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Twistors and Legendre Transformations

Simonetta Frittelli', Fedja Hadrovich?, Lionel Mason® and Ezra T. Newman®

"Physics Dept. Duquesne University, Pgh.,PA
*Maths Institute, University of Oxford, Oxford, UK
$Dept of Physics and Astronomy, University of Pittsburgh, Pgh., PA. 15260

Abstract
We discuss how twistors arise in a natural manuner via Legendre transformations on a contact bundle
over space-time and its restriction to null infinity. In section Il this is shown to give two different twistor
formulations of the good cut equation and the dual good cut equation. In section III, the framework is
‘homogenized’ and applied to certain questions arising in connection with Penrose’s googly programme.

I. Flat Space Twistors and Legendre Transformations

In this section we show a natural relationship—via a Legendre transformation—between twistor space and
certain contact spaces (specifically, the projective cotangent bundle over (1) Minkowski space and (2) over
Scri). In the latter case it can be generalized to non-flat spaces and to asymptotic twistors. The correspondence
between space-time and twistor space can be studied by means of the double fibration of the space of projective
null covectors over both Minkowski space and twistor space. When this bundle of null covectors over Minkowski
space is restricted to a Cauchy surface it has the structure of a contact manifold. These fibrations will be seen
to be related by a Legendre transform.

We begin with the canonical one-form on the cotangent bundle over Minkowski space, M, treated projectively,
leading to a contact form on the seven dimensional contact manifold, PT*M

a = padz® ~ o = Apadz?®. (1)

For ease of presentation it is perhaps best to work with a representative form (pp = 1) so that the contact
coordinates are (t,z, p;) and
a=dt+ p{dmi, (2)
Suppose a null surface (Arnold’s “big” wavefront; a solution to the eikonal equation, g*°8,58,S = 0) is given
as S(z®) = 0. We can solve this for t = —T'(z*), so that the normal, p, = (1,8;T(z")) is a null vector, p,p® = 0.
The projective cotangent bundle on M has the structure of the first jet bundle over a space-like hypersurface
coordinatized by z* with the fiber coordinates (t,p;) so that on the cross-section (t,p;) = (=T(z'), 8;T(z*)) we
have that o = 0. This defines the cross section as a Legendrian submanifold (three dimensional) of the contact
manifold (the first jet bundle over the z'). T(z?) is an example of what Arnold calls a “generating function”
for the Legendrian submanifold. '
What we will do is give the same contact space (with the same contact form) a different fibration, that
is, we will represent it as the first jet bundle over a different base space. As an illustration of this procedure,
equation (2) could be rewritten, via a Legendre transformation, as

o =d(t + pz + pyy + p.z) — zdp, — ydp, — zdp, = dg — xdp, — ydp, — zdp. (3)

with ¢(pz,pz,py) =t + P2z + pyy + p.2z. This same contact form could be considered as arising from the first
jet bundle over the base (ps,py,p.) with fiber coordinates (g,x,y, z). If a Legendrian submanifold is given by
a generating function ¢t = —T(z*), it can alternatively be given by the new generating function

9= G(pz, Py, Pz) = —T(x,y,2) + pa + pyy + D22

where z' = z*(pz,py, p.) are obtained by inverting p; = 8,T(z,y, z). In terms of the new generating function,
we have that the Legendrian submanifold is given by

r = 0,0G, y=0p,G, z=0,,G.
g = _T(ﬂf)y:Z) + Pz +pyy + DzZ.
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This in effect transforms from a fibration over position space to a fibration over momentum space.
We now turn to a fibration over twistor space using a different Legendre transformation. We first rewrite

equation (1) making the null character of p, explicit:
o = panpdzt? | (4)
which can be rewritten as , ,
@ = ﬂAd(ﬂ'Br.’L‘AB ) — ;LA.’L‘AB dﬂ'Eu (5)

Defining w® = iz#8 75, the contact form becomes
o= —i{padw?® —ipac?fdrp} = —i(padw® + \drp )} = —iWadZ® (6)

and we see that all the differentials in equation (6) are differentials of the twistor Z% = (w®,7pg/), i.e., the
contact coordinates, for the base, are (w®, 7g:) and the fiber coordinates, treated projectively, are the dual
twistors, W, =(pa, A = —ipaz?? ). From this point of view one again sees that twistors and dual twistors

are canonically conjugate to each other.
A Legendrian submanifold can be constructed from a generating function that is an arbitrary homogeneous

function of degree zero on twistor space
G(w?, 7g) = constant
The Legendrian submanifold thus is given by W, = 8z.G or

HA = aw"‘ G, (7)
MW= 9,6

The vanishing of G(Z“) defines a null 3-surface in Minkowski space by the 3-parameter set of lines in the
twistor space that are tangent to the two-surface G(Z*) = 0. [See R. Penrose, TN #42 for 4 other things one
can do with such a two-surface]. Note that, with an arbitrary G(Z°), by inverting the Legendre transformation
one automatically obtains an arbitrary solution of the eikonal equation. One can see this explicitly by first
writing A = —ip,z44” | from equation (7), as

0x,,G = —iz?%'0,.C (8)

which tell us two things: (1) it can be thought of as an equation defining 7 = mp/(z#4) implicitly and (2)
by multiplying by 74, we see from the condition Z*W, = 0 and Euler’s theorem, that G must be homogeneous
of degree zero (requiring that ZW, = 0 even where G # 0). Now by taking the gradient of G(z#4 74/, 75/)
treating 7p: as a function of 244’ via (8), and using (8) explicitly we have that

6AAIG = ’i;tAﬂA/

is a null vector and hence that G(z44 7 4 (2B8"), 75 {xBB")) satisfies the eikonal equation.

II. Asymptotic Twistors and Legendre Transformations

We now consider the projective cotangent bundle over Scri, J*. We first let Scri, (J = RxS?), have the standard
Bondi type coordinates, (u,(,¢) with the projectivized “momenta” (1,p, ) and then complexify, letting ¢ ~ Z
and 5 ~» p, independent of, respectively, ¢ and p.

The contact form on PT*J% is

a = du — pd¢ — pd (9)

which can be rewritten as
a = du-7p() - pd¢ + (dp (10)
= dg — pd¢ + (dp (11)

with ¢ = u — (. This can be thought of as defining the first jet bundle over the space coordinatised by (¢, )
with fibers parametrized by

(9, p=0cg, ( = ~B59) - (12)
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A cross-section of J* given by u = Z((,() can be lifted to the contact bundle viap = 9¢Z, p = 85Z and yields a
two-dimensional Legendre submanifold. The same Legendrian submanifold can be described after the Legendre

transformation by

9 = G((B)=2(¢C) - i, _ (13)

p = 0G, (=-6GC (14)

where Z: 13(4,5) via the inversion of p = 8EZ(C,~).
We now define the projective twistor space to be the space coordinatized by the functions

(ig,7p,¢) {15)
whose differentials appear in the contact form, or non-projectively
Za:ﬂo’(igviﬁll)g):(wAyT(B’)' (16>

To see that this definition agrees with the standard one when Z(C)E) represents a flat-space lightcone cut,
we consider the intersection of a twistor 2-surface with J. It takes the form, with mp = mo-(1,() = constant,

wo= Z2(¢0) =2+ 42+
(Ioo"+ IIO’C) + (Im’ + 1:11’()6
v o= —i{(w/mo) + (W /7o )C} (17)

i.e., the intersection of twistor surfaces with Scri are the straight lines in the { = constant plane with Ea
parameter along the line, and the intercept and gradient given by —i(w® w!)/my:. If we perform the above
mentioned Legendre transformation we have that

9=C=-i/my, P=—iw/ro

as was claimed.

We have just shown how flat twistor space arises naturally from a Legendre transformation on the contact
bundle over J*; we now show how this can be generalized to other forms of twistor theory. There are two
distinctly different points of view one could take: (1) we can define a type of flat local twistor space over each
point of the sphere, 6552, or {2) define a global curved twistor space associated with certain second order ODEs
given on J7. _

(1} Returning to either equation {15) or equation (16), we see that for each value of { we have a flat twistor
space, i.e. a local twistor space for each (. There are a wide range of applications for this observation. One
of them is to reexpress the Nuli Surface Version of GR in this language. This is being investigated. For the
present, we describe two special applications: (a) to the Leg-Break construction of anti-self-dual space-times
and (b) to a googly construction of self-dual space-times.

{a) The Leg-Break construction is based on the solution of the “good cut” equation

0:0; 2 = 3(Z,¢,Q)

for the function Z(a:“,(,a) where, with regularity conditions, the z° are four constants of integration. The
Leg-Break metric can be constructed from the Z(z%,¢, (). The above Legendre transformation transforms the

good cut equation to
1

7 9(G - 965, ¢, -Gy)
a second order equation for g = G(z°*,{,7). The point to be emphasized is that the equation is completely
qwen wn terms of the local twistor variables and the free data 5(G — pGy,(,—G5), also expressed in terms of
the turstor variables. (The local twistor variables can here be thought of as the flat twistor space associated
to the given Bondi coordinate system as if it were built from shear free cuts in Minkowski space.) There is a
more symmetric version of this. If the solution g = G((,p) is given implicitly by the function F(g,(,p) = 0
then F(g,(,p) satisfies the differential equation

G (18)

: F5 F5 F,
Fop — 22 Fp 4+ (522 F - —— 24— =0 (19)
o Fo 59+ P ¢ )

which, unfortunately, is not a very pretty equation.
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(b) A self-dual space-time can be constructed as the space of solutions to the dual good cut equation
8¢0cZ = 0(Z,¢,() and these solutions can, in turn, be transformed by the same Legendre transformation into
an equation for g = G(z%,¢,p) in the (googly) twistor space

~(G5¢)*
U 20
O (G - 9G35, ¢, -G}~ G¢ (20)

again an equation completely stated in terms of the local twistors which are now the canonical asymptotic
twistors. This also can be easily converted into an equation for the function H(g,¢,p) = 0 that implicitly
defines g = G{((,p).

This approach to the Googly relates to that of Roger Penrose as follows; the twistor space is the flat
asymptotic twistor space as used in the googly construction, and the equation above can be viewed as a
differential equation for the envelope of the level surfaces of the ‘googly maps’ (see the next section for these).
More work is still required to fully understand equations (18) and (20).

(2) An alternate view is to consider the cut function as a solution to a second order ODE which in most
applications is of the form, 8~8~Z = (Z,¢,¢). The cut, or, of more relevance, the curve obtained by fixing
¢, then depends on two parameters the constants of integration, (a, ) (e.g., the initial position and slope at
some C = Qo) and has the form v = Z{a, f3; , C) We refer to the cut function with a fized { as a twistor curve
parametrized by C The space of twistor curves is parametrized by the (a, 3,¢). Below we will take the twistor
variables as a specific choice of the parametrization.

We now have a two parameter family of Legendrian submanifold given, for each (a, ), b

= Z(e,B;¢,0),

= 8.2
= 0;2.

o f B B~

After the Legendre transformation, equation (13), we have the same family of submanifolds and twistor curves,
(¢ = const), but now described by

9 = Gla,B;¢,B) = Z(a, :¢,¢) - B, (21)
{ = -8G(a,5¢,5) (22)
= 0:G(a,B;¢,D). (23)

If we fix the ¢ = C] in equation (22) the Eqs.(21) and (22) can be solved (in some region) for (a, ), i.e
{a,F) = (alg1,P1,; (1) B(91,D1,¢; (1)) which are then substituted back into Egs.{21) and (22) yielding

9 = G‘(gle)—l;&vl;gﬁ); (24)
¢ = -05G7(91,71:G3¢,p) (25)
p = 0G (91,51 41:¢,P)- (26)

The (projective) twistor coordinates (g;, p1,¢) are the local coordinates for the (anti-self-dual) twistor space
determined by ¢ = {;. Different coordinate patches (at least one extra is necessary) can be obtained by choosing
different values for the fiducial (, e.g., Q (2; the overlap transformation is then given implicitly by

92 = G*91,51:0; ¢ P2), (27)
&= =056 (g1,51; (1 (. 7o) (28)

The twistor coordinates on the two patches, (g1, p1,¢) and {(ga, 2, ¢), with the overlap transformation define the
asymptotic twistor space and this space, in turn, parametrizes the twistor curves which rule the “good cuts” or
the solution to the “good cut equation”.
We thus see that the anti-self dual space-times can be described via either the local twistor point of view,
e., from equation (18) or from the twistor space point of view, namely from equations (24),(25),(26).

ITI. The Homogeneous Scri Formalism and ‘Googly maps’

In this section we express the correspondence between asymptotic twistor space and Scri in homogeneous
coordinates (due originally to Sparling, see Eastwood & Tod 1982 and Tod 1981). We first apply the formalism
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to give 2 Lorentz invariant formulation of equations (20). We then calculate the metric of an H-space in terms
of the cut function, reformulating the calculations in Ko, Ludvigsen, Newman and Tod in terms of homogeneous
coordinates. This can be compared with an expression proposed for the metric by RP in the context of his
googly programme. The most basic form of this expression does not work, although the full features of RP’s
framework are not used so the results are inconclusive. The formula is not in any case central to the programme.
A formula that does work (a transcription of the Newman integral formula adapted from one given in Tod 1979)
is presented at the end. Although these calculations are inconclusive, the purpose of presenting them is to
show how the homogeneous coordinate formulation allows one to do quite detailed calculations in relation to
the googly with relative ease in complete generality.

We work with homogeneous coordinates on scri (with apologies for the conflict with earlier notation; the u
of this section should be identified with 7y fou from the previous section)

(u,Ta,Ta) ~ (AAu, AT ar, ;\irA).

These can be related to the coordinates used earlier by setting xg: = 1 and ;- = (. This can be tied into the
GHP formalism by choosing u so that (thorn)u = 1. The main advantage of this formalism is that it allows
one to maintain explicit Lorentz invariance.

We first set up the homogeneous versions of the correspondence between twistor space and null infinity and
the dual good cut eguation (see also Tod 1981 and eastwood & Tod 1982).

We will confine ourselves to space-times with self-dual Weyl tensor and consider the (flat) asymptotic twistors
(i.e. the ‘googly’ situation). A twistor (w” m4:) determines a line in scri given by the equation iu = w7 4.
A ‘dual good cut’ is determined by a homogeneity (1,1) function Z(z%,ma.,%4) by v = Z. In flat space
Z(z®, 74, Ta) = 224 107 4. See equation (17). For agreement with the previous section we have that Z and
o in this section are identified with 77y Z and 7p(my )30 from the last. In a self-dual space-time we have that
Z satisfies the good cut equation

0408 Z =x2Bs, 8% =0/0ma.

where the form of the right hand side is determined by the homogeneity of Z and o = o(Z, 74/, 74) is the
Bondi shear. Note that although this is formally 3 equations, it is really just one in the sense that both sides
are proportional to 7% 75"

The twistor generating function for dual good cuts

Solutions to the dual good cut equation were shown to give rise to 2-surfaces in twistor space subject to equation
(20} in terms of affine coordinates on twistor space. We now reformulate that equation in terms of homogeneous
coordinates. This has the advantage that the equation now has explicit Lorentz invariance, but the drawback
that it becomes three equations. This 2-surface will be the envelope of the level surfaces of the googly map
corresponding to the dual good cut given below, but will not otherwise relate to the subsequent development.

The dual good cut determines a Legendrian 2-surface in the contact space PT*J] = PT*PT and this can in
turn be projected down to give a 2-surface in twistor space. We can represent a 1-parameter family of such
2-surfaces by G := G(w#, w4 ) = constant. (One can simply just focus on G = 0.)

The corresponding two surface in PT*J = PT*PT can be expressed first in terms of coordinates (2%, Wg) =
(W, 74, pa, A ) with Z9W, = 0 by 4 = 8G/Ow* and A4 = OG /O 4-. We can identify 0Z /07 40 = 0G/Om 4/
although one should be careful to note that 8/0w 4+ has different meanings on each side of the equation, on the
left holding 74 = p4 constant and on the right holding w® constant. To impose the dual good cut equation
we need to take the 8/0w 4 derivative holding p4 = 74 constant. When expressed in twistor coordinates, this
derivative operator becomes

7] 2 0?G 0 0*G
o GAB -
Bra  GepGoPC  BuBon, GwA  heTe Car = 5raEcE
Thus the dual good cut equation becomes
82G 2 AB 82G 826’ A’ B’
Orabng  GopGEP OwBor 4 BuwhAdng mtato=0 (29)

where ¢ 1= ¢ <7Tcl"£;%,7f/;/, 6%%)' Note that, as above, this is actually one equation being proportional to

Y
nA' w8
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Googly maps
The dual good cut determines a map from twistor space to the unprimed spin space, Z* ++ 7 which is given

projectively by mapping the twistor to the value of 7 4 at which its line hits the good cut. Thus 74 is determined
implicitly by wA#74 = iZ{(x,7wa,74). The scale of this map can be fixed by imposing

A =wh - 042, (30)

where 4 = 0/8% 4. This gives 74 as an implicit function of (z,w”,m4/). This is the homogeneous ‘googly
map’ (as obtained by K.P.Tod in TN9). Note that although this choice of scaling is canonical, it is not clear
that it is unique or indeed the ‘correct’ one in the context of the googly construction especially in view of RP’s
proposal to deform the scalings on the twistor space which would certainly require some alteration to the above
formula. Nevertheless, one can see that a change in the prescribed scalings is unlikely to improve the situation
described below, and the purpose of this calculation is to show firstly that this is not the likely to lead to the
correct formulation, and secondly how relatively straightforward this formalism is for testing such conjectures.

Penrose recently conjectured a formula for the space-time metric in terms of these structures. He introduces
a 1-form & = 7 4d7* thought of as a 1-form on twistor space depending on the space-time point z. To obtain
the metric, consider a tangent vector v at z, then introduce a small displacement operator

(5 - 2105;; (31)

WAL 4

in the direction of v® while keeping the twistor (w” m4/) constant. Note that thus far partial z°-derivative
implicitly meant keeping (74, 7a) constant.
Now define 7y = §(74). Then RP’s earlier proposal was that the metric be obtained from the formula

A7 d7 ) A dE = g(v,v)®, 240 = e4p,5dZ%dZ0dZ7dZ°

This formula can be checked directly using the homogeneous scri formalism as follows. Firstly we need to
know what the metric actually is. We have that, holding = and # fixed, Z is constant on null hypersurfaces.

Hence
gabZ)azvbzos Z,a:3Z/6115a

We can differentiate this with respect to 7 and 7. To introduce some notation, note that if we set,
ZA=08%2z, z4 =04z, 2z =592,

then by homogeneity
ma 2% =24 FaZ* =27, 0%0PZ =ntrPA
where the last equation defines A as a function of z and 7 and #. Recall also that the dual good cut equation
implies
0 2B =480,
First, differentiating twice with respect to = and using the good cut equation we find that
g“baA'Z,a aB'Z,b =0, since ¢**Z g0, = 69°° 2.0 Zp=0.

Differentjating twice with respect to @ we get the following nine equations that, at a fixed value of » and 7
determine the conformal structure

g 7C(C" 7DD _FCFDRCD' ROWD' _ gabp(C R Z,f’) )
Thus a scale for g°® exists such that
gebzCC  ZDD' _ CD.C'D' _ 2CoDRC.D’
and this scale turns out to be the one that gives a Ricci flat space-time. One can therefore see that

’ ’ - g 1 ’
oA = 2,24 dat + ~7AAY 5 2,8 dzt

[SVRI

is an orthonormal tetrad so that the metric can be given as

_ A4’ BB’ | % vy 8’
Ged = EABEA/B'Z)C Z)d +AA’B’ZJC Z:d .



SO L
Now we compute RP’s expression to see whether we get the above expression for the metric. Keeping the
definition in (31) mind, it is not difficult to show that
di? = (iAih7g — e%)(dw® — iZPB dnp.),

and d€ := € 45d7A N dFB = vy AvA, where v? = dw? —iZ44 dx 4. Applying the displacement § gives

d€ A d(7d7"™) = va AvA A bSvg AV
where §v4 = i(Z“gAI — iZ 74 A4 )dr 4. This yields the metric expression

Gea = €apearn 20V ZEE — 2748 Z piiah g

Unfortunately one does not pick up the part v°v?A 4524 . Z8' 4 of the metric that distinguishes the metric
from the flat one. It might be argued that when the scalings are introduced, the above formula chianges in such
a way as to pick up the missing term. This seems unlikely in view of the fact that the scalings effectively involve
830 /0u® and this is of a different character to the term that is missing. So these arguments are inconclusive
and more work is required to pin down these issues {finding the correct specification of the scalings for googly
maps is still an open problem). Although this particular calculation is not encouraging, this formalism has lead
to the twistorial reformulation of the Newman integral formula for the metric.

Let ¢ be the I-form corresponding to a point z, £’ = Ls€ and ¢ = m4.dr4’. Then it is a simple consequence
of googly geometry that the form £ A €' A+ has to be proportional to § = teapysZ*dZPdZ7dZ°, the standard
volume 3-form on the projective twistor space

ENE NL=10.

The metric is then given by the following integral:
1672 _ j{ 8
g(6za,6az0) — [ 4
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Real Lorentzian metrics from complex, half flat solutions
David Robinson
Mathematics Department, King’s College London,
Strand, London WC2R 2LS

In the 1960’s Roger Penrose showed that all real Lorentzian solutions of
Einstein’s vacuum field equations could, in the approximation where fields
are linearized about the Minkowski solution, be constructed from complex
half flat solutions, [1]. The extent to which this result can be extended to
the full non-linear theory is unknown. Real Lorentzian solutions have been
constructed from complex half flat ones but they are all algebraically special
and quite simple: see for example, [2] and references therein. The aim of
this note is to outline some methods of constructing real Lorentzian metrics
from complex half-flat ones. Natural ways to construct, locally, real 2- and
3-differential forms (which can be extended to n- forms, 2< n < 8) by using
half flat solutions will be exhibited. These real forms, on a complex four
manifold M, will be used to construct real metrics on real four manifolds, N,
cf also [3]. Hence real metrics on N will be constructed, locally, from complex
half flat metrics on M.

By using the type of formalism developed by Plebanski, complex half flat
metrics on M can be represented, in terms of a basis of complex co-frames
x4, by a line element

d82 ZGABEA:B;XAA,®XBBI (1)

and the Cartan structure equations

dyA4 — B A wﬁ _ XAB’ A wg: =0, (2)

1 .
Of =dl' +TAATS = §\PSCD><§% A xP4 (3)
dop + wh Aw§ = 0. (4)

Here, the anti-self dual and self-dual components of the Levi-Civita spin
connection are given, respectively, by wg, with Weyl spinor ¥A.p, and the
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flat wf,. Upper case Latin bold, un-primed, and Latin normal, primed, in-
dices represent transformation properties under the structure groups SL(2,C),
and SL(2,C)g respectively. Upper case Latin indices sum and range over 0

and 1.
It follows from the above equations that

QA AXBE = 0. (5)

It is useful to recall at this point that equations like Eqs. (2) and (5) consti-
tute a simple representation of the Einstein vacuum condition.

Real forms on M, related to half-flat geometries, can be constructed by
using the co-frame y*4" and its complex conjugate, ¥*4". First consider the
real 2-forms o® (i.e. the Hermitian matrix-valued 2-form ¢4’} defined by

7

oA Z»XAA’ A A4 Kax (6)

(Lower case Latin indices represent transformation properties under SO(1,3), =
{SL(2,C) X c.c.}/Z, and range and sum over 1 to 4.)

Here the Hermitian matrix-valued function x4 is covariantly constant
with respect to the real flat so(1,3) g-valued connection represented by wf <
Shwop + (521@@ , that is

B’ = B
dliAAI—HAB//\ZUA/ —K,BAI/\ZDA :0, (7)

and so the k44 label a four-parameter family of 2-forms o”2’. These 2-
forms are compatible with the real so(1,3)-valued connection wg + §5oa, +
64, wh | since it follows from the above equations that the covariant exterior
derivative of ¢®, with respect to the latter connection, is zero i.e.

Do® =do® +o® Awd = 0. (8)
Furthermore, it also follows from the above that
QA A BA =0 (9)

and similarly for the complex conjugate equation. Note that from Eq.(8),
it follows that, for any n-3 forms m,, the n-form D, A 0® is closed. In a
similar way, p-forms, with 3= p < 8 which satisfy equations like (8) and (9),
can be constructed. All these equations can be pulled back to sub-manifolds
of M to define geometries on them, in particular on four dimensional real



submanifolds, N. Here only the 2-form equations above and the similar
equations for 3-forms will be considered. The latter can be obtained and
written in the following way. Let p® < p»4 be real 3-forms on M, defined
by

pAA = AV AT AT (10)
where 74 4 1s taken to be a Hermitian matrix valued 1-form which has zero
exterior covariant derivative with respect to the flat so(1,3)r -valued connec-
tion wy, that is

CIZTAA/-FT'BA//\E?*{-TAB//\IU?::O. (11)

By choice of gauge, r44 can be chosen to be closed. It follows, once again
from the above equations that the real 3-forms are compatible with the real
so(1,3)-valued connection wg, and

Dp* =dp® —pP Awd =0 ; QA APPA =0. (12)

Now constructions leading to 4-geometries, involving the above 2-forms, o?,
and then the above 3- forms,p®, will be considered.

First the 2- forms ¢® will be used to construct real 1-forms, ¢®, on M.
When these 1-forms can be pulled back to define a real co-frame, 6*,on a real
four manifold N, locally embedded in M, they determine a Lorentz metric on
N

ds? = na,0° @ 6°, (13)

with Levi-Civita connection the pull-back of wi, and anti-self dual curva-
ture two-form the pull-back of Qf. The properties of such metrics will be
determined by the original half-flat metric, the embedding map and k4.
Secondly, the real 3-forms p® will be used to construct real 1-forms, 6%, and
a Lorentzian metric on N in a different way. (Alternative procedures, using
similar ideas are possible. In particular some apply when the initial complex
metric is defined on a real four manifold.)

In the case of the 2-forms, real one-forms, ¢* = X |¢®, can be constructed
by contraction with a real vector field, X, on M. When the forms and vector
fields satisfy appropriate conditions these one-forms will satisfy the equations
on M

ds® — P Awd =0, (14)
Q5 NBA =0, (15)
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A set of (non-gauge covariant) conditions on X which lead to Egs. (14) is
given by

£xo" = fao X|wh=—f2, (16)
for some real functions f2. If] furthermore, X also satisfies
,,EXLU?):—D]FS, (17)

Eq.(15) holds too. When the 1-forms, ¢?, can be pulled back to a co-frame
6 on N, the pull backs of Egs.(14) and (15) imply that the metric, given
by Eq.(13), satisfies the Einstein vacuum field equations. However, since
X |¢* = 0, the construction may in fact lead to solutions of the vacuum
constraint equations on a three manifold which is a sub-manifold of N.

In the case of the 3-forms, p?, it is natural to construct metrics on N by
using the duality of vector densities and 3-forms in four dimensions. When
p? can be pulled back to a basis of 3-forms on N, 7® say, then there exist real
1-forms 62 on N (and hence a Lorentz metric as in Eq.(13) above) such that
T8 = 2ep 40° A G° A0 Tt follows from the pull-backs to N of Eq.(12) that

dg® — 6° AWl = O°, (19)
a 1 a C a a a

O = SOR0° N6, OF = -0%, 05, =0, (20)

dr® — ° Aw? = 0. (21)

Eqgs. (19-21) relate real metrics on N to the pull back of the connection wg
(also written wi), and encode, at least in part, the half-flat geometry on M.
Explicit examples of all the above geometries and further investigations of
the above, including the role of conformal freedom in the last construction
and the relation to linearized theory, will be presented elsewhere.
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Combinatorics and field theory

For any given sequence of integers there exists a quantum field theory
whose Feynman rules produce that sequence. An example is illustrated for
the Stirling numbers. The method employed here offers a new direction in
combinatorics and graph theory.

In quantum field theory graphs are used to represent the terms in a diagrammatic per-
turbation expansion, whereby one associates with each graph a numerical amplitude. It is
known [1] that there is an elegant formal construction for the set of all graphs in terms of the
exponential of a derivative operator. For example, Z(¢,g) = exp(ged®/dz?) exp(5;92*)]|z=0
1s the generating function for the set of all 4-vertex vacuum diagrams, connected and discon-
nected, in which the line amplitude is € and the vertex amplitude is g. Here, for simplicity,
we consider field theories in zero-dimensional space so that Feynman integrals become trivial
and are merely the product of the line amplitudes.

In analogy with statistical mechanics we refer to the sum of all vacuum diagrams as the
partition function. The power series expansion of a generic partition function contains both
connected and disconnected graphs. If we are interested only in connected graphs, then we
consider instead the free energy F' = — In Z; the coefficients of the power series expansion of
F represent the sum of the symmetry numbers of just the connected graphs [2], where the
symmetry number of a graph is defined as the reciprocal of the number of ways in which
the graph can be turned into itself by permuting the lines or vertices. These are the basic
rules for graphs in field theories. Using these rules, we would like to find field theories whose
diagrammatic expansions correspond to graphs that are meaningful in combinatorics. A
simple but intriguing example is the field theory of partitions.

Field theory of partitions

The partition of an integer n is the set of all distinct ways to represent n as a sum of
positive integers smaller than or equal to n. The number of elements in the partition of n
is designated P,. Defining P, = 1, the first few P, are 1, 1, 2, 3, 5, 7, 11,---. In the case
of partitioning of labelled objects, the number of partitions is given by the Bell numbers
{B,} =1, 1, 2, 5, 15, 52, 203,---. The labelled partitions can also be grouped into classes
characterised by the Stirling numbers S(n, k), which count the number of partitions of n
labelled objects into k& groups [3]. Specifically, we have S(1,1) = 1, S(2,1) = S(2,2) = 1,
S(3,1y =1, 5(3,2) = 3, 5(3,3) = 1, and so on. Clearly, if we sum S(n, k) over k, we recover
the Bell numbers: B, = Y, S(n, k).

There is an elementary field theory whose Feynman rules produce precisely the labelled
partitions into groups [4]. This is given by the potential energy V(z) = g(e®* — 1) and the
line insertion operator D = ed/dzx for a grouping variable ¢ and a line amplitude e:

Z(e,9) = exp (e%) exp [g(e® — 1)] = io%n' (Zi: S(n,k)gk>

If we set g = 1, then this reduces to the field theory of labelled partitions (the Bell numbers).
Note that the line insertion operator in the above example is given by a first order derivative
operator d/dz. Graphically, such propagators correspond to lines having only one end. This
1s a strange kind of line; ordinarily, a line has two ends. However, in the field theory, we can
have generalised lines having multiple ends.
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Generalised partitions
Consider a general field theory that includes all n-point vertices as well as all generalised
lines having m ends. This leads to the expression

Z(L,V) = exp( 3 fn‘ ddm) ( Z )

m=1 =

y
=0

which represents the set of all vacuum diagrams, connected and disconnected, constructed
from n-point vertices whose amplitudes are V,, and generalised lines having m legs whose
amplitudes are L,,. If we expand this expression as a formal series in powers of ¢, then the
coefficient, of € is the sum of the symmetry numbers of all graphs having n lines, and if we
expand this expression as a series in powers of g, then the coefficient of g™ is the sum of the
symmetry numbers of all graphs having n vertices. We note that in general these formal
power series are divergent because the number of graphs grows like a factorial.

In particular, if we set ¢ = 1 and L,, = V,, = 1, then we obtain the following beautiful
result on generalised partitions:

:’w

Z(e) = exp (e‘% - 1) exp (e — 1)

3]”‘3

=0

The graphs contributing to this expression, up to order ¢!, are shown in Fig. 1 below.
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FIG. 1. Graphs in a theory whose Feynman rules allow for n-point vertices (n = 1, 2, 3,---)
and m-legged lines {m =1, 2, 3,---). If the vertex amplitudes are all unity and the m-legged line
amplitude is €™, then the generating function Z(¢) for the graphs has a Taylor expansion for which
the coefficient of €™ is B2/n!. Thus, the number of labelled graphs of order n is the square of the
nth Bell number.

It is interesting that the graphs of generalised lines in the above figure have formal
resemblance to the graphs in twistor diagrams. These generalised lines are, however, quite
natural in the context of quantum field theory. For example, the strong-coupling expansion
of the Lagrangian for quantum chromodynamics are known to involve these multilegged
propagators. Note that the number of these graphs form a sequence 1, 1, 4, 10, 33,---. We
do not know how to generate this sequence, however, if we label the vertices in Fig. 1, then
the number of graphs for generalised labelled partitions are given by the square of the Bell
numbers.

Topology numbers

We have illustrated how the Feynman rules in quantum field theory can naturally be
associated with ideas in combinatorics. The structures we introduced above are, however,
quite primitive in the sense that we worked only in zero-dimensional space, and we have not
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introduced Fermion lines, which give rise to directed graphs. Despite such simplicity in the
underlying field theory, the corresponding graphical expansions are already quite intricate.
This suggests that, by introduction of additional structures (or perhaps even without such
extensions) we might be able to obtain partition functions that would generate unknown,
crucially important integer sequences such as topology numbers or partially ordered sets
(posets).

Although we do not know how this might be achieved, in the following we would like
to sketch the line of thinking involved in such problems. Here, let us consider the labelled
topologies. The n-th topology number can be represented by unlabelled transitive graphs
of n nodes. By transitivity, we mean if @ and 3 are related and § and + are related, then «
and v also have to be related. Some of the graphs are shown in Fig. 2.

N
% Lo AN M e Ab A A R

FIG. 2. Connected and disconnected graphs representing topology numbers: 1, 1, 3, 9, 33, 139,
718, 4535, -+ .. Only eight terms of the sequence are known.

Since disconnected graphs can be obtained by exponentiating the connected ones in the
sense noted above, let us consider only the connected ones (free energy). The labelled con-
nected topologies are then given by the sum of the symmetry numbers of the connected
transitive graphs. Because we are interested in the symmetry numbers, all the transforma-
tions of the graph that preserve the symmetry numbers are allowed. Thus, we may simplify
the above graphs in the following manner. The first step is to replace the double lines in
Fig. 2 by single ‘Bosonic’ lines. The connected graphs obtained after this replacement are

shown in Fig. 3.
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FIG. 3. Graphs representing connected topologies, after replacing the double arrows in Fig. 2
by single Bosonic lines. The numbers are the associated symmetry numbers times n!.

The second step is to ‘squash’ all the Bosonic lines, namely, any graph having n vertices
joined by Bosonic lines can be squashed into a single n-vertex. The symmetry number is
preserved by associating the factor of 1/n! to each n-vertex. The final step is then to lift the
transitivity in the sense that, if « is related to § and 3 is related to <y, then the redundant
relation joining « and 7y by a ‘Fermion’ line (arrow) can be removed. It can easily be seen
that this simplification does not alter the symmetry numbers. After these transformations,
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the simplified graphs appear to be identical to the connected posets. An example for n =4
in Fig. 3 is shown in Fig. 4.
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FIG. 4. The 21 graphs for n = 4 in Fig. 3 reduce to these graphs, which are just the connected
posets. In particular, the squashing of Bosonic lines gives five partitions of 4. The corresponding
Stirling numbers are 1, 7, 6, 1 respectively for one, two, three, and four groups to partition 4.
The number of connected labelled posets, on the other hand, are given by 1, 2, 12, 146, and so
on. Therefore, we deduce that the number of connected labelled topologies for n = 4 is given by
Ix14+2x7+12x6+146 x1 = 233, without counting the symmetry numbers indicated in Fig. 3.

The number of graphs corresponding to Fig. 4, if we label the vertices, can be determined
by counting the associated symmetry numbers. However, we can deduce this number without
such a procedure, because the graphs in Fig. 4 are in fact precisely the connected posets,
and the Stirling numbers tells us how many ways we can partition the number in the group,
as stated in the figure caption. Therefore, if we let {d,} =1, 2, 12, 146, 3060, 101642, - --
denote connected labelled posets and {t,} = 1, 3, 19, 233, 4851, 158175, - - denote the
connected labelled topologies, we deduce the following formula:

= > S(n,k)d
k=1

By exponentiating the foregoing arguments in the sense noted earlier, we can show that the
same identity via Stirling numbers also holds for disconnected graphs, a formula known in
combinatorics [3].

In the above discussion on topology numbers our line of thinking in simplifying the
problem is motivated by field theoretic ideas. The challenging problem is to find a field
theory whose Feynman rules produce graphs corresponding to those in Fig. 4. This may be
achieved by introducing Fermions, Wick ordering, and so on. We note that only the first 14
terms in the sequences {d,}, {t,} are known.
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Classical fields as statistical states

Dorje C. Brody! and Lane P. Hughston?

We present a rough outline for an idea that characterises the observed,
macroscopic realisation of the electromagnetic field in terms of a probability
distribution on the underlying quantum electrodynamic state space.

In this note we sketch out some tentative thoughts on the relation between microscopic
and macroscopic states in quantum theory. The idea is that classical fields (e.g., electromag-
netism, or weak-field gravity) should be thought of as statistical states. Our starting point is
to take the view that the physical world is inherently quantum mechanical. The problem is
thus not how to quantise a given classical theory, but rather how to classicalise the quantum
theory appropriately at large scales. Starting with a general multi-particle quantum system
characterised by a large state space and a myriad of associated observables, our task is to
specify those states of the system that correspond, in some reasonable sense, to the classical
macroscopic configurations observed in practice.

This is an interesting question, because it ties in with some of the major open issues in
quantum theory that may be of relevance to practical considerations. Even in the case of
electromagnetism, it has to be appreciated that there is no general agreement as to what
constitutes the precise relation between microscopic and macroscopic realisations of the elec-
tromagnetic field, despite the fact that classical and quantum electrodynamics are both well
developed theories. Sometimes it is suggested that the coherent states of electromagnetism
correspond to classical electrodynamic fields, but the arguments supporting this idea are
not entirely convincing. Coherent states, to be sure, are in one-to-one correspondence with
classical solutions of Maxwell’s equations—in particular, to nonsingular, normalisable solu-
tions. These states also have the property that they saturate the uncertainty lower bounds
for measurements of the field operator. However, there is no explanation for why this should
be a ‘natural’ configuration for the electromagnetic state space. Since coherent states are
pure quantum states, we are left to wonder if it is possible that these states could remain
pure on a macroscopic scale. This is questionable.

To put the matter another way, we expect a pure state to have low entropy by any
reasonable definition, whereas for the quasi-stable nature of a classical field configuration, a
high-entropy state would be the more plausible candidate. Then we could invoke some form
of the second law of thermodynamics to explain the natural occurrence of such configurations.

Now let us try to build up a model along these lines in more precise terms. Suppose
we consider a complex Hilbert space H, for which we denote the associated multi-particle
bosonic Fock space F. We use Greek indices for elements of H, and Roman indices for
elements of F. Thus, if € € H and 7, € H* (the dual space), then for their inner product
we write n,£%. Likewise, if U¢ € F and ®, € F*, then we can form the inner product ®,¥°.
An element ¥* of F is given, more explicitly, by a normalisable set of symmetric tensors in
the space (C,H, HOH, HO® H ® H,---) given by ¥° = {1p, 1, (@8 1(eB7) ...} with the

inner product

PV = Y + Gath® + Gaph®? + Pap, WP - . (1)

We have in mind, in particular, the case where # is the Hilbert space of positive-frequency
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square-integrable solutions of Maxwell’s equations, equipped with the usual gauge inde-
pendent Hermitian inner product. Then F is the multi-particle photon space of quantum
electrodynamics, and the general element of F determines a superposition of states consist-
ing of various numbers of photons, where the photon number is the rank of the corresponding
tensor. In addition we require a specification of the electromagnetic field operators. The
creation operator C 3 is a map from F to 7 ® H* and the annihilation operator A% is a
map from F to F ® H. They satisfy the commutation relations Cgg A% — A% Cyb = 6562
The specific actions of C' and A on F (see Geroch 1971) are not required here.

The pure states of quantum electrodynamic systems are not represented by elements of
F, but rather by points in the associated projective Fock space I'. Let z denote a typical
point in I', and W*(z) a point in the fibre above z. Here, we think of F as a fibre space over
I'. Then the expectation of the annihilation operator A%?, conditional to a pure quantum
state x, can be represented by a map A%(z) from I' to H, given by

Qa _ @G(I)Aagq]b(z)
A%(z) = AEIEON (2)

Note that A*(z) is independent of the scale of ¥%(z). Thus each quantum electrodynamic
state is associated with a unique classical field, given by the map z € I' — A%(z) € H.

Now suppose we are given a classical solution £€* € H of Maxwell’s equations, and we
wish to construct a state on I' to which &% should correspond in some natural physical
sense. The general state on the multi-particle photon state space I is given by a probability
distribution p(z) over I'. Thus, if dz represents the natural volume element on I" associated
with the Fubini-Study metric, we have

/Fp(:z)d:c = 1. (3)

The associated density matrix pg, which contains sufficient information to value the expec-
tations of linear observables, is given by

v )
y = zT)=——=———dz . 4
RO et (4)
For example, the expectation of the annihilation operator can be written in the form:
prA® = /Fp(I)A"(:r)da: . (5)
We come to our key hypothesis. Our suggestion is that, for a given classical field configu-

ration £°, the associated physical quantum electrodynamic state is given by the probability
density function p(z) that maximises the entropy function

S, = —/Fp(m) In p(z)dz (6)

over I'| subject to the constraint

& = [ pla)ac()dz (7)



U2

A standard line of argument (cf. {2]) then shows that the choice of p(z) that maximises S,
is given by a grand canonical ensemble on I' of the form:

p(z) = exp[—paA®(z) - 1°Calz)l/Z () - (8)

Here, the partition function Z(u) is given by the integral

(1) = [ expl-pad®(z) - B°Cale)ldz ©)

The ‘chemical potential’ p1, € H* arises as a Lagrange inultiplier in the variation analysis,
and is determined by the relation

dlnZ(u)

8/10 = €O (10)

for the given value of £*. Thus the dual field p, is thermodynamically conjugate to the
expectation of annihilation operator £°.

The manifold I' is foliated by the level surfaces of A%(z), and the grand canonical distri-
bution p(z) is constant on each such surfaces. If we introduce the manifold C € I consisting
of coherent states, then I' can be viewed as a fibre space over C, because each level surface of
the expectation of the annihilation operator intersects C at one point, namely, the coherent
state corresponding to the given value of A%(z). Coherent states are those points = for which
the eigenvalue relation A%2V°(z) = £2W%(z) is satisfied for some £*.

=

r

A%(x) = constant

r/

~ Coherent state
submanifold

- J

FIG. 1. Foliation of projective Fock space I' by level surfaces of the expectation of the annihi-
lation operator A%(z). Each such surface intersects the manifold C of coherent states at a point.

There are many interesting analogies that follow from the ideas suggested above, and
1t is tempting to take them seriously. For example, the phenomenon of classicalisation can
be viewed as a consequence of the second law of thermodynamics (cf. [3]). Suppose we
have a large region of essentially classical configurations (the laboratory) and a small region
(the experimental region) where we create, say, a region of pure quantum state. Initially
the experimental region is insulated from the rest of the laboratory, but after the shield is
removed the experimental region ‘decoheres’ by adjusting itself to the chemical potential pq
of the laboratory. This follows from the requirement of matching chemical potentials (in
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this case, electromagnetic fields) for systems in equilibrium. More precisely, the chemical
potential of the laboratory has to shift slightly to accommodate the experimental region,
and as this happens the pure state of the experimental region decoheres, or classicalises,
just in such a way as to match up with the chemical potential of the laboratory, so that the
combined system is now characterised by a new classical state, say v,, which differs from
the original u, by an essentially negligible perturbation.

—

[ Classical: potential = Vy~Llg

-
- -~

remove ~. , ~
-,
i Classical:
}

—_— A
' Potential Vg |,

insulation
' /.
N
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< W T
Laboratory ) ‘ Experimental Experimental region is now ‘classicalised’.
Insulation region Laboratory potential is shifted slightly
from [l to Vg -

[ Classical: potential = Ly

Quantum:
No potential

FIG. 2. Classicalisation of a quantum field. An experimental region confining a pure quantum
field is insulated from the environment of the surrounding laboratory, which is permeated with a
classical field of chemical potential p,. After the insulation is removed the pure quantum state
decoheres as it comes into equilibrium with the environment, and acquires a potential v, equal
to that of the laboratory, which has shifted very slightly in response to its interaction with the
quantum field.

In the idea outlined above, we implicitly assume that there exists a dynamical mechanism
leading to a kind of Boltzmann’s H-theorem for quantum electromagnetism. However,
such a mechanism may not exist as such in quantum physics, in which case the resulting
‘equilibrium’ {classical) distribution would have to be altered. For example, we might be led
to the density matrix

py = exp(—paAY — 17°Coy)/Q(1) , (11)

where the expectation pfA®® = £% determines p, and Q(u) is chosen so that p? = 1.
Nevertheless, the idea of representing classical states as statistical distributions is legitimate,
and it also ties in naturally with the foundations of statistical mechanics, where the aim 1s
to account for the observed characteristics of macroscopic physics in terms of an underlying
microscopic dynamics. We hope to exploit the idea further.

1. R. Geroch, Ann. Phys. 62, 582 (1971).
2. D. C. Brody & L. P. Hughston, J. Math. Phys. 39, 6502 (1998); 40, 12 (1999).
3. D. C. Brody & L. P. Hughston, Proc. Roy. Soc. London A, 455 (1999), in press.
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A conjectured form of the Goldberg-Sachs theorem!

Andrzej Trautman

Instytut Fizyki Teoretycznej, Uniwersytet Warszawski
Hoza 69, 00681 Warszawa, Poland
e-mail: amt@fuw.edu.pl

The rather well-known Goldberg-Sachs theorem (3] is one of the most beautiful
results in the mathematics of general relativity theory. It played a major role in the
work on algebraically special solutions of Einstein’s equations [5].

For the purposes of this Letter, it is convenient to formulate it as follows. Let 90
be a set of Lorentzian, not conformally flat, manifolds (M, g) of dimension 4. For
(M,g) € M, let K C TM be a null line bundle; its sections are null vector fields.
Following the notation and terminology of (7], consider the following two properties
of K:

(GSR) K is geodetic and shear-free;
(PND) K is a bundle of repeated principal null directions of the Weyl tensor C.

A Goldberg-Sachs theorem GST(90) is a statement of the form: if (M, g) € M, then
the conditions (GSR) and (PND) are equivalent. Goldberg and Sachs proved the
theorem for MM = the set of Einstein spaces, i.e. solutions of R,,, = ;}g“,,R. Shortly
afterwards, Kundt and Thompson [6] and Robinson and Schild [8] pointed out that
both conditions (GSR) and (PND) are conformally invariant, but the property of
being an Einstein space is not. They proved a generalized Goldberg-Sachs theorem
that, in a refined form, is given in §7.3 of [7] and in §7.5 of [5]. This generalized
theorem involves only conformal notions, but requires a separate formulation for
each degree of degeneracy of the Weyl tensor.
A conformally invariant set of space-times is

M, = {(M, g) is conformal to an Einstein space}

and GST(9M,) is true as a consequence of the classical Goldberg-Sachs theorem. It
is not easy to find a description of 9. by means of tensorial or spinorial equations;
see [4] for an account of the early work by Brinkman. To appreciate the difficulty of
the subject, recall that Schouten (p. 314 in [9]) attributes to Brinkman the following
statement: In dimension 4, if two manifolds are Ricci flat and conformal to each
other, but not to a flat space, then they are isometric. Ehlers and Kundt (p. 99 in
[2]) give a counterexample to this: there are pp waves that are conformal, but not
isometric, to each other.

It is known that 91, is contained in the set 9, of spaces satisfying the confor-
mally invariant Bach equation B = 0. According to the arguments due to Geroch
and Horowitz, presented in [4], there are space-times satisfying the Bach equation
that are not conformal to an Einstein space.

'During the Workshop on spinors and twistors (28 June - 3 July 1999) at the Erwin Scrodinger
Institute in Vienna I obtained valuable advice on the subject of this note from M. Dunajski, C.
N. Kozameh, L. J. Mason, P. Nurowski, and K. P. Tod. When preparing the Letter, I have been
supported in part by the Polish Committee for Scientific Research (KBN) under grant no. 2 P03B
060 17.
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Kozameh, Newman, and Tod [4] have found a set of two equations defining a
class of spaces conformal to Einstein spaces; one of them is B = 0, but the other
one excludes some of the spaces with a degenerate C. There is an improvement of
[4] by Baston and Mason [1], but their equations still do not characterize all of M.

Problems

I consider the following problems to be ordered according to increasing difficulty.

(i) Find a counterexample to GST(M,).

(ii) If you fail in (i), then prove GST(90).
(1i1) If you succeed in (i), then find a set of conformally invariant tensor or spinor
equations defining 9, without reference to the degeneracy of C, such that 9, C M
and GST(IN) is true.

Note that if M. ¢ M, then GST (M) is stronger than the classical theorem.
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ASD FOUR MANIFOLDS AND FROBENIUS
MANIFOLDS

G. Sanguinetti
N.M.J Woodhouse

ABSTRACT. We describe here a simple geometric construction to obtain an anti-
self-dual Riemannian four manifold from a three dimensional! Frobenius manifold.
This establishes a relationship between the isomonodromy deformation descrip-
tion of Frobenius manifolds (leading naturally to Painlevé’s VI equation) and the
twistor approach to integrable systems, that views them as a dimensional reduc-
tion of anti-self-dual Yang-Mills equations.

1 Introduction

Frobenius manifolds were introduced by Boris Dubrovin in the late eighties to
encode the geometric information contained in a certain set of PDEs, the so called
Witten- Dijkgraaf- Verlinde- Verlinde equations (WDVV). These arise naturally
in the context of topological quantum field theories, and lead to a structure of
associative algebra on the tangent space of certain moduli spaces of topological
field theories.

For a more detailed analysis of the physical motivations that led to the in-
troduction of Frobenius manifolds we refer to [1], while a detailed description of
the geometrical features arising from Frobenius manifolds can be found in [3] or
again in [1].

Among the most interesting features that arose in the work of Dubrovin there
is the fact that WDVV equations are (particular) equations of isomonodromic
deformations, and in particular in dimension three they are equivalent to a special
form of Painlevé’s sixth equation.

On the other hand, one of the greatest developments in the theory of inte-

grable systems came from the application of ideas coming from twistor theory.
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In this context, many classical integrable systems (among which the Painlevé’s
equations) can be seen as a dimensional reduction of anti-self-dual Yang-Mills
equations, and hence solved via the Penrose-Ward transform [4].

It follows from this picture that to any solution of Painlevé’s sixth equation
there should be associated an anti-self-dual Riemannian four manifold. While it
is well understood how to find this four manifold starting from the Yang-Mills
equations, it is not clear what should be the link with Frobenius manifolds, and
what particular anti-self-dual four manifolds should be associated to solutions of
WDVYV equations.

2 Construction

For our purposes, we can look at a Frobenius manifold X as a complex manifold
endowed with a pencil of flat metrics, i.e. such that there exist two (contravariant)
flat metrics g; and g, s.t. the linear combination g; + zg is again a flat metric for
any z in C. This is a nontrivial condition (the flatness of a metric is a nonlinear
condition on it), and it corresponds, from the integrable systems point of view,
to the existence of two compatible Poisson brackets of hydrodynamic type on the
loop space of X [2].

In addition, on any Frobenius manifold there exist two canonical vector fields,
the identity vector field e and the Euler vector field F/, which have the following
property (see [1]):

denote by C' the Christoffel symbol of the Levi-Civita connection of g, then

L.LC=0 LgC=C

(the second is often referred to as a quasihomogeneity condition).

We have the commutation relation
[E,e] = ~e.

We will work in the flat coordinates associated to the metric g;. In these

coordinates the two vector fields take the form [1]
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and can be normalized so that dy = 1.

Let us now specialize to the three dimensional case.

Let us lift the vector fields F and e to T* X using the natural Lie lift. Define
then them on the manifold 7" X x C by adding a term _Z'a% to E. Explicitly,

the new vector field F will read

dimX dim X
. 0 0 0
E=3"dat® o=~ Y dapag— — 25~
a=1 o= a=1 ’ g apa Z8Z

By virtue of the quasihomogeneity condition the commutation relations are un-
changed, hence we get a two dimensional integrable distribution on the seven
dimensional manifold T* X x C.

If we consider the quotient of 7" X x C by this distribution, we end up with a
five dimensional manifold F, which will still be fibred with fibre C (this follows
from the fact that the vector field % descends up to scale to the quotient). The
base manifold of this fibration will be a four dimensional manifold M which is

the natural candidate to be our complex space time.

We have now to define an ASD conformal structure on the four dimensional
manifold M.

We will use the following proposition (see [5])

Proposition 2.1. Let W, Z, Z, W be independent holomorphic vector fields on
a four dimensional complez manifold M. Then W, Z, Z, W determine an ASD
conformal structure if and only if there ezist two holomorphic functions v and v
on M x P! such that the distribution on M x P! spanned by

L:W~z2+u9-, 1\4:2—zﬁ/+v2
Oz 0z

1$ wntegrable.

The vector fields W, Z, Z, W are going to define a null tetrad at any point

on the manifold M, which is equivalent to give a conformal structure.

Let us consider now the vector fields on X 8% and 8—‘1. We have the following

commutation relations

0 0 0 0
:dg—, [E ——]:dg—

E -
B, 6z2] Oty " Oty Ots
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Consider their horizontal lift with respect to the Levi-Civita connection V,

associated to g; + zg,. In the flat coordinates of ¢; this connection has the form

d+ zC
so that these lifts are respectively
d 0
L=—+2C4
atQ e 2alt apa
0 0
M= ;
Bs + 2035, Pp B

(C¢, are the components of C'). We denote by p, the coordinates on the fibers
in TX. Define W, Z, Z, W to be the degree 0 and degree 1 terms in z of these
two vector fields (as in the previous proposition), then the quasihomogeneity
condition guarantees that each of these vector fields descends up to scale on M
(the commutation with the identity vector field is trivial).

The commutation of L and M is equivalent to the condition that V, has van-
ishing curvature, and is thus equivalent to the WDVV equations. Furthermore,
changing our vectors %, 5% by a transformation in SI(2, C) clearly won't change
the picture.

Since the vector fields L and M satisfy the hypothesis of the previous propo-
sitions, we end up with a four dimensional manifold M with an ASD conformal
structure and an action of SI(2,C) on it.

Furthermore, this generalizes without any further problem to the n-dimensional
case (isomonodromic deformations in any dimension have been given a twistor
description [4] [6]).

Many thanks to P. Boalch, M. Dunajski, L. Mason and P. Tod for useful

conversations and suggestions.
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ASD Null Kahler metrics with symmetry

Maciej Dunajski

A four-dimensional Riemannian manifold which admits a covariantly constant spinor has to be
hyper-Kahler: in the Euclidean signature a spinor and its complex conjugate form a basis of a
spin space. This argument breaks down in the (++ ——) signature (also called ultra-hyperbolic,
Kleinian, neutral or split signature), where

Spin(2, 2) = SL(2,R) x SL(2,R),

and the representation space of the spin group splits into a direct sum of two real two-
dimensional spin spaces S4 and S#". The conjugation of spinors is involutive and maps each
spin space onto itself, and there exists an invariant notion of real spinors. One can there-
fore look for (+ 4+ ——) non-Ricci flat metrics with a parallel real spinor (which we choose
to be 1 € T'(S4). The Ricci identities imply that the self-dual Weyl spinor is of type N:
Cuapop = clatgiotp for some ¢ such that ¢4’V uc = 0. T shall consider the anti-self-dual
(ASD) case of ¢ = 0. The corresponding metrics will be called ASD null Kahler. They have
a null Ricci spinor, and vanishing scalar curvature. The resulting twistor theory is rich, and
leads to a new integrable system in four dimensions [1]. In this paper I shall consider ASD null
Kahler metrics which admit a Killing vector preserving the parallel spinor. Let us call them
ASD null Kdhler metrics with symmetry. 1 shall show that all such metrics are (at least in
the real analytic case) Jocally determined by solutions to a certain integrable equation and its

linearisation.

Proposition 1 Let H = H(z,y,t) and W = W(z,y,t) be smooth real-valued functions on an
open set W C R® which satisfy

H,, — Hy, + H.H,, =0, (1)
Wy — War + (H.W,), = 0. (2)

Then
g = Wo(dy? — 4dzdt — 4H,dt?) — W (dz — W,dy — 2W,dt)* (3)

1s an ASD null Kahler metric on a circle bundle M — W. All real analytic ASD null Kahler

metrics with symmetry arise from this construction.

Before proving this proposition I shall review some facts about Einstein-Weyl (EW) spaces
associated to equation (1). In [2] it has been demonstrated that if an EW space admits a
parallel weighted vector, the coordinates can be found in which the metric and the one form

are given by
h = dy? — 4dzdt — 4H,dt?, v = —4H.dt, (4)
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and the EW equations reduce to (1)!. If H(z,vy,t) is a smooth real function of real variables then
(4) has signature (4++ —). It has also been shown that there exists a one to one correspondence
between EW spaces (4) and two-dimensional complex manifolds (mini-twistor spaces) with a
rational curve with normal bundle @(2) and a global section x~!/4, where x is the canonical
bundle. These structures should be invariant under an anti-holomorphic involution fixing a real

slice in the twistor space.
Proof of Proposition 1. Let (h, v) be a three~dimensional EW structure given by (4) and let
(V, &) be a pair consisting of a function and a one-form which satisfy the generalized monopole

equation
xp(dV + (1/2)vV) = da, (5)

where %, is taken with respect to h. It then follows from the Jones and Tod construction that
g=Vh-VHdz +a) (6)
is a (+ + ——) ASD metric with an isometry K = §,. Using the relations
xpdt = dt A dy, xpdy = 2dt A dz, kpdr = dy Adz + 2H,dy A dt
we verify that equation (2) is equivalent to d *, (d + v/2)W, = 0. Therefore
Weedy Adz + (2(H We )y — Wi )dy A dt + 2W,,dt A dz = de,

and we deduce that W, is the general solution to the monopole equation (5) on the EW
background given by (4). We choose a gauge in which a = Qdy + Pd¢. This yields

Qz = '—sz, PI = —QW:Ey, Py - Qt = Q(HIWI)I - W:!:i) (7)

so Q = —W, + A(y,t), P = =2W, + B(y,t) and o = —W,dy — 2W,d¢ + Ady + Bdt. The
integrability conditions P, = P, are given by (2), and A, = B,. Therefore there exists C(y, t)
such that A = €, B = C;,. We now replace z by z — C and the metric (6) becomes (3). This
proves that (3) is ASD. It is also scalar-flat, because, as a consequence of (2),

R = 8(Wayy = Waar + (HoWe)ae)Ws = 0. (8)

We now choose the null tetrad
dz — 2W,dt

e = —2W,.dt, ¢! = o e = dz~2Wzdy—2Wydx+zeool, el = dz+ H,dy+ze'"

such that g = 2(e%e"?" — e1%e%"). The basis of SD two forms $4'8" is given by

o = = batg BB = % Al = dz A dt
SOV = =405 B = €1 A — 0 el = dt A d(22) + 2dE A AW + dy A dz.
o= = OA'OB'ZA,BI =M nelt = 2Wodz Ady + 2(2W, + Wy)dz Adt — dz A dz

+(2H Wy — 2zW,)dt Ady + 2dz Ady + (H, + 2%)dz Adt.

'With definition u = H, the z derivative of equation (1) becomes (u; — uug); = Uyy, Which is the disper-
sionless Kadomtsev—-Petviashvili equation originally used in [2]. There are some computational advantages in
working with the ‘potential® form (1).
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These two-forms satisfy:
2P0 AT = 20 AR gnf” =0, 42" =0,

dS"Y = d(H, — 2W) Adt Adz + (Wa — W,y — (HW:)e)dz Ady A dt. (9)

Therefore the metric (3) admits a constant spinor? which is preserved by K = 4,.

Converse : Let g be a real analytic ASD metric with a covariantly constant spinor ¢4/, which is
Lie derived along a Killing vector K. From Cy4 g ¢cp = 0 it follows that there exist coordinates
74" on the fibers of S — M such that 74’V 4478 = 0. Therefore a parallel section ¢4 of Su
determines a function I = 741, constant along the twistor distribution. The line bundle given
by [ on PT is isomorphic to x~/4, where x = Q%P7 is the canonical bundle. The Killing vector
K gives rise to a holomorphic vector field on PT which preserves the divisor [ . Therefore the
minitwistor space Z (the space of trajectories of K in P7) also admits a divisor with values
in the —1/4 power of the canonical bundle. The minitwistor space Z satisfies the assumptions
of Proposition 5.1 of Ref. [2] and the corresponding EW metric is of the form (4). Therefore
G = Q%g, where g is given by (3). Both § and g are scalar flat (this follows from the spinor Ricci
identities and from equation (8) respectively). As a consequence we deduce that Q = Q(t).
Now we can use the coordinate freedom [2] to absorb €2 in the solution to the equation (1).

Remarks:

e This Proposition is analogous to a result of LeBrun [5] who constructs all scalar-flat
Kahler metrics with symmetry in Euclidean signature from solutions to the SU(oo0) Toda
equation and its linearisation.

o If H = const then (2) reduces to the wave equation in 2 + 1 dimension, and consequently
the metric (3) is the (+ + ——) Gibbons-Hawking solution [3].

2This is a consequence of the following result: Let £42" be a basis of real SD two-forms on an ASD scalar-flat
manifold such that
d(tatpS48) =d(oanp?8) =0. ' (10)

Then there exists a covariantly constant real section of S4'.
Proof. Let (04+,t4) be a normalised spin basis. The covariant derivatives of the basis can be expressed as

VaLB’ = UaLB’ + VaOB’a vaOB’ = Waipr — UaOB’~

The first condition in (10) can be rewritten as VAA,(LAlLB/) = 0, which implies V, = 2U 4p1¢B 1 4. The second
condition in (10) yields Uaar = aatar, Waar = Bata for some a4, B4. Therefore

Vaatg = aatartp. (11)

Contracting the RHS of the above equation with V#¢., and symmetrising over (A’B’) gives 0 because g is ASD
and scalar-flat. As a consequence VA(C,[LA/>LBIQA] = 0 which gives VA 4,4 = 0. Consider the real spinor
ta = aexpf, where LAIVAA:f = 0 in order to preserve a0’ — g Integrability conditions for V 44/ f = aata:
are satisfied, as a4 solves the neutrino equation. Therefore we can find f for each a4, and equation (11) implies
that 74+ is covariantly constant.
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o Note that dT!Y # 0 unless W = H,/2 + f(t), in which case
A2 = d(Hy — HyHae — Hyy) Ady Adt = 0,
and we are working in a covariantly constant real spin frame. The metric

H,.. 2 H,.dy

5 (dy® = ddedt — 4H,dt") — p—(dz — =5— — Hzydt)® (12)

g:

T

is therefore pseudo hyper-Kahler. In [2] it was shown that all pseudo hyper-Kahler metrics
with a symmetry satisfying dK; A dK, = 0 are locally given by (12). Here dK is an
SD part of dK.

In the split signature we can arrange for one of the complex structures to be real and for
the other two to be purely imaginary:

—1P=5=T?=1, IST =1,

!

and S and T determine a pair of transverse null foliations. Now g(7T'X,TY) = g(SX, SY)
—g(X,Y) for any pair of real vectors X,Y. The endomorphism / endows M with the
structure of a two-dimensional complex Kahler manifold, as does every other complex
structure al + bS + ¢T parametrised by the points of the hyperboloid a® — b — ¢* = 1.

o If W, # H,./2 then (3) is not Ricci-flat. This can be verified by a direct calculation.
It also follows from more geometric reasoning: The Killing vector K = 0, acts on SD
two-forms by a Lie derivative. One can choose a basis £4'8' such that one element of this
basis is fixed, and the Killing vector rotates the other two. The components of the SD
derivative of K are coefficients of these rotations. Therefore (dK); = const if g is pseudo
hyper-Kahler. In our case dK, = (H,,/W,)dz Adt. Therefore H,, /W, must be constant
for (3) to be Ricci-flat. An example of a non-vacuum metric is given by W = H,/2.

I am grateful to David Calderbank, Lionel Mason and Paul Tod for useful discussions.
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