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ASD FOUR MANIFOLDS AND FROBENIUS
MANIFOLDS
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ABSTRACT. We describe here a simple geometric construction to obtain an anti-
self-dual Riemannian four manifold from a three dimensional Frobenius manifold.
This establishes a relationship between the isomonodromy deformation descrip-
tion of Frobenius manifolds (leading naturally to Painlevé’s VI equation) and the
twistor approach to integrable systems, that views them as a dimensional reduc-
tion of anti-self-dual Yang-Mills equations.

1 Introduction

Frobenius manifolds were introduced by Boris Dubrovin in the late eighties to
encode the geometric information contained in a certain set of PDEs, the so called
Witten- Dijkgraaf- Verlinde- Verlinde equations (WDVYV). These arise naturally
in the context of topological quantum field theories, and lead to a structure of
associative algebra on the tangent space of certain moduli spaces of topological
field theories.

For a more detailed analysis of the physical motivations that led to the in-
troduction of Frobenius manifolds we refer to [1], while a detailed description of
the geometrical features arising from Frobenius manifolds can be found in [3] or
again in [1].

Among the most interesting features that arose in the work of Dubrovin there
is the fact that WDVV equations are (particular) equations of isomonodromic
deformations, and in particular in dimension three they are equivalent to a special
form of Painlevé’s sixth equation.

On the other hand, one of the greatest developments in the theory of inte-

grable systems came from the application of ideas coming from twistor theory.
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In this context, many classical integrable systems (among which the Painlevé’s
equations) can be seen as a dimensional reduction of anti-self-dual Yang-Mills
equations, and hence solved via the Penrose-Ward transform [4].

It follows from this picture that to any solution of Painlevé’s sixth equation
there should be associated an anti-self-dual Riemannian four manifold. While it
is well understood how to find this four manifold starting from the Yang-Mills
equations, it is not clear what should be the link with Frobenius manifolds, and
what particular anti-self-dual four manifolds should be associated to solutions of

WDVV equations.

2 Construction

For our purposes, we can look at a Frobenius manifold X as a complex manifold
endowed with a pencil of flat metrics, i.e. such that there exist two (contravariant)
flat metrics g; and g2 s.t. the linear combination g; + zg- is again a flat metric for
any z in C. This is a nontrivial condition (the flatness of a metric is a nonlinear
condition on it), and it corresponds, from the integrable systems point of view,
to the existence of two compatible Poisson brackets of hydrodynamic type on the
loop space of X [2].

In addition, on any Frobenius manifold there exist two canonical vector fields,
the identity vector field e and the Euler vector field F, which have the following
property (see [1]):

denote by C' the Christoffel symbol of the Levi-Civita connection of g,, then

L.C =0 LgC =C
(the second is often referred to as a quasihomogeneity condition).

We have the commutation relation
[E,e] = —e.

We will work in the flat coordinates associated to the metric g;. In these

coordinates the two vector fields take the form [1]
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and can be normalized so that d, = 1.
Let us now specialize to the three dimensional case.

Let us lift the vector fields E and e to 7" X using the natural Lie lift. Define
then them on the manifold 7*X x C by adding a term -za% to E. Explicitly,

the new vector field E will read

dimX dimX
) 5 9 8
E=Y dat®m— Y daPaz— — 25
2o et g T Pebpe ~ “ Bz

By virtue of the quasihomogeneity condition the commutation relations are un-
changed, hence we get a two dimensional integrable distribution on the seven
dimensional manifold T* X x C.

If we consider the quotient of 7" X x C by this distribution, we end up with a
five dimensional manifold F, which will still be fibred with fibre C (this follows
from the fact that the vector field 5‘9; descends up to scale to the quotient). The
base manifold of this fibration will be a four dimensional manifold M which is

the natural candidate to be our complex space time.

We have now to define an ASD conformal structure on the four dimensional
manifold M.

We will use the following proposition (see [5])

Proposition 2.1. Let W, Z, Z, W be independent holomorphic vector fields on
a four dimensional complex manifold M. Then W, Z, Z, W determine an ASD
conformal structure if and only if there exist two holomorphic functions v and v
on M x P! such that the distribution on M x P! spanned by

L=W—zZ~+u2, M=Z—zW+v—(—9—
0z 0z

18 integrable.

The vector fields W, Z, Z, W are going to define a null tetrad at any point

on the manifold M, which is equivalent to give a conformal structure.

Let us consider now the vector fields on X 5‘?—2 and 6—‘?;. We have the following

commutation relations

0 0 0 0
,a_tQJ“dQB—tg’ [E __]_dS—

E
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Consider their horizontal lift with respect to the Levi-Civita connection V,

associated to g; + zgy. In the flat coordinates of g; this connection has the form
d+ 2C

so that these lifts are respectively

L= —a——i—ngapb !

6t2 apa
8 ., @
M = 5?; + ZC3apbapa

(C¢, are the components of C). We denote by p, the coordinates on the fibers
in TX. Define W, Z, Z, W to be the degree 0 and degree 1 terms in 2z of these
two vector fields (as in the previous proposition), then the quasihomogeneity
condition guarantees that each of these vector fields descends up to scale on M
(the commutation with the identity vector field is trivial).

The commutation of L and M is equivalent to the condition that V, has van-
ishing curvature, and is thus equivalent to the WDVV equations. Furthermore,
changing our vectors 3‘972, a% by a transformation in Si(2, C) clearly won't change
the picture.

Since the vector fields L and M satisfy the hypothesis of the previous propo-
sitions, we end up with a four dimensional manifold M with an ASD conformal
structure and an action of SI(2,C) on it.

Furthermore, this generalizes without any further problem to the n-dimensional
case (isomonodromic deformations in any dimension have been given a twistor
description [4] {6]).

Many thanks to P. Boalch, M. Dunajski, L. Mason and P. Tod for useful

conversations and suggestions.
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