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In this note I want to present an integral formula which is valid in a general
relativistic space-time M. In particular, given a hypersurface ¥ embedded in M
which can be foliated by two-dimensional space-like compact surfaces S;, s € R,
then one can relate the rate of change of the integral over S, of the divergence
of outgoing light rays to the geometric (convexity and curvature) properties of
S, and the energy-momentum content of M.

The derivation is based on the well-known Sparling-Witten-Nester identity:
given two spinor fields A4 and p4 on M we can define a two-form L and a
three-form S by the expressions

L= —ifiadr 824, (1)
S = —idfadAa844, (2)

for which we have the identity
dL = —idfiadI a0 —ifigd® A0 =S+ E. (3)

The important fact is that the three-form F which contains the second deriv-
atives, can be expressed entirely in terms of the Einstein tensor which, in turn,
can be replaced by the energy-momentum tensor 7*° of the matter content of
the space-time by virtue of the Einstein equation G = —87G T, (for notation
and conventions cf. [1]). Thus, we obtain the identity

dL =S +4rG VeT,bxy, (4)

where V@ = A 34" This is the starting point for the various proofs of positivity
of mass in General Relativity. These can be obtained from (4) by integrating
over a space-like hypersurface ¥ and choosing the spinor fields so that they
satisfy an appropriate differential equation on ¥ which makes the right hand side
positive definite provided the energy-momentum tensor satisfies the dominant
energy condition while the left hand side reduces to the mass expression.
Instead of imposing a differential condition on the spinor fields one can just
as well try to fix them geometrically and this will be pursued here. Thus, I will
assume that ¥ is diffeomorphic to S x I, S two-dimensional and compact, I
an open interval so that S, is the image of S x {s} under this diffeomorphism,
which is supposed to be space-like. Then there exist two unique null directions
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at each point of S, orthogonal to S,. Let [* and n® be null vectors along those
directions. We choose the spinor fields A4 = 4 and so that the flag pole points
along the same null direction, say along [®. This fixes the spinor field up to a
scaling on S;. This can be almost fixed by noting that the light rays coming
out from S, along the chosen null direction form a null hypersurface N'. We
may assume without loss of generality that the normal to A is a gradient and
we choose the spinor field on S; so that its flag pole agrees with that gradient
on S;. This fixes the spinor field up to the multiplication with a real constant
(on S;) and an arbitrary phase function.

Having fixed things on one surface S; we now have to relate several surfaces.
Let Z* be a vector field on ¥ with Z*V,s = 1 and consider the integral

I(s) = i L (5)

We are interested in the rate of change of that integral with the parameter s

which is
%?{LZ‘?{LzLZ%izdL:%izs-}-fizE (6)

where we have used the formula for the Lie derivative of any differential form
Lzw = dizw + izdw, Stokes’ theorem and the identity (4). This formula shows
that we may assume without loss of generality that Z¢ is orthogonal to the
surfaces S;. A component tangent to the surfaces would correspond to applying
an infinitesimal diffeomorphism to the integrand which does not change the
value of the integral because there are no boundaries. Thus, we can write
7% = ZI*+ Z'n® and we can exploit the fact that Z is hypersurface orthogonal
in the evaluation of the integrals in (6). This is a somewhat lengthy calculation
which is described in detail in [2]. It is best done using the formalism of two-
dimensional Sen connections developed by L. Szabados [3] and makes use of all
the assumptions above. The final result is

d . R
ds j{ﬁf’/’dzfi = j{paﬁd?AJr Z’¢?{ <§ - r%) d*A
+ ?{ Z¢ (o5 -p*) d’A+ 47rGj$¢~ (1°T.bpec2°) 24, (7)

where we have used the standard spin coeflicients with respect to a spin frame
{0*,¢4) which is adapted to the null directions but not specified further. p,s
is the volume element in the two-dimensional orthogonal complement to S;.
The function ¢ is an arbitrary positive (~1, —1) weighted function on Z (in the
sense of the GHP-formalism [4]) which satisfies the equation 3¢ = 7¢ on each
two-surface S; and ¢ = Z¢V.,.¢.

Several points are worth mentioning;:

e The term on the left hand side is the integrated divergence of the null
geodesic congruence emanating from S;.

¢ On the right hand side we find terms which have to do with the geometric
properties of the two-surfaces, namely the scalar curvature R and the
expression p? — ¢d which is the determinant of the extrinsic curvature
associated with the normal vector [* and which describes {part of) the
convexity properties of S;.
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e The 7-terms have no immediately apparent geometric meaning. It is,
however, worthwhile to mention that in the case where ¥ is space-like and
when the dominant energy condition holds the r-terms and the energy-
momentum terms combine with the same sign so that one could view them
as some kind of gravitational contribution to the total energy.

e We have not yet fixed the scaling of the spin frame. Under special circum-
stances this can be specialised to further simplify the formula.

¢ The term involving the scalar curvature R of S, integrates to a constant
by the GauB-Bonnet theorem.

o The term involving the derivative of ¢ is present because it guarantees the
invariance under reparametrisation of the foliation.

¢ Finally, there exists a “primed” version of this integral formula correspond-
ing to choosing the spinor fields along the other outgoing null direction.

I now want to briefly discuss some special applications for the integral for-
mula. The first of these concerns the case when ¥ is itself a null hypersurface.
Then one can choose the conormal, say {,, to be a gradient. The vector [° is
tangent to the generators of 3 and we choose s to be an affine parameter. From
a starting surface Sy we obtain a foliation by the level sets of s. Thus, we can
take ¢ =1 and Z°® = [® and we obtain

%?{p(fA = ?{ (05 —p*) A+ 47rGj£Tabl“l”d2A. (8)

This equation is an integrated version of one of the optical equations which
governs the focusing of light rays.

The next application is to the case when ¥ approaches J in an asymptot-
ically flat space-time. We use the asymptotic solution of the field equations
from [5] and choose the foliation so that it agrees with the cuts of 7 defined by
a Bondi retarded time coordinate u. Then we specify the spin-frame and the
function ¢ appropriately and we obtain the Bondi mass loss formula. Again,
this is discussed in more detail in [2]. This shows again that the focusing of light
rays is closely related to the positivity of mass, a fact which has been exploited
earlier [6].

The final special case is in space-times with spherical symmetry. This as-
sumption entails a tremendous simplification in the integral formula and one
finds that, for a space-like asymptotically flat hypersurface 3, the two formulae
corresponding to the two different null directions are completely equivalent to
the constraint equations in that case. Furthermore, one can recover a formu-
lation of the constraints due to O’Murchadha and Malec [7]. With this form
of the constraints it is easy to prove the spherically symmetric version of the
Penrose inequality.

The integral formula presented above seems to have a rather broad range of
validity and some interesting special applications. In particular, in the spheric-
ally symmetric case one can obtain results on the occurrence of trapped surfaces
and singularities in the domain of dependence of X from the special form of the
constraints. It is hoped that one can derive similar results from the more gen-
eral formula. There are several arbitrary pieces in the formula which need to be
chosen appropriately. But exactly how, remains to be seen. Work is in progress.
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