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A Letter from R. Penrose

On browsing Hilbert’s & Cohn-Vossen’s book “Anschauliche Geometrie”, I came across
the section on Geometric Configurations, and thereby across the “Schlafli Double-
Six” Configurations of lines in 3-space. Shown there is a picture of a 3-dimensional
symmetric model, and it came to my mind that I had indeed seen such a model in the
old collection of mathematical models that our institute still possesses. (Most people
nowadays don’t know what the significance of these models should be.) It also came
to mind that it might be possible to have such a configuration in CP3 = PT but now
contained in PIN instead of some real projective subspace (RP3), so that it would
have a space-time interpretation. While this is true, the actual interpretation in terms
of observers and light signals sounds far-fetched and not very elegant. The question
was whether there is at least a very symmetric special case which has a more elegant
interpretation. After a while I asked Roger about it, and his reply was as follows.

“Thank you for your letter. As you may have guessed from my original “Twistor
Algebra” paper, I did spend some time thinking about the implications of twistor
projective geometry for the ordinary geometry of Minkowski space. I'm sure I thought
a little about the double-six configuration and what it meant in Minkowski terms, but
1 don’t think I had anything at all elegant, or I'd surely have put it in the paper!

The best I can give you, having now spent a little time thinking further about the
matter is the following: Consider lines A, B,..., F,a,..., f in PN intersecting thus

AB cD E F

and label the corresponding points of M the same. Take f to be the point 7%, so
A,...,E areall oné Then A, ..., E may be thought of as null hyperplanes, 1.e. (more
visualizably) as planes in Euclidean 3-space moving with unit speed. Arrange things
so that D and [ are parallel but moving in opposite directions, and suppose that each
of A, B,C is perpendicular to D and I (and thus remains so as each moves). There
is a time — say time zero — when the planes D and £ coincide. Then their common
plane meets A, 3,C in a triangle A, The vertices (at that time) are a,b,c. A little



later (or earlier — but let’s say later) the planes A, B, C come together and have a
common line A. When this happens D and E will have separated, and meet A in e and
d, respectively. A little thought convinces us that A is the perpendicular to the plane
of A through the incentre of A (where A is thought of as persisting with time). The
final point F is the circumcentre of A, at time equal to the circumradius R of A. As
far as I can make out, the double-six theorem tells us that the distance between the
circumcentre and the incentre of A is given by the geometric mean of

R and BR—2r

where 7 is the inradius of A. I suppose that this is a classical theorem, known to the
ancient Greeks! Have I got it right? The points a, b, ¢, d, e all have to lie on the (past)
light cone of F'...."

I could not easily find out whether this theorem on triangles was indeed known to the
Greeks. It was known to Euler, and the generalization to n-gons was found by Jacobi.
It 1s also related to Poncelet’s Porism, but its relation to the double-six theorem is new.
Considering the arguments given in Hilbert & Cohn-Vossen as a proof of the double-six
theorem and continuing as Roger did, we have a proof of the triangle theorem “without
calculation”.

References:
D. Hilbert & S. Cohn-Vossen, Geometry and Imagination. Chelsea, N.Y. 1952.
Henderson, The 27 lines upon the cubic surface. Cambridge Tracts, Vol. 13 (1911).

H. Urbantke

Institute for Theoretical Physics
Boltzmanngasse 5

A-1090 Vienna, Austria

e-mail: urbantke@galileo.thp.univie.ac.at



Four-Twistor Particles

This note is writlen to clacify the algelbric structue
of the constraint equatious on mternal operators and the
interpretation in unttary S$pace of a rtuistor particle.

A;l The Intemal Opeator Aldebra

The internal trmnsformations of a 4-tuistor partide

l
Z'i.'»’Uil.‘ (Zk +Ak(.l§t) have the infinitesimal opemtors

] b ra i 1 1 :
Bi=2, dw-ZZ , a"-IX %) -

~

Uv(‘f-) ’ - 4ranslatious
where 1iks1,234 These satisfy the Lie-algebra commutators

[B},Bl- & Be-6iB;  ,  [dij,dw] =0 o
[, 2l & die-oide 1, 451-0,
- and.__are _subject to . the algebéi( constraintg
Ay di -0 @ d ’ B Y ™o (e) ----- ~3)
dha . k]( T . : [18 K] : : -~

which Hollow from the identities '_m=03\nd T3 7=6
cespectively.

How many independent con ditiowns ace contained in (D°
for 3 2-tuistor _Par‘bic\e, vwe have &u&t a single one_,O‘?
the form (3b), and this can ewn be eliminated by drop-

ping the tace of 1‘;:. from among the g,enemtov.s(\/ie\diw
TIRUR)). In order to answer +he Guestion,we now work uith

a 3+] decom‘aosifion: (a,b=1,2,3)
dier § temdm Bk, BEC Bep o0

Commutators (2) are thus reuritten as the ISUR) ones for
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é’,? and % (QEE(}@.LQOf preceding \ebtevi> ples .
(&, d]- 3138 | [é d]- & | [ T4
(6, d)- 188 (4 4]-7%, [Bd-d o,

[n other combinations, the opevatos commute. The cowtest o{ZQa)is%Q‘{
and (3b) yields the relations

@9‘(?0, } 2 +%%f =0, },m*gc‘izg)ﬂ-pm:o%

Now (75) and Fc) follow from (7a) and from @). To show this, we
compute the commutator of ki witk $x-§"  iethe ISUG)

basis vector . (4.1.7). Consider ficst éé—g"; =iﬁ} Join hece
the vector ? feom the right and use [&)?]:%2 inthe fisst

term. of g‘t—’ - .ﬁbg' = m The result is (7{;). Use of
[’
=0
[.‘L, “.—; é..Lan iii yields (T9 in a similar way .
Thus we have establidhed +that the independent algebrmic
comstrints on the 4#-tuistor O_peratO_fS. are (&) and (7a).

-{5)

E{;}Ih’cerﬁpreﬁbgtién in vai’car:j Space

The algebraic equatiow (7a) can be satisfred by tak-
tng the tracefree part %:-—%«»é%{}. Ue £hewn have
the internal opevators %)é)%i)t)‘)? and C. Thege
represe.nt 27 Hermitian qaantiﬁu With tuo Hevrwutiau
relations 2=O dmong them. Nouw a point particle heg
owl\j {4 pamameters whereas two points have too many
paameters. We_ seek fortuwo point Par‘hdeg (in C*) with Spe'cia,(
propertzes.

Ve denote £ue momentum and €he angulav wiowentung

of the particley by % )(%) and. %;, (%) respectively.

For their center Of mass we pmt



P ded  dmdrg ey o

The angulsc momentun ei and the momentum ér have
the correct T SUQR) commutation aoro]oe_rtie&)—the_re{orQwe
dotheidentification with the 4-tuistor Opertos sugdested by
our notation, A sSimilar identification with the relative
momentum and angular momentum is Lot o Straightforvard.
If uwit‘am\‘ pace g Ral, the vector i=§}7"%7,uould)§of@=:
satisty ©). In €° we wmwt iutroduce a phase facke
ezié— * ‘_ih the definition of the relative

+ . -
momentu m ? = —L(S%& e ) % e {3)
Now ? satisfies (6) and has the commutation proprtm
cequired 2n (8).In order to retain the wiual notion
of a relative momentum in the real Limit, the

quantrty d must be Hemitian. Henc @"%,1@
the masses of +he tuo uméij particles are <gual.

Ihe orbital momentum of esch of the parhicles i
given and ‘_) respectively, constructed according to
the chipev(i.i’l) from the ﬁaarﬁc\e'\s_ operator . The celative
orbital momentum . S
(4 (b ) e
satisfies the commutators () with the exception of
[-L '”‘*é 3 B, +B,) - Z(@]vi(i ¢ 31) We obtain the
corcect result i1f we identify -C= B, +B,-B-2 whece
the B of 4he center of mass is defined in (i.i.s), and ¥
we Impose on the parcticles $4+ ,=0 (4heir Spin be
oppositeg Qqual\) Houw many conditions ace thase?

Out of the 8 Hemitian cowponewts of +the angukr

momentum the orbitel vector 4 carries &. The spin
iemorjcounms onlj 3 1nde.pmdent Hermitian data and. -
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the Hermitian scalac B contaias cne moce spin which laag
3 essential components!

A paic of unitary point pacrticles hayg, gewernlly, 24
parameters. Now 4he masses are equal (1 s pammete ) and
Lhe um‘far«d spins ace oppositely equal (3 Cass Paaw\eém).
Thus  the System has 25 . free pammeters, "Thig i¢
uwhat we wvant since 27 snternal opesfators-—-lconstraihfs[;éo
make 25, and C can be expressed algebraically from (7).
; 7:0 sum up, a ktuistor particle is picmredbypoivﬂfmassef
;‘ $'3 an the unitary Space. If we believe in an iantec-
action betuween these points then we end up with
something like a Kihlerian Hﬁdrogen atom.,

(11 Pictusing inbringic p roperties of particler, TN3 (a7g)

Zoltsn Pegies
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Average-marginally-irapped surfaces in fiat space

By an average-marginally-trapped surface | mean a (closed, topologically
spherical) space-like 2-surface S with the property that the expansion of the
out-going null normals to S is zero on the average. Equivalently, the average
rate of change of the area along the out-going null normals is zero. This is a
natural definition - if the rate of change of the area element is zero at each

point, the surface is marginally trapped - and not original to me.

Now ask: can average MTSs exist in flat space? True MTSs cannot, because
of Roger's original singularity theorem (Phys.Rev.Lett.14(1965)57-59). It is not
hard to see that on the contrary average MTSs can exist in flat space - the idea
is to have regions on S which shrink into the future faster than other regions
expand. Here | want to describe a concrete example.

Working in a hyperplane of constant time, you pile up six spheres (say radius
a) like an octahedron - four are shown solid and the other two are one above
the other and shown dotted. Then you put a big sphere (say radius r,
determined by a) around them and nearly touching them; then you tunnel
through from the big sphere to each little sphere o make something
topologically spherical - the tunnels are small, four are shown in solid and the
other two dotted.

Since this surface lies in a constant-time hyperplane, the rate of change of
area along the outgoing null normals equals the rate of change along the
outgoing space-like normal in t=constant. If this surface moves along these
outwards normals, the small spheres get smaller and the big one gets bigger,
but the small ones ‘win'.

To be qualitative, recall that the rate of change of the area of a surface along
the out-going normals is the integral of the mean-curvature over the surface.
The big sphere has mean-curvature 1/r and area 42 so the mean-curvature
integral for the big sphere is 4w (less terms of order £ or § for the tunnels);
for the small ones it is therefore 6 times -4sa (again less terms of order £ or
$; the sign is changed because the normal points into each small sphere); for
the ‘tunnels' the mean-curvature is O(1/¢ + 1/8 ) and the area is Q€8 ) so

the mean-curvature integral is small, of order € or§ . Finally, by a bit of
trigonometry, r=a(1+/2) + O(£.).

For the whole surface therefore
mean-curvature integral ~ 4w (r-6a) + (€ § )~ -4ba + O(€ %)

which is negative.
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Since this is negative, we can make the small spheres smaller until it vanishes

- (imagine deflating them like balloons with the tunnels held fixed) When the
mean-curvature integral vanishes, so will the average of g ('rho’) and the
surface will be 'average-trapped'.

Paul Tod

B i e N e T e T
—_———— =1 ) Vo ) - e
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‘Special’ Finstein-Weyl spaces from the heavenly equation

Paul Tod Maciej Dunajski

In a recent TN article [2] one of us showed how real three-dimensional Einstein-Weyl spaces which
come from four-dimensional hyper-Kahler metrics with triholomorphic conformal Killing vectors can
be determined by solutions of the pair of equations

1+S5S

o~ !

= S, +1iS = 2V,. (1)
S5+ 85,

Here S and V are, respectively, complex and real valued functions of three real coordinates (z,v,1)
and z = z +1y. In this note we want to point out how equation (1) arises as a reduction of Plebanski’s
first heavenly equation by a dilatation Killing vector.

Let (w, z,w,Z) be a null coordinate system on RY. Each hyper-Kéhler metric can be written as

g = Quudwdw + Qyzdwdz + Qpdzdw + Q,zd2dz (2)
where Q = Q(w, z,W, Z) satisfies the first heavenly equation [1]
Qualles — Quzllp = L : (3)

Let K = wd,, + wdy be the homothetic Killing vector (it turns out that there is no loss of generality
in this choice). The Killing equation together with an appropriate choice of gauge yields Lx§2 = Q.
Define real valued functions ¢ and £ by Inw = { +it. The general solution of (3) subject to the Killing

equation is of the form Q = ' F(z,%,1). The heavenly equation (3) gives
FZE(F'{"F'&) —(Fz +’L.th)(F7—’L'FtE) :4 (4)

Define S = (F, +iFy;)/2 and V = (F + Fy)/4. It follows from a straightforward calculation that
functions S and V satisfy equation (1). Conversely, the second equation in (1) gives the integrability
condition for the existence of F, and then the first equation yields (4). With the definition ¢ = £ + it
the hyper-Kahler metric (2) becomes

g = €' [V~ (1 + SS)dzdz + Sdzdl + Sdzd¢ + Vd(d?). (5)
From the last formula one finds the Einstein—-Weyl metric and the associated one form to be

h = dzdz + (Vdt — i(Sdz — §d7)/2)?, « = (2V)~Y(Sdz + 5dz).

References

(1] Plebanski, J. F. (1975) Some solutions of complex Einstein Equations, J. Math. Phys. 16
2395-2402.

[2] Tod, K.P. (1997) ‘Special’ Einstein-Weyl spaces, Twistor Newsletter 42, 13-15.
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Singularities of wavefronts and lightcones in the context of GR via null foliations

Simonetta Frittelli*¢®, Ezra T. Newman®
¢ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA.
b Department of Physics, Duquesne University, Pittsburgh, PA 15282
(September 4, 1997)

We describe an approach to the issue of the singularities of null hypersurfaces, due to the focusing
of null geodesics, in the context of the recently introduced formulation of GR via null foliations.

The null-surface approach to general relativity essentially reformulates general relativity in terms of two real func-
tions on the bundle of null directions over the spacetime manifold (locally M* x S? with a metric g.;(z®) on M?).
These two functions are Z(z2,(,(), representing a sphere’s worth of null foliations of the spacetime (i.e., such that
§%°Z,o Z,p = 0 for all values of ¢ and for members §,; of the conformal class of g,s), and Q(z%,(,(), representing a
sphere’s worth of conformal factors with the role of picking the members of the the conformal class that satisfy the
Einstein equations. More detail on this formulation can be found in [1].

Within the context of the null-surface approach to general relativity a family of null coordinate systems (6*,i =
0,1,4,—) is heavily used to derive dynamical equations for Z and 2. The coordinates §' are defined by derivation
from Z-:

0 = (2,582,82,82) = (u, R,w, ), (1)

which, for fixed ¢, represents a transformation between an arbitrary coordinate system z® and 6*. The coordinates §*
are adapted to the null foliations, so that the leaves Z(z®,(, () = const. of the foliation constitute surfaces of constant
coordinate u.

There is some gauge freedom in the theory, due to the fact that there are different foliations which are all null with
respect to the same metric, such as, for Minkowski spacetime, a foliation based on outgoing lightcones off a world line
as opposed to a foliation by null planes. In the case of asymptotically flat spacetimes, we customarily fix the gauge
by requiring that our null foliation consists of surfaces that asymptotically become null planes.

For every fixed value of (, our special coordinates have a well defined interpretation. The coordinate u labels leaves
of the null foliation. The coordinates (w, ) label null geodesics on a fixed leaf. The remaining coordinate R acts as a
parameter along every null geodesic in the leaf. Because of our gauge choice of null surfaces becoming planes at null
infinity, the null geodesics labeled by (w, @) constitute bundles of asymptotically parallel null geodesics.

It is natural to raise the objection that, generically, any vacuum spacetime other than Minkowski focuses non-
diverging bundles of null geodesics [2], and therefore our coordinate systems break down at the point of focusing, by
assigning different labels to the same spacetime point. In this respect, although coordinate singularities are irrelevant to
the physical content of the dynamical null-surface equations, we feel that the break down of these particular coordinates
has a certain appeal since it entails the existence and location of caustics. Caustics and their singularities, as well as
the singularities of wavefronts, have been classified by Arnol’d within a sophisticated mathematical context [3]. On
the other hand, caustics are increasingly being considered in the field of astrophysical observations [4-7].

The null-surface approach provides a dual interpretation to the function Z. The condition Z(z*,(,() = u for fixed
z* picks up the points (u, ¢, () at scri which are connected to z° by null geodesics. These points lie on a two-surface
at scri, referred to as the lightcone cut of the point z¢. Generically, due to focusing in the interior, the lightcone
cuts have self-intersections and typical wavefront singularities such as cusps and swallowtails. This appears to pose a
technical difficulty regarding the perturbative approach to solving the null-surface equations, since the occurrence of
this type of singularity generically entails divergences in the derivatives of the lightcone cuts.

In the following, we examine the occurrence of singularities of wavefronts and lightcones and its relevance to the
null-surface approach.

“e-mail: simo@artemis.phyast.pitt.edu
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A. Singularities of the null coordinates

Consider a foliation of spacetime by past null cones from points (u, (,{) at scri along a fixed null generator ¢. (This
is the compactified version of a foliation by null surfaces that are asymptotically null planes). Every past lightcone in
this foliation has singularities, in the sense that the lightcone “folds” and self-intersects, due to focusing in the interior
spacetime, as shown in Fig. 1. The points where the past lightcone is singular are points where neighboring null
geodesics of the congruence intersect, and are thus conjugate to the point at scri. Translating this into the physical
non-compactified spacetime, these points in the interior are “focal points”, such that light rays emitted from them
are asymptotically parallel. How can we locate these “focal points” in terms of null-surface variables?

A preliminary answer to this question can be approached quite directly from a consideration of the geodesic deviation
vector of the congruence that becomes asymptotically parallel in a direction ((, () at scri. Every null geodesic in this
congruence is characterized by fixed values of (u,(,(,w,). The geodesic deviation vector has been derived earlier
in [8]. Along a fixed null geodesic, the cross sectional area of the congruence has the expression:

1
021 A A,

where ,; represents 0/9R. This is an expression of the area A, in terms of the two null-surface variables

Ap(R,'U,(,C—,w,(D) = (2)

Q=0 A =8°Z(2%,¢,Q). 3)

In (2), the quantities Q(z®, (, () and A(z?, ¢, () are evaluated at fixed (¢, () and at values of 2 along the null geodesic
given by (u, C,C,w, ).

It is relevant to point out that the variable 2 actually is the product of two factors, one of which is an arbitrary
confromal factor for the conformal class (and as such, it does not depend on (), whereas the other factor carries
conformal information via its (-dependence. Therefore it is not surprising to find that it plays a role in a completely
conformally invariant matter such as the determination of conjugate points of null geodesic congruences.

Focusing takes place at the value of R such that A, = 0. However, the only way for the area to vanish is that the
denominator become infinite. The square root in the denominator can not diverge before becoming pure imaginary.
This leaves us with the previously unsuspected result that along a fixed null geodesic in the past lightcone from a
point (u, ¢, ) at scri,  must blow up for focusing to take place.

The vanishing of A, is also related to the vanishing of the determinant of the metric, since in these coordinates we
have

1

— Y — gyy—1 _ —4 42
9= detlgy) = (deile”)) " = ey = 074 (4)

Thus both the vanishing of A, and the fact that Q0 diverges result in the vanishing of the 4-dimensional volume
element.

This divergence of Q has another significant consequence. Along the null geodesics labeled by (w,®) there is a
choice of an affine parameter s, which is related to R via

ds
=02 or alternatively

dR_ 2
dB = 0°.

e ()

Since the affine parameter is regular, it follows that dR/ds blows up as well at the point where  does. Thus R is
a bad coordinate (as we might have suspected) in the neighborhood of a focal point. Both R and  are, however,
determined by the function Z through the same second derivative (See (1] for details):

R=3382Z(z,(,0), 02 =g¢%Z,,80Z,, (6)
thus it is consistent to attribute both complications to 33Z(z®, ¢, () becoming singular, since g®® is smooth in a good

choice of coordinates z¢.

B. Singularities of the lightcone cuts

In asymptotically flat spacetimes the function Z can also be viewed as describing the intersection of the lightcone of
a point £ with scri, via u = Z(z?%, (, () where {u, (, () are Bondi coordinates on scri. This intersection is a two-surface
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in a three-dimensional space and can be thought as one member of a series of “wavefronts” obtained by slicing the
lightcone of a point z* with a one-parameter family of past lightcones, the last one of them being scri itself. In
this respect, the two-surface at scri given by u = Z(z°%,(,{) can be thought of as a two-dimensional wavefront in a
three-dimensional space, for which there is a standard treatment in singularity theory.

Wavefronts are considered as projections of smooth two-dimensional Legendrian manifolds in a five-dimensional
space down to a three-dimensional space. The singularities of the wavefront are the places where the projection is
singular. The Legendrian manifold itself is obtained from a generating function. More specifically, consider the 1-jet
bundle over the two dimensional configuration space (z!,z?), given in coordinates (z,z',z%,py,p2), and a function
S(p1,z?). A Legendrian manifold is a two dimensional subspace of points (z,z!, 2%, p1, p2) that can be specified by [3]

' = E, py = —a—S, z = S(p,2°%) — z'py, parametrized by z? and p;. (7)
apl oz?

The projection of this Legendrian manifold down to (z,z!,z%) is a two-surface in three dimensions, representing a

wavefront. This wavefront is singular where the projection breaks down, namely at points such that the 3 x 2 Jacobian
matrix

ozt o
8z% Opy
022 o
ozr? 8py
o o
dz2 8;

has rank less than 2.

In our case, we take (z!,z?) as coordinates on the sphere by defining ¢( = z! + iz? and interpret the projection
of z as the lightcone cut function Z(z®,(, () (the dependence on the spacetime points z° is considered parametric in
the instance of lightcone cuts, being regarded as fixed here). The lightcone cut is regular except at some values of
at which the projection breaks down. Carrying through the calculation of the determinant of the Jacobian matrix in
these terms, we obtain the result that the projection breaks down at points ¢ such that

1 1
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This calculation is parametric in z®, where z° represents the apex of the lightcone intersecting scri at the lightcone
cut surface. This is equivalent to the statement that both A and R must blow up at particular values of ¢ for the
lightcone cut of a given spacetime point z° (See Fig.2). For every point on the cut, the quantities A and R have finite
values, except at the singular points shown in Fig.2. Given the lightcone cut function Z(z®,(, () for fixed z°, the
values of ( for which A and R diverge determine the null geodesics for which z° is a focal point. This is consistent
with the result found in the previous section.

C. Singularities of the lightcones

A related issue which we are also concerned with is the location of the singularities of the lightcone of a point in
the interior spacetime. Consider the lightcone of a point, namely, the congruence of all the null geodesics through
that point, and follow one null geodesic in the congruence out to the future. Generically, due to curvature, there is at
least one future point along this null geodesic where neighboring geodesics intersect, referred to as a point conjugate
to the apex. The cross sectional area of the congruence vanishes at points which are conjugate to the apex along
any null geodesic of the congruence, the locust of all such points being sometimes referred to as the caustic surface
(although it would be more accurate to call it the singularity of the lightcone). The lightcone folds and self-intersects
beyond the occurrence of the earliest of the points conjugate to the apex, as shown in Fig. 2. How do we formulate
the condition for the location of such singular points in terms of null-surface variables?

We can approach this issue from an analysis of the geodesic deviation vector along a fixed null ray ¢ of the lightcone
of an interior point z§. The geodesic deviation vector in this case can be derived solely from knowledge of Z(z?, ¢, ()
through a procedure that is standard to.the null-surface approach. The coordinate transformation (1) can, in principle,
be piece-wise inverted, yielding, perhaps with different branches,
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o = f(u,w,@, R, (,C) (10)
for fixed (. The lightcone of a point x§ can be obtained now by substituting
u=2(23,¢,¢)  w=03Z(z5,¢0) @ =82(25,¢,0) (11)
and
R=383Z(z8,(, () +7 (12)
into (10), in this manner obtaining, perhaps with several branches,
¢ = F*(r;25,¢,() (13)

as the lightcone of the point z§ parametrized by the directions (¢, () labeling the null geodesics, and the parameter r
along each null geodesic. The geodesic deviation vector is

e =ope = 9L

= 500 + 0 f (14)

where &' is taken keeping #* fixed. This expression can be worked out straightforwardly to yield M* in terms of Z
and its derivatives, and the cross sectional area of the congruence along the null ray ¢ can subsequently be obtained:

(A = Ag)(A — Ap) — (R — Ry)?
QQ V 1- A71 1_\:1
The sublabel 0 indicates evaluation at r = 0 (the apex). The quantities Ag and Rp appearing in (15) can be thought

of as referring to the lightcone cut of the apex, whereas A and R correspond to the lightcone cut of the point at r
along the null geodesic labeled by ¢ (See Fig. 3). By comparing with (2) we can see that

Are(r325,¢,0) = (15)

Ae = A, H(r;2§,¢,0) with H(r;z8,¢,0) = (A — Ag)(A — Ap) — (R ~ Ro)%. (16)

This equation relates the cross sectional areas of two different congruences containing the same null ray ¢, namely the
cone of lightrays through z§ and the congruence of asymptotically parallel rays parallel to the null ray (. This implies
a relationship between the focusing of either congruence and the behavior of the quantities A and R. We distinguish
three alternatives.

1. Ajc = 0 and A, = 0 at some value r. Then H must not diverge at a rate faster than A;l at that point.
2. A = 0 with A, # 0 at some value r. Then H must vanish at that point.
3. A, = 0 with A;. # 0 at some value r. Then H must blow up at a rate faster than A;l at that point.

As an example of the first instance, if A, = 0 at the apex then the apex is a focal point, because H = 0, and is
therefore finite, at r = 0 (See Fig 4). So should be any point conjugate to it along the null ray (; however, at such
points Ag, Ry, A and R all blow up, therefore H becomes quite intractable and its behavior has yet to be verified (See
Fig. 5).

In the second case, the apex is not a focal point, and its conjugate point is located at r such that

H(r;z§,¢,¢) = 0. (17)

This is the generic situation illustrated in Fig.2. See also Fig. 6.

In the third case, the point r at which A, vanishes is a focal point along the null ray ¢, and therefore A and R
both blow up, thus again H becomes intractable but is not unlikely that it blows up, since Ay and Ry are finite in
this case. See Fig. 6.

This analysis applies to every null ray ¢ in the lightcone. For some null ray {,, the conjugate point occurs closest
to the apex, for some other direction (; the apex has a conjugate point at infinity, and finally there are values of ¢
for which no focusing takes place at any value of r, as can be seen from Fig.2.
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D. Conclusion

Although the work reported on here is very much in progress, we believe we are finding significant clues as to what
consequences the occurrence of focusing of null geodesics has for the null-surface formulation of general relativity.
Our ultimate goal is to find a way to integrate the singularity issue with the null-surface dynamical equations, which
played no role in this discussion.
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FIG. 2. The lightcone and lightcone cut of a point §. For the null geodesic shown, both A(z§,¢,{) and R(z§, ¢, (f)rare finite.
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FIG. 3. Evaluating A and R at points s along the null geodesic. In this case, Ap and Ro blow up, where A and R are finite
at the point r further up, since the null geodesic does not hit a singularity of the lightcone cut of the point 7.




FIG. 4. Two null congruences containing the same null ray. The common null ray is shown in boldface. The solid lin
represent the lightcone congruence, whereas the dashed lines represent the congruence asymptotically parallel. The dotted ra,
are also common to both congruences. In this case, the apex is a focal point.

FIG. 5. Two null congruences containing the same null ray. The common null ray is shown in boldface. The solid lin:
represent the lightcone congruence, whereas the dashed lines represent the congruence asymptotically parallel. The dotted ra:
are also common to both congruences. In this case, the apex is a focal point and so is the focusing point between the tw
lenses.



FIG. 6. Two null congruences containing the same null ray. The common null ray is shown in boldface. The solid lines
represent the lightcone congruence, whereas the dashed lines represent the congruence asymptotically parallel. In this case, the
apex is not a focal point, nor is its conjugate point beyond the lens. The focal point is between the lens and the apex.
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Triviality of the Grassmann bundles on
hypersurfaces in R™*

Andrzej Trautman
Instytut Fizyki Teoretycznej, Uniwersytet Warszawski
Hoza 69, 00681 Warszawa, Poland

The triviality of the bundles of spinors on spheres has been recognized
in connection with work on Killing spinors [1] and used to obtain an explicit
expression for the eigenfunctions of the Dirac operator on these spaces [2].
Every hypersurface M in R™*! has a pin~ structure and the associated
complex bundle X — M of spinors is trivial [3]. If the dimension m of
the hypersurface M is even, then the trivial bundle X' ® 3 is isomorphic
to C® ANTM even though the tangent bundle TM — M is not trivial, in
general. In this Letter, I present a few simple results on the triviality of the
exterior algebra (Grassmann) bundles of hypersurfaces in R™*1.

Let the vector space R™*! be given the standard, positive-definite quad-
ratic form £ and an orientation; these data define the Hodge map x :

AR 5 AR™F! such that +x = (_1)%m(m+1)id/\Rm+l. Consider a hy-
persurface M in R™*! | i.e. a connected smooth manifold M, of dimension
m, together with an immersion ¢ : M — R™*!. The tangent space T,M
to M at z € M is identified with its image by 7,1, this image being con-
sidered as an m-dimensional vector subspace of R™+!. This identification
extends, in a natural manner, to a linear injection ANTyM — AR™*1. The
same letter is used to denote an element of AT, M and its image in AR™*!.
Let A\gR™*! denote the even subalgebra of AR™*! and let A\¢T'M be the
bundle of even multivectors on M.

Proposition 1. If the hypersurface M is orientable, then the vector bundle
ANTM — M is trivial.

Proof. Since M is orientable, there is a vector field n : M — K™+ of
unit normals to M. A trivialization f : ATM — M x AgR™*! is defined as
follows. Let a € AT, M be either even or odd; if a is even, then f(a) = (z, a);
if a is odd, then f(a) = (z,n; A a).
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Proposition 2. If the hypersurface M 1s even-dimensional, then the vector
bundle N\TM — M is irwial.

Proof. The trivializing map f : ATM — M x NgR™*! is now defined as
follows: f(a) = (z,a) for a even and f(a) = (z,*a) for a odd, a € NT M.

Proposition 3. If the hypersurface M is of dimension m = 3 mod 4, then
the vector bundle N\oTM — M 1s trivial.

Proof. If m = 3 mod 4, then % = id \gm+1. Let /\?;]Rm+1 be the vector space
of self-dual, even multivectors over R™*!. A trivializing map f : AgTM —
M x AfR™! is defined by f(a) = (z,a+xa) for a € AgTy M. To prove that
the map f is an isomorphism of vector bundles, one constructs the inverse
map f~!: M x AJR™ — A¢TM as follows. Given z € M, let I be a
unit vector orthogonal to T, M. Denoting by A the 1-form associated with
! by h, one has Ail = 1 and AT,M = {c € AR™*} : A,c = 0}. By virtue
of the identity A *c = x(I A c) one has f~1(z,b) = A * (Ab) for every
be NfR™1.

If m = 1 mod 4, then % = —id gm+1. Upon complexification, one can
define a trivializing map f : C® AgTM — M x AfC™*! by putting f(a) =
(z,a — ixa), where now AJC™*! = {b € N\oC™*! : xb = ib}. This proves

Proposition 4. If the hypersurface M is odd-dimensional. then the com-
plex vector bundle C® NgTM — M is trivial.

Questions. Does there exist a non-orientable, odd-dimensional hypersur-
face M in R™*! such that the vector bundle ATM — M is not trivial? Are
there hypersurfaces of dimension m # 3 mod 4 such that A¢TM — M is
not trivial?
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A Recursion Operator for ASD Vacuums and Z.R.M Fields on ASD
Backgrounds

Maciej Dunajski Lionel J. Mason

1 Introduction

In this note, we show that the recursion operator given in [1] for the ASD vacuum equations has a
simple form on twistor space analogous to the Yang-Mills case.

Let M be an oriented complex four manifold with ASD vacuum metric g and let p : PT — CP!
be a corresponding projective twistor space fibred over a Riemman sphere. Let Z% = (w?,74/) € PT.
Choose a constant spinor 04 = (0, 1) on the base space and parametrise a section of y by four complex
coordinates

. Hwh
LAA W Al A A0 A (1)

T ™ =w”, ™ =g
In [1] (following [4])we showed that the existence of a two form on the fibres of ;1 with values in the
pullback of O(2) guarantees the existence of a complex valued function satisfying the second Plebanski
equation

8?0 1 d%e GRS
OSwAdT 4 + 202B0zA 8101 4

With the parametrisation (1) the right flat metric on M is given by

= 0. (2)

2
g = dz s4dw” + 90 A du?
T T

The converse problem of reconstructing a deformed twistor space given a © function on M was
reformulated as a system of time dependent Hamilton’s equations.
Linearised solutions to equation (2) satisfy the wave equation on ASD background given by ©

00,60 = 0. 3)

Let W, be the space of solutions to equation (3). We constructed a (formal) recursion operator
R: W, — W, given by the relation

Varg = Vay R (4)

Here V 44 is a null tetrad of volume preserving vector fields which in the adopted coordinate system
takes form

15} d 520 o)
Var = Var = owA * 0x40x8B 0z’

e )

The definition is formal because the the operator on the right hand side requires boundary conditions
in order for it to be invertible and without these, there are ambiguities in the definition of R¢.

The aim of this paper is to give a twistor description of a recursion procedure. We shall show that
R is defined without ambiguities on twistor functions and the space-time relation (4) is replaced by
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a simple multiplication operator. We then extend the action of R to spaces of solutions to the left-
handed zero-rest-mass equations on ASD vacuum background. We will get around the usual Buchdahl
constraints by using the ‘potential modulo gauge’ description of negative helicity fields [5, 4]. In our
treatment W, will be identified with the space of linearised Hertz potentials.

2 Twistor description of recursion procedure

Let A = my /7y be an affine coordinate on CP'. Cover PT by two sets, U and U with |A\| < 1 + ¢ on
U and [A| > 1 — € on U with (w?, A) coordinates on U and (@4, A=) on U. PT is then determined
by the transition function @ = &8 (w? w4) on UNTU.

It is well known that infinitesimal deformations are given by elements of H'(P7T,®), where ©
denotes a sheaf of germs of holomorphic vector fields. Let

Y = fAwB np)— € HY(PT,O®)

0
OwA
be defined on the overlap U N U. Infinitesimal deformation is given by

o4 = (1 + Y )(w?). (6)

From the globality of $(\) = dw? A dwy it follows that Y can be taken to be a hamiltonian vector
field with a hamiltonian f € HY(PT,O(2)) with respect to the symplectic structure . The finite
version of (6) is given by integrating
dot cBA of
da  0oA
from ¢ = 0 to 1 with @*(0) = w” to obtain @4 = ©*(1). We are interested in the linearised version of
the last formula 55 '
soh = e—f (7)
O 4
This should be understood as follows: @# is the patching function obtained by exponentiating the
Hamiltonian vector field of f and corresponds to the ASD metric determined by © and §f* =
eBABSf /0wB (or more simply §f) is a linearised deformation corresponding to §O € Wy.
The construction of a hierarchy of curved twistor spaces from a linearised deformation is given by

Proposition 1 Let R be the recursion operator defined by (4). Its twistor counterpart is the multi-
plication operator

= \"14f. (8)

Réf="1
o

We see that the twistor description of the recursion operator is simpler than the space-time one. It
is also better defined since R acts on ¢ f without ambiguity (alternatively, the ambiguity in boundary
condition for the definition of R on space-time is absorbed into the choice of explicit representative
for the cohomology class determined by 6 f).

Proof. We work on the primed spin bundle. Restrict §f to the section of u and represent it as a
coboundary

5f(mar,z%) = h(mar,z%) = h(na,z°) (9)

where h and h are holomorphic on U and U respectively (here we abuse notation and denote by U
and U the open sets on the spin bundle that are the preimage of U and U on twistor space). Splitting
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(9) is given by

1 ('R—AIOA/)S D’
ho= — §f(pw)pordp?,
N G 1o

1 7{ (71 40)° D'
— ; ; of(per)pprdp
2ms Jp (0% mo ) (pB g )3

A

=t
I

Here ¢ 4 is a constant spinor satisfying 04¢” =1 and p4 are homogeneous coordinates of CP! pulled
back to the spin bundle. The contours I' and [ are homologous to the equator of CP! in U N U and
are such that I' — T surrounds the point p4 = w4 . Functions h and h do not descend to PT. They
are global and homogeneous of degree 2 in w4 therefore

NAIVAAI]'LIWA’VAA/;L:ﬂAlﬂB’HCIEAAIBIC/ (ll)
where ¥ 4 4/ gr¢ 1s one of the four potentials for a linearised ASD Weyl spinor. ¥4 4/ p/¢ is defined mod-
ulo terms of the form V 4¢4/yp:c) but a part of this gauge freedom is fixed by choosing the Plebariski’s
coordinate system! in which £ 44 g0 = 0410p00:V 49:6©. The condition VA(AIEAA/B:C:) = 0 fol-
lows from equation (11) which with the Plebanski gauge choice implies 60 € W,. Define éf4 by
Vaadf = padfa. Equation (11) becomes

7{ Lﬁw—ipudpu = 2miV 40 60O. (13)
r (0% op)

The twistor function 6 f is not constrained by the RHS of (13) being a gradient. To see this define
8fap by Vau(6fppp) = 6fappa pp and note that in ASD vacuum 8 f 4 p is symmetric? which implies
VA 484 = 0. Therefore the RHS of (13) is also a solution of a neutrino equation so (in ASD vacuum)
it must be given by a4’ 'V 44:¢ where a?' is a constant spinor and ¢ € W,. Equation (13) gives the
formula for a linearisation of the second heavenly equation

1 5f

60 =-——¢ —L —ppdp?. (14)
27 Jr (pB op:)*

'There is also a freedom in 6@ which we shall now describe. Let M be volume preserving vector field on M. Define
8,V aa = [M,V s44]. This is a pure gauge transformation. Once a Plebariski coordinate system has been selected, the
field equation will not be invariant under all the sdif f(M) transformations. We restrict ourselves to transformations
which preserve the SD two-forms dwa A dw” and dza A dw?. Such transformations are generated by

dh 8 (39 Bam)a

aw,q awA 6w,4 - BwAawB 51‘7

where h = h(w") and g = g(w”). Space-time is now viewed as a cotangent bundle M = T* A2 with w” being coordinates
on a two-dimensional complex manifold A2, The full sdif f(M) symmetry breaks down to sdif f(A?) which acts on M
by a Lie lift. The ‘pure gauge’ elements of W, are given by
2 3
u® = F+z4G° +xAIBG—wi<99wB + IAJ:BIC———awAngawC

99 09  0Oh 96 s O*h 00

Buwa 02 Bws dwA  © wadwd dzA
where F,G*#, g, h are functions of w? only.

The twistorial origins of the Sdif f(N?) symmetry come from the existence of a symplectic form % = dw® A dwa
on the fibers of ,u PT — CP'. Consider a canonical transformation of each fiber of x leaving ¥ invariant. Let
H = H(z* A\) = 5.2, hiA' be the hamiltonian for this transformation pulled back to the projective spin bundle.
Functions h; depend on space time coordinates only. In particular ho and h; are identified with h and g from the previous
construction (12). This can be seen by calculating how © transforms if w? = w? + Az? + A200/0z4 + ... — &*. Now
O is treated as an object on the first jet bundle of a fixed fibre of P7.

In flat space §fap = 026 f/OwAAw?E.

(12)
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Now recall formula (4) defining R. Let R§f be the twistor function corresponding to RI© by (14).
The recursion relations yield

Réf4 D' f 6fa D
g PDdpT = ; ——PDap
jgr(PB op)3 r (pBop)?(pP Lp)

so R6f = A716f.

g

Let 592 be the linearisation of the first Plebanski’s potential. In [1] it was shown that 602 = R%©.
As a consequence 5
1
0 = !

- : —pcrdp®.
2mi Jo (paro® 2(pg B2 Y

3 Z.R.M. fields on a heavenly background

Now consider a more general situation. If §f is homogeneous of degree n then contour integrals that
give a splitting on the spin bundle can be chosen to be

i (,n.A'OAl)'n.-i-l

21 Jp (097 ) (pP op

i 5f(pe)pprdp”

and similarly for . The equality 1AV gk = 74V 4 4h defines a global, homogeneity n + 1 function

/ 1 ! !
7TA Vaarh = 7TA17TA2...7TA"+‘EAAIXAIE”_AI o
n

With the chosen splitting formulae, EAAQA}'-A'"H =oy OA’Z---OA'HHVAO'(S@ which can be thought of
as a potential for the spin (n + 2)/2 field (the field itself is well defined only in flat space)

YA As Anps = Va0 Va0V, 0000

where

1 5f o
= —9¢ —————=ppdp” .
271 ﬁ (pBloBl)n+2pD P

Differentiating under the integral one shows that 14, 4,. satisfies

Anta
Ans2 AL, _ BA| g CAL A A AL
VARt 25nt2h 41 Mg Anir = CBCAy (4, V7 IV 4 Vg B Ay a2 (15)

The last formula generalises the one given in [7] for a left-handed Rarita-Schwinger field. The Weyl
spinor C4pgcp is present because one needs to use expressions like Voerd fap. Note that the Buch-
dahl constraints do not appear. This can be seen by operating on (15) with VA»+1 . The usual
algebraic expression will cancel out with the RHS. (Note, however, that the definition of the field is
not independent of the gauge choices as it would be in flat space.)

The notion of the recursion operator generalises to solutions of equations of type (15). We restrict
ourselves to the case of ASD neutrino and Maxwell fields on an ASD background. For these two case
the RHS of equation (15) vanishes and fields are gauge invariant. Define the recursion relations

R*4 := V40 RO

for a neutrino field, and
R*ap := V 4y Vo RO
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for a Maxwell field. It is easy to see that R* maps solutions into solutions.
As an application consider the following example. Modify the tetrad (5) to

d 0 00p 0

Vay = 9zA’ Var = ow?  0z4 Jzp

(16)
where Op is a pair of functions. It turns out that the second heavenly equation can be written as
0,04 =0, Va0 04 =0. (17)

The second condition in (17) guarantees the existence of a scalar function O such that ©4 = V 4¢0.
The linearisations of (17) satisfy the neutrino equation

VA460,4 =0. (18)

Now one can apply R* to generate new solutions of (18). There is a reason for rewriting (2) in
the strange looking form (17). If one drops the condition V490" = 0 then the tetrad (16) is not
vacuum. It does however define (the most general) hyperhermitian metric and its symmetries can
still be generated using R*. A different form of equation (17) was first given by Finley and Plebanski
[3] in the context of ‘weak heavens’. It can be given a twistorial interpretation by means of ‘Twisted
Photon’ construction on ASD vacuum background [2].

Let us finish with the following remark. In all the consideration we assumed the vanishing of the
cosmological constant. This underlies the original nonlinear graviton construction. The ASD Einstein
metrics with A # 0 have a natural twistor construction [10] where the extra information about a scalar
curvature is encoded into a contact structure on P7. On the other hand Przanowski [9] reduced A # 0
case to the single second order PDE for one scalar function u{w,w, z, Z)

UwipUzz — UwilUze — (2uwu'1 + 'U-wuu'l)e—u =0. (19)
We remark that the linearisations of (19) satisfy
(Og +4A)6u =0

and the recursion relations (4) are still valid. It should be possible to derive Przanowski’s result from
the structure of a curved twistor space.
Thanks to George Sparling.
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An integral formula in General Relativity

Jorg Frauendiener
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In this note I want to present an integral formula which is valid in a general
relativistic space-time M. In particular, given a hypersurface ¥ embedded in M
which can be foliated by two-dimensional space-like compact surfaces S;, s € R,
then one can relate the rate of change of the integral over S, of the divergence
of outgoing light rays to the geometric (convexity and curvature) properties of
S, and the energy-momentum content of M.

The derivation is based on the well-known Sparling-Witten-Nester identity:
given two spinor fields A4 and p4 on M we can define a two-form L and a
three-form S by the expressions

L= —ifiadr 824, (1)
S = —idfadAa844, (2)

for which we have the identity
dL = —idfiadI a0 —ifigd® A0 =S+ E. (3)

The important fact is that the three-form F which contains the second deriv-
atives, can be expressed entirely in terms of the Einstein tensor which, in turn,
can be replaced by the energy-momentum tensor 7*° of the matter content of
the space-time by virtue of the Einstein equation G = —87G T, (for notation
and conventions cf. [1]). Thus, we obtain the identity

dL =S +4rG VeT,bxy, (4)

where V@ = A 34" This is the starting point for the various proofs of positivity
of mass in General Relativity. These can be obtained from (4) by integrating
over a space-like hypersurface ¥ and choosing the spinor fields so that they
satisfy an appropriate differential equation on ¥ which makes the right hand side
positive definite provided the energy-momentum tensor satisfies the dominant
energy condition while the left hand side reduces to the mass expression.
Instead of imposing a differential condition on the spinor fields one can just
as well try to fix them geometrically and this will be pursued here. Thus, I will
assume that ¥ is diffeomorphic to S x I, S two-dimensional and compact, I
an open interval so that S, is the image of S x {s} under this diffeomorphism,
which is supposed to be space-like. Then there exist two unique null directions
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at each point of S, orthogonal to S,. Let [* and n® be null vectors along those
directions. We choose the spinor fields A4 = 4 and so that the flag pole points
along the same null direction, say along [®. This fixes the spinor field up to a
scaling on S;. This can be almost fixed by noting that the light rays coming
out from S, along the chosen null direction form a null hypersurface N'. We
may assume without loss of generality that the normal to A is a gradient and
we choose the spinor field on S; so that its flag pole agrees with that gradient
on S;. This fixes the spinor field up to the multiplication with a real constant
(on S;) and an arbitrary phase function.

Having fixed things on one surface S; we now have to relate several surfaces.
Let Z* be a vector field on ¥ with Z*V,s = 1 and consider the integral

I(s) = i L (5)

We are interested in the rate of change of that integral with the parameter s

which is
%?{LZ‘?{LzLZ%izdL:%izs-}-fizE (6)

where we have used the formula for the Lie derivative of any differential form
Lzw = dizw + izdw, Stokes’ theorem and the identity (4). This formula shows
that we may assume without loss of generality that Z¢ is orthogonal to the
surfaces S;. A component tangent to the surfaces would correspond to applying
an infinitesimal diffeomorphism to the integrand which does not change the
value of the integral because there are no boundaries. Thus, we can write
7% = ZI*+ Z'n® and we can exploit the fact that Z is hypersurface orthogonal
in the evaluation of the integrals in (6). This is a somewhat lengthy calculation
which is described in detail in [2]. It is best done using the formalism of two-
dimensional Sen connections developed by L. Szabados [3] and makes use of all
the assumptions above. The final result is

d . R
ds j{ﬁf’/’dzfi = j{paﬁd?AJr Z’¢?{ <§ - r%) d*A
+ ?{ Z¢ (o5 -p*) d’A+ 47rGj$¢~ (1°T.bpec2°) 24, (7)

where we have used the standard spin coeflicients with respect to a spin frame
{0*,¢4) which is adapted to the null directions but not specified further. p,s
is the volume element in the two-dimensional orthogonal complement to S;.
The function ¢ is an arbitrary positive (~1, —1) weighted function on Z (in the
sense of the GHP-formalism [4]) which satisfies the equation 3¢ = 7¢ on each
two-surface S; and ¢ = Z¢V.,.¢.

Several points are worth mentioning;:

e The term on the left hand side is the integrated divergence of the null
geodesic congruence emanating from S;.

¢ On the right hand side we find terms which have to do with the geometric
properties of the two-surfaces, namely the scalar curvature R and the
expression p? — ¢d which is the determinant of the extrinsic curvature
associated with the normal vector [* and which describes {part of) the
convexity properties of S;.
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e The 7-terms have no immediately apparent geometric meaning. It is,
however, worthwhile to mention that in the case where ¥ is space-like and
when the dominant energy condition holds the r-terms and the energy-
momentum terms combine with the same sign so that one could view them
as some kind of gravitational contribution to the total energy.

e We have not yet fixed the scaling of the spin frame. Under special circum-
stances this can be specialised to further simplify the formula.

¢ The term involving the scalar curvature R of S, integrates to a constant
by the GauB-Bonnet theorem.

o The term involving the derivative of ¢ is present because it guarantees the
invariance under reparametrisation of the foliation.

¢ Finally, there exists a “primed” version of this integral formula correspond-
ing to choosing the spinor fields along the other outgoing null direction.

I now want to briefly discuss some special applications for the integral for-
mula. The first of these concerns the case when ¥ is itself a null hypersurface.
Then one can choose the conormal, say {,, to be a gradient. The vector [° is
tangent to the generators of 3 and we choose s to be an affine parameter. From
a starting surface Sy we obtain a foliation by the level sets of s. Thus, we can
take ¢ =1 and Z°® = [® and we obtain

%?{p(fA = ?{ (05 —p*) A+ 47rGj£Tabl“l”d2A. (8)

This equation is an integrated version of one of the optical equations which
governs the focusing of light rays.

The next application is to the case when ¥ approaches J in an asymptot-
ically flat space-time. We use the asymptotic solution of the field equations
from [5] and choose the foliation so that it agrees with the cuts of 7 defined by
a Bondi retarded time coordinate u. Then we specify the spin-frame and the
function ¢ appropriately and we obtain the Bondi mass loss formula. Again,
this is discussed in more detail in [2]. This shows again that the focusing of light
rays is closely related to the positivity of mass, a fact which has been exploited
earlier [6].

The final special case is in space-times with spherical symmetry. This as-
sumption entails a tremendous simplification in the integral formula and one
finds that, for a space-like asymptotically flat hypersurface 3, the two formulae
corresponding to the two different null directions are completely equivalent to
the constraint equations in that case. Furthermore, one can recover a formu-
lation of the constraints due to O’Murchadha and Malec [7]. With this form
of the constraints it is easy to prove the spherically symmetric version of the
Penrose inequality.

The integral formula presented above seems to have a rather broad range of
validity and some interesting special applications. In particular, in the spheric-
ally symmetric case one can obtain results on the occurrence of trapped surfaces
and singularities in the domain of dependence of X from the special form of the
constraints. It is hoped that one can derive similar results from the more gen-
eral formula. There are several arbitrary pieces in the formula which need to be
chosen appropriately. But exactly how, remains to be seen. Work is in progress.
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