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In the 1960’s Roger Penrose showed that all real Lorentzian solutions of
Einstein’s vacuum field equations could, in the approximation where fields
are linearized about the Minkowski solution, be constructed from complex
half flat solutions, [1]. The extent to which this result can be extended to
the full non-linear theory is unknown. Real Lorentzian solutions have been
constructed from complex half flat ones but they are all algebraically special
and quite simple: see for example, [2] and references therein. The aim of
this note is to outline some methods of constructing real Lorentzian metrics
from complex half-flat ones. Natural ways to construct, locally, real 2- and
3-differential forms (which can be extended to n- forms, 2< n < 8) by using
half flat solutions will be exhibited. These real forms, on a complex four
manifold M, will be used to construct real metrics on real four manifolds, N,
cf also [3]. Hence real metrics on N will be constructed, locally, from complex
half flat metrics on M.

By using the type of formalism developed by Plebanski, complex half flat
metrics on M can be represented, in terms of a basis of complex co-frames
x4 by a line element

ds* = eagewpx™ ® xBY (1)

and the Cartan structure equations

di™ — PP pwl — P A wa =0, (2)

1
Qp = dl'g + TS AT = S ¥gopxa A x> (3)
dwa + wi Aw8 = 0. (4)

Here, the anti-self dual and self-dual components of the Levi-Civita spin
connection are given, respectively, by w#, with Weyl spinor \IIQCD, and the
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flat wgi. Upper case Latin bold, un-primed, and Latin normal, primed, in-
dices represent transformation properties under the structure groups SL(2,C),
and SL(2,C)g respectively. Upper case Latin indices sum and range over 0
and 1.

It follows from the above equations that

08 AP =0. (5)

It is useful to recall at this point that equations like Egs. (2) and (5) consti-
tute a simple representation of the Einstein vacuum condition.

Real forms on M, related to half-flat geometries, can be constructed by
using the co-frame x*4" and its complex conjugate, x*4’. First consider the
real 2-forms o® (i.e. the Hermitian matrix-valued 2-form ¢#4") defined by

!

I (6)

(Lower case Latin indices represent transformation properties under SO(1,3), =
{SL(2,C), % c.c.}/Zy and range and sum over 1 to 4.)

Here the Hermitian matrix-valued function k44 is covariantly constant
with respect to the real flat so(1,3)g-valued connection represented by wy
Spwp + 64 @h |, that is

/4 -
dkpaar — Kap N wg, — Kkpar N\ wﬁ‘ =0, (7)

and so the k44 label a four-parameter family of 2-forms oAA . These 2-
forms are compatible with the real so(1,3)-valued connection wf «» §8w5, +
6a/wh | since it follows from the above equations that the covariant exterior
derivative of 0®, with respect to the latter connection, is zero i.e.

Do® =do®* + o® Awd = 0. (8)
Furthermore, it also follows from the above that
QA ANoBA =0 (9)

and similarly for the complex conjugate equation. Note that from Eq.(8),
it follows that, for any n-3 forms m,, the n-form Dm, A 02 is closed. In a
similar way, p-forms, with 3=< p < 8 which satisfy equations like (8) and (9),
can be constructed. All these equations can be pulled back to sub-manifolds
of M to define geometries on them, in particular on four dimensional real



submanifolds, N. Here only the 2-form equations above and the similar
equations for 3-forms will be considered. The latter can be obtained and
written in the following way. Let p* <> p»# be real 3-forms on M, defined
by

pAAI = iXAA, AN )ZAA' NTaa (10)
where 744 is taken to be a Hermitian matrix valued 1-form which has zero
exterior covariant derivative with respect to the flat so(1,3)r -valued connec-
tion wy, that is

drAA/+TBAz/\EU'§+rAB//\w§,' =1 (11)

By choice of gauge, r44 can be chosen to be closed. It follows, once again
from the above equations that the real 3-forms are compatible with the real
so(1,3)-valued connection wg, and

Dp*=dp® —pP AWl =0 ; OA A pBA = 0. (12)

Now constructions leading to 4-geometries, involving the above 2-forms, o®,
and then the above 3- forms,p®, will be considered.

First the 2- forms ¢® will be used to construct real 1-forms, ¢® on M.
When these 1-forms can be pulled back to define a real co-frame, 6% ,on a real
four manifold N, locally embedded in M, they determine a Lorentz metric on
N

d82 b ”7:311)08 D gb) (13)

with Levi-Civita connection the pull-back of wy, and anti-self dual curva-
ture two-form the pull-back of Q4. The properties of such metrics will be
determined by the original half-flat metric, the embedding map and k4.
Secondly, the real 3-forms p* will be used to construct real 1-forms, 6, and
a Lorentzian metric on N in a different way. (Alternative procedures, using
similar ideas are possible. In particular some apply when the initial complex
metric is defined on a real four manifold.)

In the case of the 2-forms, real one-forms, ¢ = X |o®, can be constructed
by contraction with a real vector field, X, on M. When the forms and vector
fields satisfy appropriate conditions these one-forms will satisfy the equations
on M

de® —¢® Awd =0, (14)
Q8 A¢BA = 0. (15)
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A set of (non-gauge covariant) conditions on X which lead to Eqgs. (14) is
given by

£xa® = fo®, X|wp=—f8, (16)
for some real functions f2. If, furthermore, X also satisfies
Lxwy = —Dfy, (17)

Eq.(15) holds too. When the 1-forms, ¢®, can be pulled back to a co-frame
6 on N, the pull backs of Egs.(14) and (15) imply that the metric, given
by Eq.(13), satisfies the Einstein vacuum field equations. However, since
X |¢* = 0, the construction may in fact lead to solutions of the vacuum
constraint equations on a three manifold which is a sub-manifold of N.

In the case of the 3-forms, p?, it is natural to construct metrics on N by
using the duality of vector densities and 3-forms in four dimensions. When
p® can be pulled back to a basis of 3-forms on N, 72 say, then there exist real
1-forms 6* on N (and hence a Lorentz metric as in Eq.(13) above) such that
T8 = 1ed.q0° A 6° A 69, Tt follows from the pull-backs to N of Eq.(12) that

do® — 6° AWk = 0%, (19)
a 1 a C a a a »

ShES §@b09b NG ) @bc = _Gcb? ba — 0, (20>

dr® — T Awl = 0. (21)

Egs. (19-21) relate real metrics on N to the pull back of the connection wg
(also written wg), and encode, at least in part, the half-flat geometry on M.
Explicit examples of all the above geometries and further investigations of
the above, including the role of conformal freedom in the last construction
and the relation to linearized theory, will be presented elsewhere.
References
1. Penrose R. (1965) Proc. Roy. Soc., London Ser., A284,159
2. Robinson D.C. (1987) Gen. Rel. & Grav., 19, 693
Plebanski J.F., Garcia -Compean H. & Garcia-Diaz A. (1995)
Class. Quantum Grav., 12, 1093.
Plebanski J.F., Przanowski M, Formariski S.(1998)
Linear superposition of two type-N non-linear gravitons
Robinson D.C. (1998) Twistor Newsletter 44, 10
3. Rozga K. (1977) Rep. Math.Phys., 11, 197
Woodhouse N. (1977) Int. J. Theor. Phys., 16, 663



