and
with (3), is just

dQ-anAnQ-K¥Q=0 5
Thus the system (1) defines EW spaces with an extra condition on the curvature.
embodied in (4). This is like a harmonic condition on K which is S* (up to factors)
but rather than complicate nomenclature (?harmonic curvature ?harmonic square-
root-of-curvature) | will just call these 'special’ Einstein-Weyl spaces. They turned up
in work | did with Thierry Chave and Galliano Valent [1] and with Paul Gauduchon
[2] and more about them can be found in those references (in particular, the only
compact example is the Berger sphere as an EW space {2]). They come from 4-

dimensional hyper-Kahler metrics with a homothetic vector field which preserves all
the complex structures. In terms of the objects above, the 4-metric is

elikn + K7l + )2 6
where {is the group parameter.
By the usual folk-lore, the system (1) must be ‘integrable’ and the field equations for
- the metric (6) should reduce to an integrable equation (much as the hyper-Kahler
metric with non-lrihoclomorphic Killing vector reduces to the SU(ee )-Toda field
equation). | have a way of reducing it to a single equation which | shall now explain, |
haven't seen the resulting equation before and | would be glad to hear from anyone
who recognises it.
To start the reduction of (1), define

e=e,+ieg
then the second and third of (1) may be writlen

de=(a+iKe)ne 7
This implies e = WdZ for complex functions W and Z and then

a +iKe, = dlogW + fdZ : 8

for some complex f. Take real and imaginary parts:

W=ret; f=p+iq; Z=x+iy
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and then (8) implies

a = dlogr + pdx - qdy ; Ke, = dl + gdx + pdy 9
The melric h has become

h = K2(dt + qdx + pdy)? + r2(dx? + dy?) 10

and the remaining equation is the first of the system (1). This is simplified by
introducing the variables V (real) and S (complex) by

V= (1K) S =Vp+iqg)

when it becomes the pair of equalions
Sp+iS-2V,=0;1+S5-V(S;+5) =0 "

This is the final resull: since we can use the second of (11) to eliminate V from the
first, this is effectively a single equation for the complex function S. It is second
ordet in x and y and first order in {, and naively the dala is S at =0, so that special
EW spaces depend on 2 free functions of 2 variables (a general EW depends on 4
such functions). The l-independent solution urns oul (o be the Berger sphere.

So ... whatis equation (11)?
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Integrable flows on moduli of rational curves with normal

bundle O4(n)

Maciej Dunajski Lionel J. Mason

Let M be a four-dimensional oriented complex manifold with null coordinates £44" =
(z4,w?) and let © be a complex-valued function on M. In the last TN, [1], we
showed how to embed the Plebanski’s second form of the ASD vacuum equations

#o_ 1 50 #e "
OwAdzs  20xBoxAdrgdrs

into an infinite system of overdetermined PDEs
840810 — Opj0ai—1© + Da; 109 O3y 10. (2)

Here © = ©(z4414n) is a function on a 2n + 2 dimensional manifold N’ = M x X,
with coordinates z441~4% or, alternatively?,

. 7 1Al ' ~1
mAt — (.):EAA\AT“A"OA:l...OA{LAH,,---'fAn(“l)n '
’L 1

. ; ' . i . .
where, for ¢ = 0,1, 4% = 44" are coordinates on M and for i > 1 4 = ¢4 are

coordinates on the space of parameters, X.
System (2) arises as the compatibility conditions for the 2n operators

Laay..ay = ' D paay..any (3)

i.e. the condition that they commute. Here DAAIl(A’Z._.AIn) are 4n vector fields on N,
Let

Vo ay..any = Dacayay.ar)-
In the coordinate system above we have
Do (ay..a,) = Oavay..ayy Davay..an) =0ava,.an + [0avay..a, V]

so that
1
Vai = 0ai + ﬁ[aAi—h V], Laj =—X0u4;j +[04aj-1,V]) + 0aj—1 (4)

where V = e4500/0x40/0zp. Note that L4y = Ly is the Lax pair for equation

(1).

'Generally, up to the given combinatorial factor, the index i is related to a totally symmetric
primed spinor by contraction of all the primed indices: the first ¢ with 04 and the rest with ¢ 4/.
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The corresponding projective twistor space P7T is obtained by factoring the spin
bundle A/ x CP! by the twistor distibution L,4;. The twistor space is still three-
dimensional, however it has a different topology from the one used in the Nonlinear-
Graviton construction; the rational curves corresponding to points of A" have normal
bundle OY(n) = O(n) & O(n).

The aim of this note is to start from the natural structures on P7 and show
that A, the moduli space of rational curves in PT, is equipped with a function
O satistying (2) aud with Vaay..a_,, the antisymmetric part of Djay..a,- This
completes the picture of [1], where (2) was derived from space time arguments.

Proposition 1 Let PT be a 8 dimensional complez manifold with the following
structures

1) a projection p: PT — CP!,
2) a 2(n + 1)-dimensional family of sections with normal bundle O4(n),

3) a nondegenerate 2-form & on the fibres of u, with values in the pullback from
CP! of O(2n)

and let N be the moduli space of sections from (2). Then

a) There exists a function © : N — C such that (with the appropriate coordin-
atisation) equation (2) is satisfied

b) The moduli space N of sections is equipped with the following structures
— factorisation of the tangent bundle
TN = SA ®®"SA/,

— a 2n-dimensional distribution on the ‘spin bundle’ D C T(N x CP!) that
is tangent to the fibres of r over CP! and, as a bundle on N x CP! has
an identification with O(—1) ® SAA'-~-A'n_1 so that the linear system can
be written as in equation (3).

Proof of a). We use a double fibration picture (Figure 1) . First define homogeneous
coordinates on P7. These are coordinates on T, the pullback from CP' of the
tautological line bundle O(—-1). Let w4 be homogeneous coordinates on CP! pulled
back to 7 and let w? be local coordinates on 7~ chosen on a neighbourhood of
p~H{my = 0} that arc homogeneous of degree n and canonical so that & = ¢ 4gdw? A
dw®. We also use A = 7o/ /7y as an affine coordinate on CP'. Let L, be the line
in PT that corresponds to p € N and let Z € PT lie on L,. We denote by F
the correspondence space PT X NIZEI«,, = N x CP!. We can pull back the twistor
coordinates to F and choose 2(n + 1) coordinates on A by

n, A

T =
aﬂAll 37TA/2...07TA;1

ﬂAQZOA’

where the derivative is along the fibres of F over A, This can alternatively be
expressed by expanding the coordinates w pulled back to F in ) as follows

n n—1
wh =Y et AN L (5)
1=0 1=0
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Figure 1: Double fibration.

N, § dim F=2n+3
\ i /
4
y
Ly
/
p
WP
dim N'=20+2

where s{! and terms of order higher than 2n can be expressed as functions of zAA A,
The symplectic 2-form ¥ on the fibres of i, when pulled back to the spin bundle, has
expansion in powers of A that truncates at order 2n+1 by globality and homogeneity
so that

¥ =dwa A dw? = TFAQ...FA;IWBII...WBQEAQ“'AI"BQ"'B;‘

for some spinor indexed 2-form $AL-ARB-Br  We have
ZA)AXZ(A) =0, dE(A) =0. (6)

If we express the forms in terms of the z4% and the sf, the closure condition
is satisfied identically, whereas the algebraic relations and truncation condition will
give rise to integrability conditions on the siA allowing one to express tliem in terms
of a function ©(zA4"~4n) and to field equations on ©. Set

; 2n AL A B ' .
..B 2n—
= ( ; P Sl nOA’l'“OA’I-LA.'H"'LB‘)n(—l) =t

so that
2n
¥ — N2n—iyi
where
n
Yoo= Z eapdz A dzBi for j >n

i=j-n

j n
= ZEABdmAl AdgBi—t 4 z eapdz™ /\dsfij_l forj <n.
i=0 i=j+1
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The algebraic condition in (6) implies

min{2n,k}
> TEASET =0 for 0 < k < 4n. (7)
i=max {0,k~2n}

To deduce the existence of O(zA41~ ) equate the A2+ coefficient in dw? Adw 4
to 0 (vanishing of higher terms gives recursion relations). This yields

n n—1i
BSAL 5B Ai 00
Zza B] T Adx =0——)SA,‘=-6—:EE. (8)

j=0 i=0

To derive the hierarchy of flows consider the identity YOAR? = 0 which is a particular
case of (7).

n n
: - %0
0 = 2 Z Z eapecpdzC A dzP A dz* A dP pv ey
j=11i=1
T

L - Ai Ck Bj D! S OS]
+ ;;;;dz Adz¥" Adx®? Adx BzAi“azCk 5285 195Dl
#

Equate the coefficient of eapdzc A dz€ A dz A dzB7 to 0 (i.e. the term with
k = 1 = 0). This yields (2). One can show that all the other equations in (7)
are satisfied trivialy.

a

Proof of b). The isomorphism TN = SA®@e"S4 follows simply from the structure
of the normal bundle; from Kodaira theory, since the appropriate obstruction groups
vanish, we have

T,N =T(Np,L,) = S{ ® 0" S}

where N, is the normal bundle to the rational curve L, in P7 corresponding to the

point p € A. The bundle 54 on space-time is the Ward transform of O(-n)®TyPT

where the subscript V denotes the subbundle of the tangent bundle consisting of

vectors up the fibres of the projection to CP!, so that S”,“ L(O(—n) ® TvPT, Ly).

The bundle 57 = I'(O, L,) is canonically trivial. Let Vaar-a, = Vaa.a,) be

the indexed vector field that establishes the above isomorphism and let eAA ~An
eAA4) € 0l @ S4 ® ™S4 be the dual (inverse) map.

We now wish to derive the form of the linear system, equation (3). For each fixed
ma = (A1) € CP! we have a copy of a space-time Ny. A vertical (with respect
to the projection 1) subspace of T,(N)) at a point p is spanned by V44 ar). A
normal bundle to the corresponding line L, consists of vectors tangent to p modulo
the twistor distribution. Therefore we have a sequence of sheaves over CP!

0D TN =5 0%n) — 0.

The map TN — O4(n) is given by the contraction of TA with e = CA(A"“A,")WA/...WAIH
since e annihilates all Lp;s in D. Consider the dual sequence

0— O4(-n) — TN — D* — 0
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and tensor it with O(—1) to obtain

0— O4(-n—-1) o T*N(-1) — D*(-1) — 0. (9)
From here we would like to extract the Lax distribution

Laa,..a, = WA"DAA',A;.:.A'H € Saa,..4,®0()®D.

This can be achieved by globalising (9) in 7% . The corresponding long exact
sequence of cohomology groups yields

0 — T(Oa(—n — 1)) — D(T*N(~1)) — D(D*(=1)) -2 HYO(~n — 1))

— HY(T*N(-1)) — ...

which (because T*A is a trivial bundle so that O(—1) ® T*N has no sections or
cohomology) reduces to

0 — D(D*(~1)) = HY(O4(~n — 1)) — 0. (10)
From the standard formulae

. . _fo fork <0
HY(CP*,0(k)) = { C*Y fork > 0.
HCP 0k~ 2) = HY(CP' O(R)

we conclude, since D has rank 2n, that the connecting map 4 is an isomorphism

4 F(D*(—l)) — SAA‘...A:‘_ .

1

Therefore
SeT(DOO(1) @ Saa. 4

n-—-1

) (11)

is a canonically defined object anihilating w® given by (5). A coordinate calculation
shows that § can be put into the form (3).

Remarks

(i) By examining the relevant sheaf cohomology groups and using Kodaira de-
formation theory, we can show that, analogous to the four-dimensional case,
flat PT (ie © = 0) admits complex deformations preserving (1)-(3).

(i1) For n odd TN is equipped with a metric with holonomy SL(2,C). For n even,
TN is endowed with a skew form. They are both given by

G(U, V) = EABEA| B .‘.EAI’IB;‘UAAII"'AI"VBB;'“B;‘. (12)
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(iii) If one considers N' = M x X as being foliated by four dimensional slices A =
const then structures (1)-(3) on P7 induce an anti-self-dual vacuum metrics
on the leaves of the foliation. Consider ©(zA4" t) where t = {t4¢i = 2..n}.
For cach fixed t the function © satisfies the 2nd heavenly equation. The ASD
metric on a corresponding four-dimensional slice Ng=¢, is given by

00

Al B1'
7{%"‘0'&330’(& dz"".

1] ’
d32 = EABdHIAl dIBO +

One would like to determine this metric from the structure of the O (n) twistor
space.

If we fix 2n — 2 parameters in the expansion (5) then the normal vector V =
VA9/0w? is given by

VA — 6wA — /\n———lvAl' + )\nvAO’ + /\n+1856 + .
ax%
where 60 = VA4 90 /8244 . The metric is
Cl
oU,V) = o fe S(UED),V (xP) (13)

The last formula follows also from (12) if one puts

VAL AA] jAY AL

for V tangent to t4* = const. Note that it is sufficient to consider the slice
t = 0. This is because an appropriate (canonical) coordinate transformation
of PT induces the transformation of parameters

wh = G wP ) yields  {t=to} = {E =0}

(iv) From Merkulov’s work [2] it follows that A is equipped with an affine connec-
tion. It would be interesting to relate his approach to ours and in particular
to express the connection on A as a function of ©.

Thanks to Paul Tod.
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Asymptotic Young Tableaux for Discrete Series

Franz Miiller (e-mail: muller@itp.phys.ethz.ch)

We give an example, how to use Young tableaux for the decomposition of products of
positive discrete series representations.
Consider SU(2, 1) for example. We label its positive discrete series representations v, » by two
integers a > 2, b > 0 which give the weight of their lowest weight vector. The representations
Ya,0 are on a wall of the dominant Weyl chamber and do not, strictly speaking, fall under
the discrete series. They are ladder representations which we can include without problems.
We have to exclude the other type 7, of positive ladder representations though, because
they do not satisfy the following asymptotic properties (for natural reasons):

Multiplicities of 7,,: The multiplicities (dimensions) of the weight spaces V.4 of the
representation vy, , are the same as those of V,,_._q 4 in the representation I',_,_4 4 for n — oco.

Here ', , denotes the representation of the compact form SU(3) of SU(2,1) with highest
weight (a,b). With such a representation we associate a Young tableau whose first row has
a+ b boxes and whose second row has b boxes. Thus, if we want to decompose v, 5 ® Yc 4 53V,
we choose a large n, decompose I'y_q_pp ® ['n_c—ga according to Littlewood-Richardson {1]
and translate back, ignoring that n is finite. The representation with highest highest weight
in this product will be 'y,_o_p_c—gp+q Which has to match ¥,44 44, since the lowest lowest
weight of v, ® 7.4 is of course (a + b, ¢ + d). Thus, on the way back from representations
of the compact group to discrete series, we have to choose the obvious matching parameter
(2n in this exaple). In practice one would determine the kind of representations occurring
in I'y_qopp ® oo g for n — oo starting from a typical large enough n and translate back,
ignoring the finiteness of n.

The above simple observation can be used to prove several conjectural formulas in [2].
Its proof and generalisations will be given elsewhere.
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Coherent Quantum Measurements
Timothy R. Field
D.R.A. Malvern, WR14 3PS, U.K.
email: trfield@dra.hmg.gb

This article continues the discussion of coherent states I give in TN 41 and I shall use the same
notation and conventions as I use there in what follows. I apply the basic underlying geometry to
motivate a result which concerns the role of coherent states in quantum mechanical measurement. In
particular [ argue that there exists a critical amplitude associated with a pair of coherent states, above
which reduction from their closest quantum mechanical mean to the states themselves is favoured over

reduction to their corresponding classical average.

Suppose we take [11) and 1) to be coherent state vectors based on £°, —£* € H' respectively
according to the exponential map, as detailed in TN 41. The complex projective line joining P|yy)
and Ply,) is a topological sphere on which these states are represented as points, and since any pair of
coherent states has non-zero overlap, these points are never antipodal. They still define a unique circle
C of states equidistant from P, 2) whose state vectors are given by {|¢1) + A|y2)} for |A| = 1. We
the define the abstract Hermitian field operator

Fe=F> = g*9C

which is the sum of the abstract annihilation and creation operators. The expectation of this operator
in the general state P[]i;) + A]y2)] is given by

(Fo) = €[l = AP +e (A= N)]@ (1 ~ P2 +e7 (A = V)]

where A = £%£,. Thus on the circle C there are precisely two points at which (F) vanishes, namely at
A = %1, and the choice A = +1 gives the state closest to P|t; ). We shall focus attention on this case
taking |S) to be $(|¢,) + |¢,)) and defining also P|C) to be the coherent vacuum state. From Lemma
1 of TN 41 the state P|S) lies off the coherent state submanifold, and the situation is depicted below.

PF

PlS> CP

Ply >

PIC)

Fig. 1-1. Coherent state submanifold,
embedded inside projective Fock space.
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We analyze the comparitive distance d in the ambient Fubini-Study geometry, of P|S) from the
vacuum and from Pl ;). An intriguing phenomenon arises in this regard. We have, with A = £¢€_,
transition probabilities given by

1

P(PIS) = PI0)] = cos? (3d[PIS), PIO)]) = ——,

P{P|S) &= Pl,2)] = cosz(;—)d[PIS), Plip1,2)]) = e cosh A.

Thus for small values of A > 0 the probability of a transition from P|S) to the vacuum is greater than
that for the coherent states P|iy,2), and correspondingly d[P|S), P|0)] < d[P|S}, Pl#,,2)]. Moreover
for small values of A the vacuum state is the closest coherent state to P|S), as one can easily verify.
Now if we allow A to increase, there exists a critical value Aq for which the above distances are in fact
equal, and for A > A there is a cross-over with d[P|S), P|0)] > d[P|S), P|¢ 2)]. The critical value Aq
is given by the solution of e = cosh? A which, setting Q = eMe, becomes

Q-4 420+ 1= (Q-D(QP-302-Q-1)=0.

The solution Q = 1 clearly corresponds to the trivial case where all three states under consideration
coincide at the vacuum. The cubic term above has a minimum at Q = 1 +2/v/3 and a root Qg € (3,4).
Thus the critical value of the amplitude Ay = logQ, lies in the range 1 < Ay < % In physical terms this
is telling us that ‘collapse of the wavefunction’ to P, ;) is more likely to occur when the expectation of
the total number operator N exceeds unity. With a photon field (a beam of coherent light) for example,
the asymmetric collapse would occur when on average more than a single photon were present in the
field. The result is notably independent of the underlying classical field theory or of any dimensional
considerations.

I am grateful to Lane Hughston, David Robinson, Ray Streater and Gerard Watts for a valuable
discussion following a seminar that Lane Hughston gave at King’s College, London, 27th November
1996.

T.R. Field
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