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Classical fields as statistical states

Dorje C. Brody' and Lane P. Hughston?

We present a rough outline for an idea that characterises the observed,
macroscopic realisation of the electromagnetic field in terms of a probability
distribution on the underlying quantum electrodynamic state space.

In this note we sketch out some tentative thoughts on the relation between microscopic
and macroscopic states in quantum theory. The idea is that classical fields (e.g., electromag-
netism, or weak-field gravity) should be thought of as statistical states. Our starting point is
to take the view that the physical world is inherently quantum mechanical. The problem is
thus not how to quantise a given classical theory, but rather how to classicalise the quantum
theory appropriately at large scales. Starting with a general multi-particle quantum system
characterised by a large state space and a myriad of associated observables, our task is to
specify those states of the system that correspond, in some reasonable sense, to the classical
macroscopic configurations observed in practice.

This is an interesting question, because it ties in with some of the major open issues in
quantum theory that may be of relevance to practical considerations. Even in the case of
electromagnetism, it has to be appreciated that there is no general agreement as to what
constitutes the precise relation between microscopic and macroscopic realisations of the elec-
tromagnetic field, despite the fact that classical and quantum electrodynamics are both well
developed theories. Sometimes it is suggested that the coherent states of electromagnetism
correspond to classical electrodynamic fields, but the arguments supporting this idea are
not entirely convincing. Coherent states, to be sure, are in one-to-one correspondence with
classical solutions of Maxwell’s equations—in particular, to nonsingular, normalisable solu-
tions. These states also have the property that they saturate the uncertainty lower bounds
for measurements of the field operator. However, there is no explanation for why this should
be a ‘natural’ configuration for the electromagnetic state space. Since coherent states are
pure quantum states, we are left to wonder if it is possible that these states could remain
pure on a macroscopic scale. This is questionable.

To put the matter another way, we expect a pure state to have low entropy by any
reasonable definition, whereas for the quasi-stable nature of a classical field configuration, a
high-entropy state would be the more plausible candidate. Then we could invoke some form
of the second law of thermodynamics to explain the natural occurrence of such configurations.

Now let us try to build up a model along these lines in more precise terms. Suppose
we consider a complex Hilbert space H, for which we denote the associated multi-particle
bosonic Fock space F. We use Greek indices for elements of %, and Roman indices for
elements of F. Thus, if £* € H and 7, € H* (the dual space), then for their inner product
we write 7, Likewise, if ¢ € F and ®, € F*, then we can form the inner product ®,¥°.
An element ¥° of F is given, more explicitly, by a normalisable set of symmetric tensors in
the space (C,H,H@H,HQH ®H,---) given by ¥ = {1, 9, (@ (A1) ...} with the
inner product

BV = ¢ + Ga¥® + Pap?¥® + Pap, WP+ . (1)

We have in mind, in particular, the case where H is the Hilbert space of positive-frequency
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square-integrable solutions of Maxwell’s equations, equipped with the usual gauge inde-
pendent Hermitian inner product. Then F is the multi-particle photon space of quantum
electrodynamics, and the general element of F determines a superposition of states consist-
ing of various numbers of photons, where the photon number is the rank of the corresponding
tensor. In addition we require a specification of the electromagnetic field operators. The
creation operator C_¢ is a map from F to F ® H* and the annihilation operator A% is a
map from F to F ® H. They satisfy the commutation relations Cg5A% — A°%GC = 0502
The specific actions of C and A on F (see Geroch 1971) are not required here.

The pure states of quantum electrodynamic systems are not represented by elements of
F, but rather by points in the associated projective Fock space I'. Let z denote a typical
point in I'; and ¥%(z) a point in the fibre above z. Here, we think of F as a fibre space over
I'. Then the expectation of the annihilation operator A%?, conditional to a pure quantum
state z, can be represented by a map A%*(z) from I" to H, given by

qla(x)Aal;z‘I/b(x)
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Note that A%(z) is independent of the scale of ¥2(z). Thus each quantum electrodynamic
state is associated with a unique classical field, given by the map z € I' = A%(z) € H.

Now suppose we are given a classical solution £€* € H of Maxwell’s equations, and we
wish to construct a state on I' to which £% should correspond in some natural physical
sense. The general state on the multi-particle photon state space I' is given by a probability
distribution p(z) over I'. Thus, if dz represents the natural volume element on I" associated
with the Fubini-Study metric, we have

/Fp(a:)dx = 1. (3)

The associated density matrix p§, which contains sufficient information to value the expec-
tations of linear observables, is given by

P = Ap(z)%%%dm. (4)

For example, the expectation of the annihilation operator can be written in the form:
pat = [ pla)A®(z)ds (5)
We come to our key hypothesis. Our suggestion is that, for a given classical field configu-

ration ¢, the associated physical quantum electrodynamic state is given by the probability
density function p(z) that maximises the entropy function

S, = —/Fp(:v)lnp(z)dx (6)

over I', subject to the constraint

o= /P p(z)A%(z)dz . (7)
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A standard line of argument (cf. [2]) then shows that the choice of p(z) that maximises S,
is given by a grand canonical ensemble on I' of the form:

p(z) = exp[-—uaA“(:L') — 1°Co(2))/Z (1) - (8)

Here, the partition function Z(u) is given by the integral

Zh) = [ expl-pad®(z) - BCala)]da (9)

The ‘chemical potential’ u, € H* arises as a Lagrange multiplier in the variation analysis,
and is determined by the relation

dln Z(p)

for the given value of £%. Thus the dual field u, is thermodynamically conjugate to the
expectation of annihilation operator £°.

The manifold I is foliated by the level surfaces of A*(z), and the grand canonical distri-
bution p(z) is constant on each such surfaces. If we introduce the manifold C € I'" consisting
of coherent states, then I" can be viewed as a fibre space over C, because each level surface of
the expectation of the annihilation operator intersects C at one point, namely, the coherent
state corresponding to the given value of A%(z). Coherent states are those points = for which
the eigenvalue relation A%*W®(z) = £*U°(z) is satisfied for some £°.
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FIG. 1. Foliation of projective Fock space I' by level surfaces of the expectation of the annihi-
lation operator A®(z). Each such surface intersects the manifold C of coherent states at a point.

There are many interesting analogies that follow from the ideas suggested above, and
it is tempting to take them seriously. For example, the phenomenon of classicalisation can
be viewed as a consequence of the second law of thermodynamics (cf. [3]). Suppose we
have a large region of essentially classical configurations (the laboratory) and a small region
(the experimental region) where we create, say, a region of pure quantum state. Initially
the experimental region is insulated from the rest of the laboratory, but after the shield is
removed the experimental region ‘decoheres’ by adjusting itself to the chemical potential u,
of the laboratory. This follows from the requirement of matching chemical potentials (in
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this case, electromagnetic fields) for systems in equilibrium. More precisely, the chemical
potential of the laboratory has to shift slightly to accommodate the experimental region,
and as this happens the pure state of the experimental region decoheres, or classicalises,
just in such a way as to match up with the chemical potential of the laboratory, so that the
combined system is now characterised by a new classical state, say v,, which differs from
the original p, by an essentially negligible perturbation.
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FIG. 2. Classicalisation of a quantum field. An experimental region confining a pure quantum
field is insulated from the environment of the surrounding laboratory, which is permeated with a
classical field of chemical potential p,. After the insulation is removed the pure quantum state
decoheres as it comes into equilibrium with the environment, and acquires a potential v, equal
to that of the laboratory, which has shifted very slightly in response to its interaction with the
quantum field. ;

In the idea outlined above, we implicitly assume that there exists a dynamical mechanism
leading to a kind of Boltzmann’s H-theorem for quantum electromagnetism. However,
such a mechanism may not exist as such in quantum physics, in which case the resulting
‘equilibrium’ (classical) distribution would have to be altered. For example, we might be led
to the density matrix

Py = exp(~paAYy — 2°Cu)/Q(p) , (11)

where the expectation pfA° = £* determines p, and Q(p) is chosen so that p? = 1.
Nevertheless, the idea of representing classical states as statistical distributions is legitimate,
and it also ties in naturally with the foundations of statistical mechanics, where the aim is
to account for the observed characteristics of macroscopic physics in terms of an underlying
microscopic dynamics. We hope to exploit the idea further.
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