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Extending half flat metrics
David Robinson
Mathematics Department, King’s College London,
Strand, London WC2R 2LS

Recently Plebanski, Przanowski and Formanski, [1], re-addressed the
problem of constructing real solutions of the Einstein vacuum field equations
from complex half flat metrics. In this note an investigation of a related
question 1s outlined. When can an anti self-dual solution of Einstein’s vac-
uum equations be extended to a solution with a connection whose anti-self
dual part coincides with that of the half flat solution? The set of anti self-
dual solutions which can be extended in this way is non-empty. It includes
complex metrics which can be extended to real solutions (for examples see
Ref [2]).

In the investigation of this question it 1s convenient to use a version of
the Cartan structure equations in which the coframe of one-forms,0?, is an
appropriately ordered null basis. The metric is given by ds? = ¢,,0°6° ,where

_ 0 €AB
ww=| % 5] )

(for real solutions 6° and 6° are real and 8! = 62 ).
The first Cartan structure equations can be written

DO = df* — 0° A" Te = 0° AT T (2)

where D is the covariant exterior derivative determined by the anti self-
dual part of the connection ~I'y and *I'¢ is the self dual part of the connection
one-form. In this (chiral) basis

(A)A 0 1w0' 1 o
Ie=| “B = d = o Y
b [ o wh|’ Wap = Wpa, alld, "1, 1wéf —~1w8,' (3)

Einstein’s vacuum field equations may be written

D*6* =" A RZ =0 (4)



where the anti-self dual part of the curvature two-form is given by

A
R;;:[QB OA},and,QAzdwg+wé/\wg. (5)
0 Q3F

Suppose now that 6 is a co-frame for a half flat but not flat, anti self-dual
metric, ¢, in a gauge in which *I'f = 0 and write the curvature in terms of
its components as Rf = 1 Rp.,0° A 0% Tt follows from Eq. (2) that D6* = 0.

Now let 82 be a co-frame for a vacuum solution g with connection one-
forms (with non-zero curvature) 1% and “T@ == I'® When ¢ is written in
terms of its components with respect to 8 as

6o = 030", (6)
Eq.(2) gives

DY A O° = 6" A T2 (7)

and the Einstein vacuum equations then hold for g if and only if

9 R 4" = 0. (8)

Because the curvature is anti self-dual it is a straightforward matter to
see that Eq (8) can hold only for anti-self dual Weyl curvatures of type N,
IIT and certain type I's. These are necessary conditions for the half flat
metric g to be extendable to §. By solving Eq. (8), which restricts but does
not determine the possible components 9§, and substituting in Eq. (7), the
sufficient conditions for the extendability of g can be computed. As was
mentioned above the metrics found in Ref. [2], all of which have type N or
III anti-self dual Weyl curvatures, are examples which satisfy the resulting
differential equations. The full solution space is being investigated.

Thanks to Pawel Nurowski for helpful discussions and for bringing the
work of Ref. [1] to my attention.

1. J.F.Plebanski, M. Przanowski and S. Formanski, Linear superposition
of two type-N nonlinear gravitons, preprint 1998

2. D.C.Robinson, Some Real and Complex Solutions of Einstein’s Equa-
tions, Gen. Rel. & Grav. 19, 7, 693 1987



1%

The abstract twistor space
of the Schwarzschild space-time

Zoltan Perjés,
KFKI Research Institute for Particle and Nuclear Physics
H-1525 Budapest, P.O.Boz 49

Hungary
and

George Sparling
Department of Mathematics
University of Pittsburgh
Pittsburgh, Pennsylvania, 15260

Solutions are obtained to the abstract twistor structure equations
of the Schwarzschild space-time. An abstract twistor ideal is built
and its equations solved for a three-parameter set of abstract
twistor surfaces. The limit of vanishing mass and the relation
with hypersurface twistors are discussed.

1 Introduction

It has been shown recently that, in vacuum spacetimes, the Penrose obstruc-
tion to the existence of twistor surfaces can be removed by suitably enlarging
the standard Grassmann algebra of differential forms. The key idea is to de-
velop an abstract differential ideal from the tetrad factorization equation[1]
64F = a”¢P . Here a” is a spinor valued one-form.

In this work we show how to implement these ideas in the context of a
physical spacetime and we explicitly solve for the two-dimensional integral
manifolds. We obtain a three-parameter set of twistor surfaces. Our result
provides the first example of a twistor construction in a nontrivial space-
time.
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2 Schwarzschild space-time

We begin with the Schwarzschild metric in Eddington coordinates:

2M
g = 2dudr + (1 - —A—)dug — 7r2df? — r?sin® §d¢?, (2.1)
T
where the null co-ordinate u is defined in terms of the Schwarzschild time t
by u=t—1r—2MIn(r — 2M). We choose a standard null tetrad, §°7":
6% = = du, 0% = —m =

(d6 + i sin d¢),

Sl

r—2M

7

0" =n=dr + ( )du, o = —m' = —T—(dH — 1sin fdg), (2.2)

2

S

such that g = 2(In—mm'). In the real space-time m’ is the complex conjugate
of m. For twistor surfaces to exist, however, one has to complexify the space-
time. Thus the coordinates u, r, @ and ¢ are considered to be complex. The
exterior derivatives of the tetrad forms are:

M
dl = 0, dn = ’_711\”;
T
1 1 2M cot f ,
dm = —;m,\n — 5;(1 - )l,\m+ ——T\/im,\m,
1 | 2M cot 8
dm’ = —;mi\n - é;(l — —T—)l,\m' — mm,\m'. (23)

For a spin basis (4 adapted to this tetrad, the SL(2, C) connection one-forms
defining the covariant derivatives D{4 = ['(p are as follows [2]:

1

~To' = Loo = -m,
r
M 1
1‘\ 0 — 1‘\ — l tg _ !
0 o1 273 +—2\/§r cot (m — m'),
1 2M
r=r = —(1-"—)m" .
1 11 2r(1 - )m (2 4)

Then for example the covariant exterior derivative D(s,t) of an unprimed
spinor with components (s, t) has components:

D(S, t) = (dS + F013 -+ Fllta dt — FQQS - F(nt). (25)
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The curvature forms, such that
DQ(S,Q = (R(HS + Rnt, —RooS — Rolt) (26)
are given by the formulas:
M
Roo = dloo — 2Tg1al’00 = ”Tsz/\m
M ;
Ry = dlop +Tial'y = ﬁ(ZAn — mam’)
M,
Ru = dl_\n + 2F11AF01 = ﬁn,\m . (27)
The primed spin connection and curvature follows from these relations by

complex conjugation.

3 The abstract twistor ideal

The abstract twistor structure associated with this space-time is by definition
the differential ideal generated by the twistor factorization equations:

l=¢B, m=-pf, m=-qa, n=pa (3.1)

Here p and ¢ are the O-form components of ¢*', while a and 3 are the 1-form

components of a?. In vacuo it is consistent to write the forms « and § as
covariant exterior derivatives:

(a, B) = D(s,t) . (3.2)

Then the variables s and ¢ serve as parameters for the twistor surface, which
is necessarily completely null, since evidently the metric vanishes when equa-
tions (3.1) hold. Also when equations (3.1) hold, the conunection forms sim-
plify:

I-—‘00 = __Eﬁ,
T
M cot f
Loy = — _
Tor 2T2qﬂ+2\/§r(qa pB),
B q 2M
Mn = 2T(1 - Jor (3.3)
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The unprimed curvature forms of Eqgs. (2.7) are now zero. In particular, by
Eq. (3.2), we have D(«a,f) = 0, whence da and df are easily calculated.
Define the two-form z = a,f. Using equation (3.1), we list the exterior
derivatives of the tetrad and of the forms o, 8 and z:

d = 0, dm:—];(p+%cot9)z,

dn = %pqz, dm’:~2’%[q(1—¥)—p\/§cow]z, (3.4)
s = ot 7) - Foott],

df = 21—T[Qp+\%cot9]z,

dz = 0. (3.5)

We next take the exterior derivatives of Eqs (3.1), and get the following
equations involving dp and dg:

dpro = %[q(l' — 3%) — %cot H]ﬁ/\a (3.6)
dppfi = Q%T cot 6 anf (3.7)
dgree = %(% cot9+%/j—)ﬁAa’ (3.8)
dgrf = -——2%(2})-}- —%cow)a,\ﬁ . (3.9)
Solving these equations, we get
dp = 2\1757‘ cotf o+ ép;[q(l - g) — %COtQ}ﬁ*}* %z
dg = ~§T(2p + % cot9>a + %(qi\; + % cot@)ﬁ + %z . (3.10)

Here the quantities A and p are -1-forms needed here to establish consistency
of the later equations.

Assuming the existence of the twistor surfaces, we simplify by noting that
on the twistor surface the function on the spin bundle defined by the Killing
spinor of the Schwarzschild solution is constant. In the present language,
this is the condition:

rpg =C, dC =0. (3.11)
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Taking now the exterior derivative of Eq. (3.10), we obtain

Dz +3vV2CMEz =0, (3.12)
T
Defining
D
W=~ ——— 3.13
3v20pM (3.13)

Eq. (3.12) reads (dw — 1),z = 0 . This allows us to truncate the system by
imposing the equation

dw=1. (3.14)

Thereby our ideal is complete.

4  Solving the ideal

By (2.2) and (3.1), we may express

mim Prain). (4.1)

1
i = vt = e (g
Using also (3.11) and (2.2) again,

2
% C 1 2M
df = d dr + ={1—- —}du| . 4.2
V20 U+\/'2‘T2p2[r+2< T)u} (4.2)
In a similar manner, we obtain
C 1 2M
Lrp M p’ pM
5l (1-3) - 5 o 0du — 3 Fwndradu . (4.3)

Multiplying by 2p and introducing the new variable ) via the substitution

p2 _ exp{Q 3 3Mw,\du} _ 0 (1 3 3Mw,\du) ’ (4.4)

T2 r?
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we obtain the equations

Q Ce ¢ 3M

e
df = ﬂCdu + NG [dr — 7w,\dr,\du -+ (5 - T>du} (4.5)
Ce 9 cot 8 3M 1 M 1 e9cotd
dQ = W[dr—ﬁw,\df,\du—k(i—T)du}+(;—%)du . (46)
Making the substitutions
R = @ —log(sinf)
M
% = cosf — \%e‘Q sin Hﬁw,\du , (4.7)
we have
1 yel
ef(2 — 1?) C _gr 1
dy = —— 5 du— e (dr + 5du) . (4.8)

This is a standard differential system. We next introduce the variable

C
r=yelf — = (4.9)
T
yielding
CdR = —zdu (4.10)
Cdz = —(%LEQ +62R)du : (4.11)
Put
w=z? — e*ft . (4.12)
Then we immediately get
dw = (w + e*®)dR (4.13)

with the general solution

w = e*f + Bef (4.14)
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where B is the integration constant. Then

24+ BS
z? = 5 (4.15)
where
S=ecF. (4.16)
From (4.10) we have
cdS
O — 4.17
W= TR (4.17)
which has the general solution
u = %39(2+BS)1/2+A (4.18)
and A is an integration constant. After backsubstitution,
9 sin ¢ IMCwpdS
= — |l - 4.19
p S { (2 + 35)1/27‘2] ( )
CS BS~1/2 C?SMwpdS
f = —+{1+— + . 4.20
o 7z s V3ri (2 + BS)2 (4.20)
Finally we determine the coordinate ¢ using
m—m' 7 C? 2M
dp =i——— = — e [ —— {1 — == )du+ C?dr — r? p*dul .
¢ Zﬂrsin& CV/2p?r?sin 6 [ 2 ( T ) B P (é]l.Ql)

Introduce the stereographic coordinate ¢ = e7* cot(6/2), substitute p and u,
this yielding the remarkably simple equation

a¢ ds
¢ = S(1+ BS/2)/2 (4.22)
with solution
5= 8¢ (4.23)

B(¢ - F)?
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where F' is a constant. Substituting S in Eqgs. (4.19)-(4.20), we get the
abstract twistor equations of the Schwarzschild space-time:

P> = ;;‘;2 [Br*(¢ = F)? + 12V2MCFw,d( (4.24)
B 8CF(¢ (+F  __C*FIM(wpdC

cosf = VB Fr T(—F 2 g F) (4.25)

w = 2V2 Eg“;; + A (4.26)

5 Discussion

For M — 0, we obtain from here flat-space twistor calculus. Observe that
we have three essential parameters in our solution: C/B, F' and A. These
remain independent in the limit of vanishing mass, and in that limit we find
an open subset of conventional twistor space. Two independent variables are
¢ and 7. Some special hypersurface twistors are located, e.g., on the flat
u = const. and t = const. hypersurfaces.

6 Acknowledgments
The authors thank the F. Schrodinger Institute, where this work was done,
for hospitality and the NSF and OTKA fund T22533 for partial funding.
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2.0
The Geometry of Twistor Diagrams

This note is intended not to set forth any of the mass of detailed results
about twistor diagrams for first and second-order scattering processes,
but to air the question of how the theory should connect with other
aspects of the twistor programme.

1. The refinement of the diagram calculus over the years has
established that the fundamental element of the calculus is complex
contour integration with boundaries on subspaces of form W. 7 = k,

written W 2z

We also need derivatives of this boundaries, namely simple, double,
triple and quadruple poles which have the effect of restricting the
integration to such subspaces: written

W 2, W Z, ws==2, W=E=2<%
We also need conformal—symmetry-breaking' boundaries of form
r—'\
a2 = ™, wMN = A

—

At a secondary level, we bring massive fields into the picture with poles
of form

- -1
(‘y_hz-/v»\)‘/ (wj .-rvw)

and the evaluation of the ‘constant’ field, the elementary state based at
infinity, which corresponds to the Higgs field in the standard model:

2. There is a natural value of |kl, namely exp(— y), where vy is Euler’s
constant, but the sign of k is not determined. It is obvious that there is
also a sign ambiguity in specifying the conformal-symmetry-breaking
elements. These questions of sign show up non-trivially in the
evaluation of larger diagrams.

The simplest example comes from considering a chain of diagram
elements:

2
=02 = (vilz
but

W AE=D~EEQ~ T T ki(wi’\zi>
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In the chains required for building up the massive progagator one also
finds that one chain gives a term of form

WY
{ gt B

2
w Y X2
—J
but a longer one gives
W™ 1 1
i tf ™ — T
3 by ( r2 {?
<

These differences are crucial to the problem that remains of getting
exact agreement with the Feynman propagator, and seem to be related
to the question of time-direction.

3. New progress has been made on the evaluation of such larger
diagrams. Russ Ennis has seen how to describe in a more systematic
way the building up of many-dimensional contours with boundary, and
in particular has shown how to integrate the fundamental diagram

4

\

This in turn supplies a more elegant description of the integration of all
‘single-box’ diagrams. At the present time the parallel treatment of the
‘double-box’ diagram is not quite complete. This is of particular interest
as it complicated enough for the sign of k to play a non-trivial role. R.E.
has also seen applications of his new description to the long chains
involved in the description of massive fields in which, as indicated
above, signs are crucial.

4. There are now many directions in which to pursue the further
extension of the diagram calculus. For instance, it is very striking how
second-order gauge-theoretic interactions take on a simple form as
twistor diagrams, with the many gauge-non-invariant Feynman
diagrams reduced to one gauge-invariant twistor diagram. This is an
area where one can foresee the emergence of a formalism with real
advantages over Feynman diagram summation.
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However, it seems that essential geometrical ingredients have emerged
as fundamental, and that we now should be looking for connections with
the new twistor geometry developed by R.P. for the description of
curved space-time. From the point of view of the twistor programme, of
course, such a unification of description is in any case the main point of
pursuing the topic of twistor diagrams. We can ask:

(a) What is the generating principle which lies behind all the examples
of twistor diagrams as so far evaluated?

(b) Can the non-projective twistor spaces employed be connected with
the non-projective elements involved in R.P’s extended twistor

geometry? Can the special role of I, the line at infinity, be connected
likewise?

(c) Could the values of k and mass parameters be involved in
completing R.P.’s constructions, perhaps in the sense of taking some
limit analogous to the regularisations of conventional QFT?

(c) In the calculus of twistor diagrams, twistor space and dual twistor
space are on an equal footing, and as it stands this is goes against the
‘googly’ philosophy in R.P.’s programme of putting everything into
twistor space. Can the dual spaces in twistor diagrams be understood
through (inhomogeneous) twistor transforms which translate ‘googly’
constructions? As the simplest example, can the inner-product integral

W@ ie. 5 Fo(27) G (W) At wad"2

w.2> k
be related geometrically to the googly description of spin-1 fields?

(d) 1If we could make progress with any of these questions, the

outstanding questions of sign and time-direction should then make
sense.

Andrew Hodges
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Exceptional hyperKahler reductions

In our joint paper (Kobak and Swann 1993), Proposition 1.3, we
pointed out that the orbifold G,/S50(4)/Z3 can be viewed as the U(1)

quaternion-Kahler reduction of the Grassman space Gry (R7):
G2/SO(4)/Zs = Grs(R") JJU(1) (*)

where the U(1) action on Gry(R") comes from the following action on
R” = R®C®: U(1) acts trivially on R and acts as the multiplicative group
of unit complex numbers on C*. In this way yet again the exceptional
group GG, occurs naturally in a completely classical setup. This construc-
tion was stumbled upon by chance when one of the authors analysed var-
ious U(1) actions on spaces R* x C! and realised that in the R@ C® case
the co-associative 4-planes in R” happen to sit in the zero locus of the
U(1)-moment map p: Grs (R7) — G®u(1) (here G denotes the orthogonal
complement of the tautological 4-plane bundle over Gryq(R7)). The set of
co-associative 4-planes is, of course, the exceptional quaternion-Kahler
symmetric space G,/S0(4). As the moment map g i1s U(1)-invariant,
we have

U(1) - G2/SO(4) C 17 (0)

and spotting that it is in fact an equality does the trick: we get For-
mula () since U(1} acts on U(1) - G2/S0(4) with stabiliser Zs.

Our aim here is to show how the reduction () fits the general con-
struction developed by Kobak and Swann (1995) for classical groups. We
will use the following general facts:

1) Rather than quaternion-Kahler reductions of quaternion-Kahler
symmetric spaces one can consider hyperKahler reductions of the corre-
sponding nilpotent orbits:

N e, NG

|

|
[P’j\f PN/ G) (+%)

M —2 . myc

4

Qa
The arrow “—— " denotes the functor of quaternion-Kahler reduction

H
by the group G, and “ 9,7 is the corresponding hyperKahler reduction
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(defined as in Swann 1991). We recall that the projective bundles in the
middle row of (¥*) are Simon Salamon’s “quaternionic” twistor spaces
(Salamon 1982).

2) The hyperKéhler reduction of a hyperKahler manifold M by a

product G x K of two Lie groups can be taken in steps (for details see
Kobak and Swann 1995, Lemma 3.2).

M
Hg V4 \chk

K

MG -5 MG x K)

In our situation the nilpotent orbits which correspond to G5 /S0(4)
and Gry (R”) are the respective minimal nonzero nilpotent orbits: NE" C
g5 and J\@”O“ET) C SO(7). The crucial ingredient is the fact that Ng‘;” is a

3:1 branched covering of the nilpotent variety N;Lg(g) C sl(3,C). (Brylin-
ski and Kostant (1992) have classified all such finite coverings.) It is thus
enough to exhibit the regular nilpotent orbit N;Lg(S) as a hyperKahler
reduction of é“O”ET) by U(1). Now we are in the realm of classical groups
and the machinery from (Kobak and Swann 1996) can be set in motion.
The necessary data concerning the orbits in question is contained in the
table below:

Nilpotent Jordan Diagram HyperKahler
orbit type reduction
N;efm (3) teCaCct=2C HE J/(U(1) x U(2))
N & (22,1%) 0=CaC H ) Sp(1)

The construction now follows from the fact that one can factor H®
either by U(1) x U(2) to get N;Lg(a), or, in steps, to get first H' and
then Né“oi“(7> = H" //Sp(1). One needs, however, to take into account
various quotients by finite groups that arise on the way. Firstly, the
U(1) reduction of H® gives H/Z, x H° rather than H'. To see this
note that the first two components of the diagram for J\/;eLg(B) give rise
to the diagram 0 @ € & C*. This is the diagram for the nilpotent
variety Ngef(Q) which is equal to H/Z5 and arises in the model case of
the hyperKahler—-twistor-quaternion-Kahler setup:

re re 1
NSLg(2) - PNSLg(Q) — HP

I | |
H\{0}/Z, — Cp? — 5
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In effect we have reductions

Hy @) Hsp(1) o Huy 1y
H' —— H/Z2 x B —— NEoi7) /2o — N§Fy,

and their composition is the reduction of H* by U(1)x U(1) xU(2). Note
that this gives J\fgef;(g) rather than /\f_;zg(s)/Zg: we know that H® J/(U(1) x
U(2)) is NéeLg(B) and U(2) = (U(1) x SU(2))/Z, so reducing H® by a
‘smaller’ group cannot result in a ‘smaller’ space. To be more precise,
one can check that the Z, which appears in the above group isomorphism
is contained in the U(1) which we use to reduce Ngloi?n to N;eLg(B). We
can put together these reductions to form a diagram:

Hy Hsp()

H  — W/Z,xH —— NI /2,
JVHU(l)
HU(l)xU(?) Ngf@)

By considering Z- coverings of H/Z , x H° and N§“5?7)/Zg, we get another
smaller diagram which explains where the reduction (*) comes from:

HT HSP(U min
SO(7)
M J,HU(I)
reg
NSL(s)

The following diagrams tell the quaternion-Kéhler version of the story:

- Quqy 6 CQsp(1) -
HiP — HP°/Z, ——  Grg(R"/Zs

JQu(x)

Qu(1)xU(2) G2/50(4)/Z3
6 Qsp(1) -
]HHP _— GI‘4 (R‘)
QU(Q) J,QU“)
G2/S50(4)/Zs

Note that by reordering the groups one can also realise G5 /S0O(4)/Z;
as a hyperKahler reduction of Gry (R®) by U(1) x U(1): we have

.’-QSP(l) g Quyxu(1)
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By looking at Brylinski and Kostant’s (1994) classification of shared
nilpotent orbits one finds that there is one other exceptional quaternion-
Kahler symmetric space which has finite quotients obtainable from a
classical reduction, namely Fy;/Sp(3)Sp(1). This has quotients of degree
2 and 4 which are reductions of HP'" by Sp(2) and Sp(2) x Z2 (respec-
tively).
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