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A Recursion Operator for ASD Vacuums and Z.R.M Fields on ASD
Backgrounds

Maciej Dunajski Lionel J. Mason

1 Introduction

In this note, we show that the recursion operator given in [1] for the ASD vacuum equations has a
simple form on twistor space analogous to the Yang-Mills case.

Let M be an oriented complex four manifold with ASD vacuum metric g and let p : PT — CP!
be a corresponding projective twistor space fibred over a Riemman sphere. Let Z% = (w?,74/) € PT.
Choose a constant spinor 04 = (0, 1) on the base space and parametrise a section of y by four complex
coordinates
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In [1] (following [4])we showed that the existence of a two form on the fibres of ;1 with values in the
pullback of O(2) guarantees the existence of a complex valued function satisfying the second Plebanski
equation
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With the parametrisation (1) the right flat metric on M is given by

= 0. (2)
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The converse problem of reconstructing a deformed twistor space given a © function on M was
reformulated as a system of time dependent Hamilton’s equations.
Linearised solutions to equation (2) satisfy the wave equation on ASD background given by ©

00,60 = 0. 3)

Let W, be the space of solutions to equation (3). We constructed a (formal) recursion operator
R: W, — W, given by the relation

Varg = Vay R (4)

Here V 44 is a null tetrad of volume preserving vector fields which in the adopted coordinate system
takes form
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The definition is formal because the the operator on the right hand side requires boundary conditions
in order for it to be invertible and without these, there are ambiguities in the definition of R¢.

The aim of this paper is to give a twistor description of a recursion procedure. We shall show that
R is defined without ambiguities on twistor functions and the space-time relation (4) is replaced by
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a simple multiplication operator. We then extend the action of R to spaces of solutions to the left-
handed zero-rest-mass equations on ASD vacuum background. We will get around the usual Buchdahl
constraints by using the ‘potential modulo gauge’ description of negative helicity fields [5, 4]. In our
treatment W, will be identified with the space of linearised Hertz potentials.

2 Twistor description of recursion procedure

Let A = my /7y be an affine coordinate on CP'. Cover PT by two sets, U and U with |A\| < 1 + ¢ on
U and [A| > 1 — € on U with (w?, A) coordinates on U and (@4, A=) on U. PT is then determined
by the transition function @ = &8 (w? w4) on UNTU.

It is well known that infinitesimal deformations are given by elements of H'(P7T,®), where ©
denotes a sheaf of germs of holomorphic vector fields. Let

Y = fAwB np)— € HY(PT,O®)

0
OwA
be defined on the overlap U N U. Infinitesimal deformation is given by

o4 = (1 + Y )(w?). (6)

From the globality of $(\) = dw? A dwy it follows that Y can be taken to be a hamiltonian vector
field with a hamiltonian f € HY(PT,O(2)) with respect to the symplectic structure . The finite
version of (6) is given by integrating
dot cBA of
da  0oA
from ¢ = 0 to 1 with @*(0) = w” to obtain @4 = ©*(1). We are interested in the linearised version of
the last formula 55 '
soh = e—f (7)
O 4
This should be understood as follows: @# is the patching function obtained by exponentiating the
Hamiltonian vector field of f and corresponds to the ASD metric determined by © and §f* =
eBABSf /0wB (or more simply §f) is a linearised deformation corresponding to §O € Wy.
The construction of a hierarchy of curved twistor spaces from a linearised deformation is given by

Proposition 1 Let R be the recursion operator defined by (4). Its twistor counterpart is the multi-
plication operator

= \"14f. (8)
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We see that the twistor description of the recursion operator is simpler than the space-time one. It
is also better defined since R acts on ¢ f without ambiguity (alternatively, the ambiguity in boundary
condition for the definition of R on space-time is absorbed into the choice of explicit representative
for the cohomology class determined by 6 f).

Proof. We work on the primed spin bundle. Restrict §f to the section of u and represent it as a
coboundary

5f(mar,z%) = h(mar,z%) = h(na,z°) (9)

where h and h are holomorphic on U and U respectively (here we abuse notation and denote by U
and U the open sets on the spin bundle that are the preimage of U and U on twistor space). Splitting
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(9) is given by
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Here ¢ 4 is a constant spinor satisfying 04¢” =1 and p4 are homogeneous coordinates of CP! pulled
back to the spin bundle. The contours I' and [ are homologous to the equator of CP! in U N U and
are such that I' — T surrounds the point p4 = w4 . Functions h and h do not descend to PT. They
are global and homogeneous of degree 2 in w4 therefore
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where ¥ 4 4/ gr¢ 1s one of the four potentials for a linearised ASD Weyl spinor. ¥4 4/ p/¢ is defined mod-
ulo terms of the form V 4¢4/yp:c) but a part of this gauge freedom is fixed by choosing the Plebariski’s
coordinate system! in which £ 44 g0 = 0410p00:V 49:6©. The condition VA(AIEAA/B:C:) = 0 fol-
lows from equation (11) which with the Plebanski gauge choice implies 60 € W,. Define éf4 by
Vaadf = padfa. Equation (11) becomes

7{ Lﬁw—ipudpu = 2miV 40 60O. (13)
r (0% op)

The twistor function 6 f is not constrained by the RHS of (13) being a gradient. To see this define
8fap by Vau(6fppp) = 6fappa pp and note that in ASD vacuum 8 f 4 p is symmetric? which implies
VA 484 = 0. Therefore the RHS of (13) is also a solution of a neutrino equation so (in ASD vacuum)
it must be given by a4’ 'V 44:¢ where a?' is a constant spinor and ¢ € W,. Equation (13) gives the
formula for a linearisation of the second heavenly equation

1 5f

60 =-——¢ —L —ppdp?. (14)
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'There is also a freedom in 6@ which we shall now describe. Let M be volume preserving vector field on M. Define
8,V aa = [M,V s44]. This is a pure gauge transformation. Once a Plebariski coordinate system has been selected, the
field equation will not be invariant under all the sdif f(M) transformations. We restrict ourselves to transformations
which preserve the SD two-forms dwa A dw” and dza A dw?. Such transformations are generated by

dh 8 (39 Bam)a

aw,q awA 6w,4 - BwAawB 51‘7

where h = h(w") and g = g(w”). Space-time is now viewed as a cotangent bundle M = T* A2 with w” being coordinates
on a two-dimensional complex manifold A2, The full sdif f(M) symmetry breaks down to sdif f(A?) which acts on M
by a Lie lift. The ‘pure gauge’ elements of W, are given by
2 3
u® = F+z4G° +xAIBG—wi<99wB + IAJ:BIC———awAngawC

99 09  0Oh 96 s O*h 00

Buwa 02 Bws dwA  © wadwd dzA
where F,G*#, g, h are functions of w? only.

The twistorial origins of the Sdif f(N?) symmetry come from the existence of a symplectic form % = dw® A dwa
on the fibers of ,u PT — CP'. Consider a canonical transformation of each fiber of x leaving ¥ invariant. Let
H = H(z* A\) = 5.2, hiA' be the hamiltonian for this transformation pulled back to the projective spin bundle.
Functions h; depend on space time coordinates only. In particular ho and h; are identified with h and g from the previous
construction (12). This can be seen by calculating how © transforms if w? = w? + Az? + A200/0z4 + ... — &*. Now
O is treated as an object on the first jet bundle of a fixed fibre of P7.

In flat space §fap = 026 f/OwAAw?E.

(12)
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Now recall formula (4) defining R. Let R§f be the twistor function corresponding to RI© by (14).
The recursion relations yield

Réf4 D' f 6fa D
g PDdpT = ; ——PDap
jgr(PB op)3 r (pBop)?(pP Lp)

so R6f = A716f.

g

Let 592 be the linearisation of the first Plebanski’s potential. In [1] it was shown that 602 = R%©.
As a consequence 5
1
0 = !
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3 Z.R.M. fields on a heavenly background

Now consider a more general situation. If §f is homogeneous of degree n then contour integrals that
give a splitting on the spin bundle can be chosen to be

i (,n.A'OAl)'n.-i-l
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and similarly for . The equality 1AV gk = 74V 4 4h defines a global, homogeneity n + 1 function

/ 1 ! !
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With the chosen splitting formulae, EAAQA}'-A'"H =oy OA’Z---OA'HHVAO'(S@ which can be thought of
as a potential for the spin (n + 2)/2 field (the field itself is well defined only in flat space)

YA As Anps = Va0 Va0V, 0000

where

1 5f o
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Differentiating under the integral one shows that 14, 4,. satisfies

Anta
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The last formula generalises the one given in [7] for a left-handed Rarita-Schwinger field. The Weyl
spinor C4pgcp is present because one needs to use expressions like Voerd fap. Note that the Buch-
dahl constraints do not appear. This can be seen by operating on (15) with VA»+1 . The usual
algebraic expression will cancel out with the RHS. (Note, however, that the definition of the field is
not independent of the gauge choices as it would be in flat space.)

The notion of the recursion operator generalises to solutions of equations of type (15). We restrict
ourselves to the case of ASD neutrino and Maxwell fields on an ASD background. For these two case
the RHS of equation (15) vanishes and fields are gauge invariant. Define the recursion relations

R*4 := V40 RO

for a neutrino field, and
R*ap := V 4y Vo RO
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for a Maxwell field. It is easy to see that R* maps solutions into solutions.
As an application consider the following example. Modify the tetrad (5) to

d 0 00p 0

Vay = 9zA’ Var = ow?  0z4 Jzp

(16)
where Op is a pair of functions. It turns out that the second heavenly equation can be written as
0,04 =0, Va0 04 =0. (17)

The second condition in (17) guarantees the existence of a scalar function O such that ©4 = V 4¢0.
The linearisations of (17) satisfy the neutrino equation

VA460,4 =0. (18)

Now one can apply R* to generate new solutions of (18). There is a reason for rewriting (2) in
the strange looking form (17). If one drops the condition V490" = 0 then the tetrad (16) is not
vacuum. It does however define (the most general) hyperhermitian metric and its symmetries can
still be generated using R*. A different form of equation (17) was first given by Finley and Plebanski
[3] in the context of ‘weak heavens’. It can be given a twistorial interpretation by means of ‘Twisted
Photon’ construction on ASD vacuum background [2].

Let us finish with the following remark. In all the consideration we assumed the vanishing of the
cosmological constant. This underlies the original nonlinear graviton construction. The ASD Einstein
metrics with A # 0 have a natural twistor construction [10] where the extra information about a scalar
curvature is encoded into a contact structure on P7. On the other hand Przanowski [9] reduced A # 0
case to the single second order PDE for one scalar function u{w,w, z, Z)

UwipUzz — UwilUze — (2uwu'1 + 'U-wuu'l)e—u =0. (19)
We remark that the linearisations of (19) satisfy
(Og +4A)6u =0

and the recursion relations (4) are still valid. It should be possible to derive Przanowski’s result from
the structure of a curved twistor space.
Thanks to George Sparling.
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