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Solutions are obtained to the abstract twistor structure equations
of the Schwarzschild space-time. An abstract twistor ideal is built
and its equations solved for a three-parameter set of abstract
twistor surfaces. The limit of vanishing mass and the relation
with hypersurface twistors are discussed.

1 Introduction

It has been shown recently that, in vacuum spacetimes, the Penrose obstruc-
tion to the existence of twistor surfaces can be removed by suitably enlarging
the standard Grassmann algebra of differential forms. The key idea is to de-
velop an abstract differential ideal from the tetrad factorization equation[1]
64F = a”¢P . Here a” is a spinor valued one-form.

In this work we show how to implement these ideas in the context of a
physical spacetime and we explicitly solve for the two-dimensional integral
manifolds. We obtain a three-parameter set of twistor surfaces. Our result
provides the first example of a twistor construction in a nontrivial space-
time.
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2 Schwarzschild space-time

We begin with the Schwarzschild metric in Eddington coordinates:

2M
g = 2dudr + (1 - —A—)dug — 7r2df? — r?sin® §d¢?, (2.1)
T
where the null co-ordinate u is defined in terms of the Schwarzschild time t
by u=t—1r—2MIn(r — 2M). We choose a standard null tetrad, §°7":
6% = = du, 0% = —m =

(d6 + i sin d¢),

Sl

r—2M

7

0" =n=dr + ( )du, o = —m' = —T—(dH — 1sin fdg), (2.2)

2

S

such that g = 2(In—mm'). In the real space-time m’ is the complex conjugate
of m. For twistor surfaces to exist, however, one has to complexify the space-
time. Thus the coordinates u, r, @ and ¢ are considered to be complex. The
exterior derivatives of the tetrad forms are:

M
dl = 0, dn = ’_711\”;
T
1 1 2M cot f ,
dm = —;m,\n — 5;(1 - )l,\m+ ——T\/im,\m,
1 | 2M cot 8
dm’ = —;mi\n - é;(l — —T—)l,\m' — mm,\m'. (23)

For a spin basis (4 adapted to this tetrad, the SL(2, C) connection one-forms
defining the covariant derivatives D{4 = ['(p are as follows [2]:

1

~To' = Loo = -m,
r
M 1
1‘\ 0 — 1‘\ — l tg _ !
0 o1 273 +—2\/§r cot (m — m'),
1 2M
r=r = —(1-"—)m" .
1 11 2r(1 - )m (2 4)

Then for example the covariant exterior derivative D(s,t) of an unprimed
spinor with components (s, t) has components:

D(S, t) = (dS + F013 -+ Fllta dt — FQQS - F(nt). (25)
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The curvature forms, such that
DQ(S,Q = (R(HS + Rnt, —RooS — Rolt) (26)
are given by the formulas:
M
Roo = dloo — 2Tg1al’00 = ”Tsz/\m
M ;
Ry = dlop +Tial'y = ﬁ(ZAn — mam’)
M,
Ru = dl_\n + 2F11AF01 = ﬁn,\m . (27)
The primed spin connection and curvature follows from these relations by

complex conjugation.

3 The abstract twistor ideal

The abstract twistor structure associated with this space-time is by definition
the differential ideal generated by the twistor factorization equations:

l=¢B, m=-pf, m=-qa, n=pa (3.1)

Here p and ¢ are the O-form components of ¢*', while a and 3 are the 1-form

components of a?. In vacuo it is consistent to write the forms « and § as
covariant exterior derivatives:

(a, B) = D(s,t) . (3.2)

Then the variables s and ¢ serve as parameters for the twistor surface, which
is necessarily completely null, since evidently the metric vanishes when equa-
tions (3.1) hold. Also when equations (3.1) hold, the conunection forms sim-
plify:

I-—‘00 = __Eﬁ,
T
M cot f
Loy = — _
Tor 2T2qﬂ+2\/§r(qa pB),
B q 2M
Mn = 2T(1 - Jor (3.3)
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The unprimed curvature forms of Eqgs. (2.7) are now zero. In particular, by
Eq. (3.2), we have D(«a,f) = 0, whence da and df are easily calculated.
Define the two-form z = a,f. Using equation (3.1), we list the exterior
derivatives of the tetrad and of the forms o, 8 and z:

d = 0, dm:—];(p+%cot9)z,

dn = %pqz, dm’:~2’%[q(1—¥)—p\/§cow]z, (3.4)
s = ot 7) - Foott],

df = 21—T[Qp+\%cot9]z,

dz = 0. (3.5)

We next take the exterior derivatives of Eqs (3.1), and get the following
equations involving dp and dg:

dpro = %[q(l' — 3%) — %cot H]ﬁ/\a (3.6)
dppfi = Q%T cot 6 anf (3.7)
dgree = %(% cot9+%/j—)ﬁAa’ (3.8)
dgrf = -——2%(2})-}- —%cow)a,\ﬁ . (3.9)
Solving these equations, we get
dp = 2\1757‘ cotf o+ ép;[q(l - g) — %COtQ}ﬁ*}* %z
dg = ~§T(2p + % cot9>a + %(qi\; + % cot@)ﬁ + %z . (3.10)

Here the quantities A and p are -1-forms needed here to establish consistency
of the later equations.

Assuming the existence of the twistor surfaces, we simplify by noting that
on the twistor surface the function on the spin bundle defined by the Killing
spinor of the Schwarzschild solution is constant. In the present language,
this is the condition:

rpg =C, dC =0. (3.11)
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Taking now the exterior derivative of Eq. (3.10), we obtain

Dz +3vV2CMEz =0, (3.12)
T
Defining
D
W=~ ——— 3.13
3v20pM (3.13)

Eq. (3.12) reads (dw — 1),z = 0 . This allows us to truncate the system by
imposing the equation

dw=1. (3.14)

Thereby our ideal is complete.

4  Solving the ideal

By (2.2) and (3.1), we may express

mim Prain). (4.1)

1
i = vt = e (g
Using also (3.11) and (2.2) again,

2
% C 1 2M
df = d dr + ={1—- —}du| . 4.2
V20 U+\/'2‘T2p2[r+2< T)u} (4.2)
In a similar manner, we obtain
C 1 2M
Lrp M p’ pM
5l (1-3) - 5 o 0du — 3 Fwndradu . (4.3)

Multiplying by 2p and introducing the new variable ) via the substitution

p2 _ exp{Q 3 3Mw,\du} _ 0 (1 3 3Mw,\du) ’ (4.4)

T2 r?
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we obtain the equations

Q Ce ¢ 3M

e
df = ﬂCdu + NG [dr — 7w,\dr,\du -+ (5 - T>du} (4.5)
Ce 9 cot 8 3M 1 M 1 e9cotd
dQ = W[dr—ﬁw,\df,\du—k(i—T)du}+(;—%)du . (46)
Making the substitutions
R = @ —log(sinf)
M
% = cosf — \%e‘Q sin Hﬁw,\du , (4.7)
we have
1 yel
ef(2 — 1?) C _gr 1
dy = —— 5 du— e (dr + 5du) . (4.8)

This is a standard differential system. We next introduce the variable

C
r=yelf — = (4.9)
T
yielding
CdR = —zdu (4.10)
Cdz = —(%LEQ +62R)du : (4.11)
Put
w=z? — e*ft . (4.12)
Then we immediately get
dw = (w + e*®)dR (4.13)

with the general solution

w = e*f + Bef (4.14)
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where B is the integration constant. Then

24+ BS
z? = 5 (4.15)
where
S=ecF. (4.16)
From (4.10) we have
cdS
O — 4.17
W= TR (4.17)
which has the general solution
u = %39(2+BS)1/2+A (4.18)
and A is an integration constant. After backsubstitution,
9 sin ¢ IMCwpdS
= — |l - 4.19
p S { (2 + 35)1/27‘2] ( )
CS BS~1/2 C?SMwpdS
f = —+{1+— + . 4.20
o 7z s V3ri (2 + BS)2 (4.20)
Finally we determine the coordinate ¢ using
m—m' 7 C? 2M
dp =i——— = — e [ —— {1 — == )du+ C?dr — r? p*dul .
¢ Zﬂrsin& CV/2p?r?sin 6 [ 2 ( T ) B P (é]l.Ql)

Introduce the stereographic coordinate ¢ = e7* cot(6/2), substitute p and u,
this yielding the remarkably simple equation

a¢ ds
¢ = S(1+ BS/2)/2 (4.22)
with solution
5= 8¢ (4.23)

B(¢ - F)?
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where F' is a constant. Substituting S in Eqgs. (4.19)-(4.20), we get the
abstract twistor equations of the Schwarzschild space-time:

P> = ;;‘;2 [Br*(¢ = F)? + 12V2MCFw,d( (4.24)
B 8CF(¢ (+F  __C*FIM(wpdC

cosf = VB Fr T(—F 2 g F) (4.25)

w = 2V2 Eg“;; + A (4.26)

5 Discussion

For M — 0, we obtain from here flat-space twistor calculus. Observe that
we have three essential parameters in our solution: C/B, F' and A. These
remain independent in the limit of vanishing mass, and in that limit we find
an open subset of conventional twistor space. Two independent variables are
¢ and 7. Some special hypersurface twistors are located, e.g., on the flat
u = const. and t = const. hypersurfaces.
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