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A New Programme for Twistor Diagram Theory

The “new programme” suggested in this note is not 50 much new as
an attempted renewal of the original Penrose theory. The idea is that we
should take seriously the proposal that twistor diagrams are analogous to
Feynman diagrams. By “analogous” I mean that they should provide a
complete prescription for evaluating quantum field-theoretic scatiering
amplitudes to any order {in principle, at least), and that the diagrams for
any process should be given by some quite simple sort of combinatorial
rule which can be interpreted as a summing over all possible intermediate
states. It's not expected, however, that individual twistor diagrams should
be frans/ations of individual Feynman diagrams; quite the reverse. The
whole idea is to avoid the difficulties of Feynman diagrams - their
divergences and gauge-dependence. Nevertheless, the amplitudes
calculated by twistor diagram theory must (essentially) agree with those
specified by Feynman diagram theory.

A physicist could well take a more drastic line than this: unless
twistor diagram theory can come up with such a complete prescription,
there is little point to pursuing it; the theory as it currently stands has no
predictive value. It merely offers a sort of description of some first-order
amplitudes. Over the years the hope has been expressed that by studying
twistor diagrams which correspond to first-order calculations in quantum
field theory, new features will emerge which can be generalised to suggest
a complete description. After some fifteen years of looking at first-order
calculations perhaps it is time to have a stab at suggesting what these
features might be.

In what follows 1 shall discuss twistor diagrams disregarding all the
mathematical difficulties associated with defining them, and carry on as if
the "lines” of the twistor diagrams were well-understood objects (which of
course they are not; for recent advances in understanding the "philosophy”
of defining and evaluating twistor diagrams, see the article in this TN by
SAH and MAS .) The present line of thought starts from looking at the form
taken by these ill-understood “lines” of the twistor diagrams for first-order
massless QED, and seeing whether we can discern any formal analogy with
(as opposed to transiation of ) the structure of Feynman diagrams.
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Now in the Feynman diagrams tor QED every vertex looks like

corresponding to the A ’l,V term in the Lagrangian. The Feynman
diagram calculus can be seen as the rule: Using such vertices alone, write
down all possible diagrams which connect the given in- and out-states,
then evaluate them and sum over them. Is there an analogy in the form of
the QED twistor diagrams? If so, the vertices of twistor diagrams should
likewise have some standard form. Do they?

Well, perhaps! The obvious starting-point is the rule of “four lines at
a vertex” - which now becomes a essential part of the theory, not just a
notational convention. But if we take this seriously then we have 10 believe
that double lines can be considered as the composition, in some sense, of
two single lines. Moreover this composition must satisfy e g.

o

o ,

—_—— = O N—
o

— 1

|

ate

If we are prepared to believe that this can be given mathematical
sense, then it turns out that we can indeed ideniify a feature of all the QED
diagrams known, namely

for Moller scattering of massless electrons, represented by Feynman
diagram



any one of which can serve to give the correct (gauge-invariant)
amplitude for Compton scattering, represented in the Feynman diagram
picture by the sum of the two (gauge-dependent) terms

X

In all these:diagrams, the vertices have a common form:

provided we accept also the following rule: an erterna/ field may be
atiached thus to a vertex:

-\ —
y@ ) >@ (electron)
A ()
- -
~o %
_ q9) @ (photon)
>0 2

The picture this suggests is of an mteracuon generated not by the
space ~time quantum neld operator

gAY
but by the twistor quantum field operator
a_(290.,(29a,(2" ), (2%) Gl 0 (W) O (wﬁ)%(w,,()
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where the lines are (anti-)commutators:

[ao(Z*),to\(o(wd,)] ~7 w——»f—-%z et .

(here the suffices indicate homogeneities according to the same convention
as the labelling of twistor diagram lines).

The general idea is that electrons and photons are only clearly
distinguished as errernal states; the internal dynamics is described by
propagators not of particle states but of "twistor states” which are in some
sense square roots of particle states - and more fundamental than
particles. This also accords with the point of view advanced in TN 22
(“Elemental states”). This view also encapsulatés the very striking and
elegant feature of the first-order twistor diagrams which gives the present
theory much of its interest: propagators in the Feynman diagrams
facrorise into two twistor diagram lines (doubled up, for on- shell
separated for off-shell). :

However, all this only tells us that a Feynman diagram analogy is not
absolutely rufed ouvt by the form of the twistor diagram vertices. It does
not suggest any coherent scheme for generating twistor diagrams by a
combinatorial rule. Point one: these QED results don't bring in any idea of
summing over different diagrams generated by these vertices. Point two:
there are other simple diagrams which satisfy the vertex rule but which
don't appear above, namely

Some new investigation began with the guess that if these mean
anything at all, they must involve the interaction of ‘ ‘charged photons”. We
might therefore see whether they find a place in the SU(2) gauge theory -
where the vector gauge fields are themselves charged.



In what follows we shall study the standard model of SU(2) gauge
theory with wnbroken symmetry. In this theory we have leptons with
spin 1/2 and isospin 1/2, and a spin-1 gauge field with local SU(2)
symmetry. In the usual discussion the leptons are identified from the
beginning with the neutrino and the left-handed part of the electron - but
for discussing the pure SU(2) theory it is better to think of them only as
up-lepton and down-lepton, Lt and LV . Similarly the gauge field becomes
identifiable (when the symmetry is broken) with the appearance of
physical W-bosons W' W° W™ but 1 shall avoid a spurious identification
with phenomenology and write G, G°,G™.

In the SU(2) theory there are new first-order processes, arising from
the capacity of the vector boson to carry isospin-charge. Thus in the
analogy to Coulomb scattering we have contributions from zA4ree Feynman

diagrams. For example: +
N .o Yoo+ G &
| G — L G l)g.’ 'Ll)t + L +
4‘ [+ f Q 4\
L G L G L

Ii is a lengthy but comparatively straightforward process to show that this
amplitude can be represented by a sum of the /wo twistor diagrams*

3o we find that the diagram (1) does indeed have a place in the SU(2)
theory. This suggests strongly that in looking for a scheme for twistor
diagrams, we should no longer restrict ourselves to massless QED but
extend to a theory combining at least U(1) and SU(2) gauge fields.

*There are many difficulties glossed over here. E.g. (a) the SU(2) vector fields, like
U(1) photons, appear in these diagrams only in their separate left and right-handed
parts. There is no natural way of adding these two parts; they hehave like
independent fields, independently conserved. Also (b) all the Feynman diagrams here
are actually infra-red divergent, and the twistor diagrams correspondingly can only
make sense via a regularisation with inhomogeneous propagators.



and the external G-bosons
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Note that just as in the U(1) Coulomb scattering case, the individual
Feynman diagrams are gauge-dependent, although their sum is gauge-
-invariant. In contrast, the two twistor diagrams which now have to be
summed are each separately (and manifestly) gauge-invariant. These
sums agree - but it must be stressed that there is no correspondence at all
between the individual terms.

However, we have not yet expressed the full gauge-invariance of the
theory. We can go a stage further by studying all the possible LG »LG
processes at once, instead of picking out the specific isospin components
which appear in the amplitude just described. If we do this we find that
the coefficients of the two twistor diagrams become, in general, the Su(2)
invariants

owt owl owlt  owk

L C G'LJ , L G'Ia' L_, G (c.r?cch’\/f;b

where the indices are SU(2) isospinor indices. Remarkably, these index
contractions correspond precisely to contracting along the (-//}-fines
in each diagram! This can be represented graphically in the diagram
formalism by adopting the following rule:

. U
-
the vertices are written |7 M
VARIACEERYAN

(ie. they are isoscalars)

the external leptons appear as W >~O
(according to isospin)
-y
:

(according to isospin)
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There is now an easy way to write down the correct diagrams for any

assignment of isospins, for the rule implies that a diagram has a zero

coefficient unless an arrow can be drawn on each (-1) line so as to connect

the specified in-states and out-states consistently, the direction of the

arrow being conserved at each vertex. (In particular "arrow conservation” .

automatically incorporates iso-spin conservation.) |
We can continue to test this conjectured rule by carrying out the

more complicated calculation for GG-» GG scattering. A typical process, with

its Feynman dlagrams is given by

K

Again we can formulate the amplitude for all isospin assignments, and it
turns out that can indeed be put in a form consistent with the proposed
rules: the amplitude is a sum over the twistor diagrams

with SU(2) coefficients given by the "arrow rule”.

Thus, we find a place for the ‘missing’ diagram (2) above. Again, the
separate twistor diagrams have no correspondence whatsoever with the
separate Feynman diagrams. (A particular example of this is the case of
GO G® » G° G°; where we find that all three twistor diagrams are non-zero
but sum to zero; the Feynman diagrams for this case are however all zero.)

We may also check that the LL — LL scatterings are correctly
described by the same rules.

Although these are isolated identities, not following from any general
result, they do corroborate the idea of a twistor diagram/Feynman diagram
analogy. The U(1) theory is too limited to betray a pattern; the results
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might tend to suggest that an amplitude should be represented by one
twistor diagram. By studying the SU(2) theory we find ourselves naturally
forced into summation over more than one. Furthermore, we retain and
strengthen the idea of a standard vertex analogous to the Feynman vertex.

It's also good for morale to compare the quite complicated
Feynman rules for SU(2) theory vertices, which involve the isospin indices
in a far-from-transparent way, with the very s/imple twistor diagram
vertex in which the gauge-field indices are always carried on the (-1) lines.

Of course, we have only justified this comparison for the /7rst-order
theory, whereas the whole potency of the Feynman rules lies in their
prediction of amplitudes to all orders. And it must be remembered that we
don't yet have a rule for generating the twistor diagrams for an amplitude,
only an indication that the diagrams aren't totally inconsistent with the
idea of a combinatorial vertex-based rule! In particular, there is an obvious
question as to what the "order” of a twistor diagram is supposed to be: the
combinations writien down above mix up diagrams with four and six
vertices. However, at least we now have a non-trivial pattern in ihe
first-order twistor diagram theory which it seems worth trying to define
consistently and so extend io all orders. '

It is noteworthy that the “eleciroweak” theory seems to offer so
helpful a line of advance, and I would suggest that as well as taking twistor
diagrams more seriously, iwistorians might also take the “standard model”
of quantum field theory more seriously. It is a striking fact that data from
experimental physics has driven theory to the picture of massless leptons
and quarks, and a massless Higgs scalar, which provides a sort of
foundation within which internal-symmetry-breaking and conformal-
-symmetry-breaking are supposed to occur. After all, such a picture is
remarkably close to the twistor-theoretic belief that conformal structure,
massless fields, and left-right asymmeitry, are fundamental. My hope is
that twistor diagrams provide a proper [manifestly finite, conformally
invariant, gauge-invariant] calculus for this Zfeory with unbroken
symmeltry. (Actually, I would prefer to take a stronger line and hope that
the standard model will appear as an effort to force into the space-time
picture, a theory that really only makes sense in the twistor picture!)
Certainly the V¥, Higgs-fermion and the ¢* Higgs self- interactions, and
hence all the interactions appearing in the standard model with unbroken
symmetry, can fit into the twistor diagram formalism, though not with the
(-1,-1,0,2) vertices. (Indeed, it appears that these interactions supply an
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application for a number of diagrams hitherto not considered of direct
relevance to physical theory). There seems a chance too of applying twistor
diagrams (though perhaps in a perhaps less fundamenial/ way) in the
theory with brofken symmetry. We already have the twistor-
-diagrammatic way of getting mass eigenstates as an infinite sum of terms,
and perhaps this can be understood as the counterpart to the "standard
model” picture of how mass is imparted to the electron by means of the
V.¢7, interaction term in the symmetry-broken theory.

The results so far obtained suggest many moreé gquestions for
investigation, in particular the study of the other gauge symmetries,
including SU(3), of the standard model. I also believe they are robust
enough to supply some useful and stimulating guidelines for the
mathematical programme. These are some of the suggestions:

- There will be 4 class of ‘physical’ twistor diagrams defined by some
rule about vertices and the attachment of external states. For diagrams in
this class there should be a uniquely defined rule for finite evaluation,
including overall sign. Vacuum diagrams can be expected to fall in this
class. .

- The existing formalism of evaluation by contour integraiion must,
of course, be superseded by a consistent scheme in which the external
states are H's of the appropriate spaces. To express crossing symmetry,
such a scheme must allow for evaluation in every channel, i.e. with every
possible allocation of external states as in- or out-states.

- The "lines” should have a context-independent meaning, and should
be interpretable as commutators of twistor-field-theoretic operators.
Composing two (or more) copies of a line, to get a multiple line, should be a
well-defined operation. It may be that this involves some form of
“regularisation”, to appear even in the supposedly ‘'simple’ scalar product of
free field theory which causes us such trouble.

- The interpretation of the (-1)-lines is intimately concerned with
the nature of gauge fields. They must be understood as canonical inverse
derivatives somehow giving a gauge-invariant description of gauge fields.

- The diagram calculus should be seen as the perturbative
order-by-order calculation of quantities which could in principle be
expressed in a non-perturbative way. That is, there should be some
analogy to the Lagrangian which supplies the principle for Feynman
diagram expansion. We would expect this principle to create a link between
twistor diagram theory and other parts of twistor theory, notably those
expressing fields as deformations of twistor spaces. Andrew Hodges
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TWO PHILOSOPHIES FOR TWISTOR DIAGRAMS

1. Duality on Manifolds

Let V be a (C®, paracompact oriented) manifold of real dimension
n, Then there is a number of ways of investigating the topology of V from
the "homology" rather than the "homotopy" point of view. One of the most
natural things to do is to define the cohomology of V in terms of the de
Rham complex of C® differential forms:

d d d
Q0U) - QYY) 5> ... s ON(Y). (1.1)
Since d? = 0, the definition of the p-th cohomology group of V by means of

the formula

HP(V) = ker(d:QP(V) » QPYY(v))/d0P " (V) (1.2)
makes good sense.

Another popular invariant of V is singular homology: this is the
familiar homology theory of finite chains, cycles and boundaries, which is
defined from the complex

b b b b
Cn(V) = Cn-1(V) e CI(V) > CO(V) >0

where we have written b for the boundary operator - d is also in common
use - and Cp(V) for the vector space of finite smooth singular p-chains in
V. Since b? = 0, we set

Hp(V) = ker(b:Cp(V) = Cp_1(V))/bCp+1(V).
By the “fundamental theorem of exterior calculus" the pairing <w,c>of a

p-form w with a p-chain c¢ defined by the formula
<w,c> = [ w
c

satisfies the relation

<dw,c> = <w,bc>
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and it follows that <,> also induces a pairing betwgeﬁ HP (V) and HP(V).
This pairing is always non-degenerate, (Poincaré duality), and, if HP (V)
and Hp(V) are finite dimensional vector spaces, it identifies each with
the dual of the other. In particular, the space of linear functionals on
HP(V) is H, (V).

There is, however, an alternative route to the definition of HP(V)
which proceeds via the complex of C® differential forms on V with
compact support .

d d d
QW) » QLYY > ... > QX(V).

This makes sense since if w has compact support in V, then so does dw; d?
still equals 0 so we set

HR(V) = ker(d:QB(V) » QB*'(V))/a0R " (V)
(c.f. (1.1) and (1.2)).

If we QP and g € Qg'p then we may define

<w,n> = IV WA

Once again, the fundamental theorem of exterior caiculus guarantees that
<,> induces a pairing between Hp(V) and Hg'p(v): this pairing (usually)
identifies each of these spaces with the dual of the other.

Thus any linear functional on HP(V) that can be defined by a
homology class or by a compact cohomology class can in fact be
defined by both a homology and a compact cohomology class. This
observation elucidates (at least in abstract) the relationship between the
two philosophies for twistor diagrams as described in the next section,

A rather satisfactory framework for the discussion of the
apparently different ways of viewing homology and cohomology involves the
use of currents and was pioneered by de Rham. Recall that a current is an
appropriately continuous linear functional on the vector space 0,(V) of
all C® forms with compact support in V. Thus the space of currents is
large enough to contain all forms and all chains on V. The notion
of continuity mentioned above permits one to extend d and b to currents

(in fact d = tb on (homogeneous) currents); and hence to define the
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cohomology of V in terms of the complex of all currents on V. Similarly,
we define the homology or compact theory of V in terms of the complex of
currents with compact support in V,

These theories are Poincaré dual to each other and it can be
proved that every cohomology (homology) class can be represented by both a
C® (compactly supported) differential form and by a (finite) cycle on V.
The proof of the existence of C® representatives rests on the fact that
currents can be "smoothed" while representatives that are cycles are
constructed from an arbitrary fixed polyhedral subdivision of V.

‘Much of what has been described above has an analogue for analytic
cohomology: if V is now a complex manifold of complex dimension n, the

Dolbeault group HP'9(V)

HY(V,0P) is defined as the g-th cohomology group
of the complex
3 d 3

Py 5> Py 5 Ll s 0P T(Y) (1.3)
where, as usual, QP'9(V) is the space of complex-valued C® forms of degree
P in the holoﬁorphic directions and of degree q in the anti-holomorphic
directions. 1If (1.3) is twisted by tensoring with a holomorphic vector
bundle E, then this definition gives the Dolbeault cohomology groups
HP 9V ,E) = HY(V,0P(E)) of V with coefficients in E.

As above, we may consider also the cohomology of Dolbeault forms
with compact support in V: then using a subscript c¢c to denote "compact
support" as before we note that if o e OP+9(V;E) and 7 € QE'P’n"q(V;E*)
(where E* is the dual bundle of E) then w o % € 00'™(V) and so there is

a paliring
<@, N> = w .
7 I AT

This induces a pairing between HP*9(V:E) and Hg'p’n'q(V,E*); the Serre
duality theorem then states that this (usually) identifies each of these
spaces as the dual of the other.

We wish to conclude with one further observation about the (de Rham or
Dolbeault) compact cohomology of an open subset W in a compact V. Let

F = V-W and define the spacé of forms Q(F) of C® forms on F as the direct
limit

Q(F) = lim (91445 (U open in V)
»> U>DF
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so that a form on F is represented as a certain equivalence class of forms
defined on neighbourhoods of F. Note that if F is a submanifold of V so
that it admits an intrinsic definition of forms then this one will not
in general coincide with it. An alternative definition of Q(F) is in

terms of the exactness of the following sequence

0> O, (W) » V) > (F) » 0

"extension by 0" ‘“"quotient"
which gives rise, in cohomology, to the sequence
.. > HE(W) 5> HP(V) 5> BP(F) » HBY (W) 5 ... (1.4)

which can be understood to hold for both de Rham or Dolbeault cohomology.
This sequence identifies, in effect, HE(W) with the relative cohomology
group

HP (V) = HP(V,V-W),

a fact that we shall use later on.

2.1 Philosophy 1['}:[2]

Regard all the internal lines as functions, i.e. as elements of
HO(W.2 = oﬁ' ;9 (-m)). The external H's (elementary states based on
lines, say, élthdugh we will see how to relax this) are then dotted
together with all the internal H%s. (The dot product .3 between
o € HP(A; S) and B € Hq(B;T) is given by first cupping to get
o 663Hp+q(Al\B; S 8T) and then using the Mayer-Vietori's connecting map
mv : HPT9(AaB) > HPYI*1(AUB), so that o.f = m¥(auf).) Let e and v be
the numbers of lines and vertices, and d(= 3v) the complex dimension, of a
twistor diagram. Then in the case of a tree diagram e = d + 1 and (as
long as all the parameters are in general position) thisprocedure of
dotting everything in sight together is bound to yield an element of
Hd(X,Qd) # U. (X is the whole space of the diagram; it is the product
of v/2 PT s and v/2 BPT*s.) But meaningful twistor diagrams are not
trees. They have double lines (as in the scalar product) or loops (the
bdx), and in either case e = d so the dotting method (if it works) only
yields an element of H3" ' In fact it is worse than that (as pointed out
by RIB), because you.cannot treat the two lines in a double line

separately, as you get zero if you dot a thing with itself. So in the
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scalar product case we merely obtain an element of H*(X-Y;0%), where Y,
for any diadgram, is the intersection of all the subspaces defined when all
the lines in the diagram are made springy. (Here Y is the CP' given by
A.Z=B.Z =W.Z =W.C =W.D=0). We would need an element peH'(U; &)
(where U is a neighbourhood of Y) in order to complete the evaluation of
the scalar product in this way. We will see in section 3 that it is
possible to reinterpret u as a piece of topology 7 € H;_Y(X), which, by
the remarks in section 1, is isomorphic to H;(X-Y).
The box diagram would yield an element of H“(X-Y;Q‘z). However, RJIB has
suggested [s] an intergsting inerpretation of the dot product. Let

r : HP"1(X-Y;8) - HB(X;8)
be the connecting homemorphism in the relative cohomology exact sequence.
Then in some case, at lsast, the dot product is

a.f =x "(x(a) v r(B)).
Applying this idea to the box diagram (i.e. cupping the relative versions

1

of all the lines together), but omitting to use the final r ' map, yields

an element of H&EX;Q‘Q) which is well worth investigation.

2.2 Philosophy 2

.People who actually evaluate twistor diagrams do so by
contour integrating a holomorphic function. This function is the cup
product of all the lines in the diagram, thought of as functions (H%s -
even the external lines). It is therefore aﬁ element of HO(X-S;Qd) (by
the time you have included the traditional differential form). Here S is
the union of all the subspaces defined by making the diagram's lines
springy. The contour, an element of H;(X-S;T), has to be constructed by
hand, although there have been cases where homology theory has helped!
Actually this is philosophy 0, since it treats the external lines wrongly.
An idea of RP'sl4] was resurrected by MAS recently, and led to philosophy
2. We still cup everything in sight together, but now the external
lines are treated properly, as H's. We get an element of Hf(X~T;Qd)
(where 2f is the number of external lines), which can be regarded as an
element of Hf+d(X-T;E) (see [4], or use Dolbéault cohomology, simply
forgetting the bidegree d,f and remembering only the total degree d+f),
Now our contour (supercontour!) is an element of Hf+d(X-T;E), where T is

the union of all the subspaces defined by making internal lines springy,
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together with the C[' subspaces determined by making each pair of
external lines springy. This homology group is in general less
complicated and more relevant than Hd(X-S;m). Furthermore, there is an
important relationship between the two, best explained by considering one

external vertex of an arbitrary diagram:

S = {A.Z=0) u {B.Z=0} v R
T =((A.Z=0} A {B.Z=0)) U R

There is a Mayer-Vietoris sequence (in homology now) for each such
vertex:

Hy (X- ((A.Z=0) v R)) ® Hy(X- ((B.Z=0) UR)) ———— H,(X-T)

H, (X-8)
and in the cases so far studied (see section 3) themap m is either an
isomorphism or an injection at eéch vertex, and mf(supercontour) = usual
contour. This is not too surprising, given that we applied the
Mayer-Vietoris map in cohomology once at each external vertex in
order to reinterpret (A.Z B.Z) ' as an H'. (In other words, instead of
cupping (A.Z) ' and (B.Z) ' together, we.dotted them.) This suggests
going further, and dotting everything in sight together (as in philosophy
1). In the scalar product case this yields an element of H*(X-Y;0%) which
we can think of as in H'%(X-Y;T). Now we need a superduper contour (?)
K & H10(X-Y;E). Again Mayer-Vietoris maps take us back and forth
between these various types of contour (see section 3). The advantage of
using this last procedure is that it enables us to compare the two

philosophies.

2.3 The relationship between ¢l and &2

®1 (philosophy 1) needs a piece of topology 7 € Hé(X-Y), while
$2 needs a superduper contour Kk &€ H ,(X-Y). These groups are isomorphic,

both being dual to H'%°(X-Y), but the details of this relationship between
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7 and K are not yet understood explicitly (In terms of currrents, 7 and «
are simply the C” representative and the representation by a cycle of the
same class in the "compact theory" of X-Y). The corresponding

relationship for the box diagram is even more obscure.

3. The scalar product diagram
3.1 Magic
Let
peHO (P -L, O (-2)) = H'(P -L,0(-2))
p' € HOT(P*-L', 0 (-2)) = H'(P*-L', (0 (-2))

where L and L' are skew lines in twistor space. Throughout this section

we shall confuse appropriate differential forms with the cohomoloéy classes
that they represent. Then the dot product of ¢ with o'

d = p.p' € H' 3 (X-L X L'; (0 (-2,-2)) (3.1)
where we have written X = |P X [P *. 1In the previous section the dot
product between cohomology classes was defined - at the level ofDolbeault
forms, it works as follows.'

We use 6,61,62,... etc. to denotebump functions on our spaces,
that is C% functions with values in [0,1] equal to 1 on some closed set
and equal to O on some other (disjoint!) closed set. Let W, and W, be
open subsets with W, n W, # ¢;
let § be a bump function on
W, UW, such that the support of
B is contained in W, and such that
f = 1 in a neighbourhood of
W, - W, W,: then the support of df

’ - (LS
and of 38 is contained in W,N W,. Then o#% A8  have 3ipporf m the
1f w; is a closed form on W; (i = 1,2) the wnshadeel joart of Vﬁn\MZ‘

form w, A dB A w, is defined on all of W, U W, and represents v, .0o,.
Similarly, if the w's are 5-closed Dolbeault forms, w,.w, is represented
on W, U Wz‘by the 3-closed form w, A 38 A w, .

Thus ¢ in (3.1) is represented by ¢ A 38 A ¢' where f is as
defined in the above paragraph for

W, = (P-L) Xx[P*, W, =[x (P*L")
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and we have confused p and ¢' with their pull-backs to X-L X [P * - [Px L'
(this is where RJB writes ¢ X ¢'). Nowby Serre duality, functionals on
the spaceof the RHS of (3.1) appear as elements of

HI(X-LXL'; (0 (-2,-2)) (3.2)
where we have tacitly identified (0 (-4,-4) with Qﬁ. To construct an
appropriate A in (3.2) we demand that

dA A=
for some (0,2)-form . 1In view of the above remarks this amounts to the
demand that there be a factorization

A=3B,A N (3.3)
where ﬁ1 is a bump function with support in a neighbourhood N of L X L'
and equal to 1 in a smaller neighbourhood of L X L'. This factorization
has an interesting interpretation in terms of the sequence (1.4), which in
this eituation, contains the following segment: -

> B3(X, 0(-2,-2)) » H3(IXL', 0g(-2,-2)) » HI(X-ILXL') » H3(X) > .
In this case H®(X) = 0 = H*(X) so that

H?(LXL', (04(-2,-2)) 25 HI(X-LXL', 0(-2,-2))
where this map is given precisely by X » A = 38 A X (c.f. (3.3)).

In order to obtain agreement with the original scalar product
contour integral formula (see also [ 2] ) we must be able to
factorize N in the following way:-

A = (z"wa)”z.u
where peH® '(U) and U is a neighbourhood in N of & = ((Z,W) : z“wa = 0).
Thus U is a neighbourhood of the intersection Y of A with L X L'.




13

Ginsberg's construction of the element p vests on diagram-chasing in the
following grid of exact sequences. Each vertical sequence is a relative
exact sequence while the rows are induced from the exponential sequence
057 » ¢ > O%>50. Given an element 7 € H®(N,U; Z ) we can find

p = log(ps™'i(7)) ¢ H'(U; ®)
thus identifying u as the log of a line bundle (see below).

HING %) & H (N2

% /

'L, 0) 251 (V) 0F] = HILY; 7)

"

W N,V 0)

Strictly speaking, however, the diagram-chase leads from 7 to r(p) in
H?*(N,U: ¢) which Ginsberg explained by noting that p was to be used in a
dot product: but we are content to regard the first stage in that product
as the map r : H'(U, ®) > H2(N,U; (). Of course, it ismuch easier to use
5 the map j : H?*(N,U;Z) » HZ(N,U; &) (having observed that the grid is
periodic in a northeasterly direction (!)) but then the interpretation of
as the log of a line bundle is more obscure,
The perceptive reader may have noticed that in & 2.3 we discussed
the use of a contour k € H10(X—Y) or of a class 7 &€ Hé(X-Y) to evaluate

the scalar product but that here we have 7 € H*(N,U; Z). 1In fact, this is
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not serious, for any class in Hé(X—Y) becomes, under restriction to N, a
class in H?*(N,U;L) and conversely any class in this group can be '
represented by a pair of forms!®] one of which is closed and in Qé(X—Y).

If we start from the element (1,-1) of the group H' (N,(¥*) in
the grid, we have that §p(Y(1,-1) = 0 so that p = logp(9(1l,-1). The spinor
versionof this observation (in which the topological triviality of the
restriction to a neighbourhood U of the diagonal in P! X ﬂ31 of the
bundle Cp(l,-l) is used to guarantee the existence of a log of this
bundle on U) is a useful guide to the situation in the twistor case.

It is also not hard to see that N does not have to be a
particularly "small" neighbourhood of L X L' for the diagram-chasing to
work and the whole construction can bé carried through with
N= f°° x [P+, for example: this enables one to lift the restriction
that ¢ and ¢' be elementary states.

An explicit dech representative for p has only been found,
however, for the case that U is a "small" neighbourhood of Y. We shall
describe how such a thing can be constructed, leaving a study of the
relevant geometry to the reader.

{ |
Let F, ?, R and S be twistors such that

Q P Q /P
++ L] L/l
PQ=1', RS=L, S=R=0, R/ S ="1.
Then the sets
P W Q W

| I I |
W, = (Z,W}: Z#0, R#O0) and W, = {((Z,W): Z#0, S #0)
cover a neighbourhood of Y and, moreover,for (Z,W) € Y,

PW QW

| | IFL

Z2S =2

Thus for a small neighbourhood U of ¥, W A U and W, n U cover U and

log

Py
[
Z S 1is defined (its argument is near unity) on (er\U) n (Wzr\U).
1l
2 R

We claim that this log represents pu.

A
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3.2
The superduper contour K & H10(X—Y) can be related to the ordinary
tight (physical) contour for the scalar product vy € H (X-8) via four
applications of Mayer-Vietoris map in homology m. 1In fact m?(kx) is the
super contour in HB(X-T), while m(kx) = v. The first three m's are
isomorphisms, and the last is the injection to 7.
(HB(X—S) =0y & T\, where N 1s the loose, unphysical contour.)
Many thanks to RJB, APH and RP forall the useful discussions and

%Vm gens  Michael  Singer
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Spinors and Space-Time (volume 1)

Two-Component Spinor Calculus and Relativistic
Fields '

by R. Penrose and W. Rindler (CUP)
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Local Twistors and The Penrose transform for Homogenepus

Bundles. Za-h%

This note is intended to explain how to FPenrose transform the
cohomolagy of homogeneous bundles on twistor space into local
twistor fields on space—time wsing the minimum of technology. The
Fenrose transform for HDngenemus bundles has already been treated
in much greater generality by M.BG. Eastwood, [11. However, I hope
it will emerge that the treatment provided here has various
advantages, especially for explicit computations. This method works
for curved twistor spaces and automatically provides the Ricei
curvature correction terﬁa in ﬁanformally flat space—-time. It also
seems tikely that it will generalize to twistor spaces of different
dimension.

I will first give a brief account of the Penrose transform for
tensoirs ggz:f of homogeneity degree n, and then give various methods
tor deducing the cohomology of the irreducible bundles on twistor

space from this.

Reducible homogeneous bundles

The basic homogeneous bundle that I will work with is T = PT.

Local sections of this bundle can be defined as homogeneity degree —1

vector fields, a%s/az%, 1z%/2z%,afasazf1 = —a%a/82%, on the

appropriate region in T over PT. This bundle is of rank four and is

o - . o .
y & = Q,..,%5, then . B/DL7 is a

trivial; choose a basis in T, 5«
global holomorphic frame.

This is also a good definition when twistor SpaCE'iS curved
although T is then not trivial. The important feature is that for

both flat and curved twistor spaces T is the Ward transform of the

local twistor bundle on space—time. (see p. 275 of [53, or [21 which
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uses the alternate definition, (J10(41))*, of ﬂﬁ; see [41 for basic

facts about local twistors).

In the flat case we can evaluate a tensor gg' with homogeneity

degree (n—2) as a field on M by first expressing it in terms of

components with respect to the global frame, 6«“, and then evaluating

sach component as a zero rest mass on M:

noso rz:: c..ET f LR - “ﬁ(dﬂﬁ"
o ri:: co..er - 9
n =0 rgj:, such that 0O rg:: = Q,
n >0 rz:: co g such that vl rz:: c. g = o.
{(For n » 0 we also have the potential modulo gaqge descriptions:
4 ee.” "5 such that ??F,rlg::lc,)cn"'E' =0
®..D . LE’

modulo the gauwge freedom v « )

cc¥a..

With an abuse of notation we can denote the local twistor bundle
on M by.ﬁﬂ and denote by Saa the covariantly constant frame of ™ on

M corresponding to the global holomorphic frame am“ of T on PT.

. U . . . .
Using 5 5 we can translate the concrete twistor indices on I

intoc 1local twistor indices. This implies that VAA' acts on twistor
indexed quantities via the local twistor connection.

[For these results we dont need the constant frame, 3“m1 we ocnly
need the fact that T on PT is the Ward transform of the local
twistor bundlie on M. This will therefore work for a curved twistor

space so long as we only transform the positive homogeneity cases to

potentials modulo gauge on M. 1
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The FPenrose transform for irreducible homogeneous hundles

& . . . . o
The bundle T is reducible; there is a canonical section, Z , of

T ¢1) defined by the Euler vector field, z%as2z% on 7. (As usual ((n)
aftter the symbol for a bundle denotes the tensor product of the
bundle with 0(n).) This enables us to reduce Tﬁ and T as follows:
7%
0 2 0-1) 5 T & @1 5 0

Z“ {¥)

O 2 @1((1) - Tﬁ - a¢1)y = 0
where ® and 1 are the tangent and cotangent bundles of FPT
respectively. It is the bundles of homogeneous tensors over & or )
with Young tableau symmetries which are irreducible.
In L1313, M.G. Ea%twoad identifies the irreducible homogeneocus

bundles on PT with symbols, (nia,b,ci, é,b,c integers such that

e

asbfc. If one allows the use of £ one finds that (nia,b,c)

apes?

(n—rla-r,b-r,c—r). This gives rise to various possihble ways of
representing the bundles (nla,b,c) in terms of tensors over ™). A
particularly simple case is when ¢ = Q0. Sections of (—nla,b,0)
correspond to tensors g(“1--ﬂa)(ﬁ1--ﬁ)) that are orthogonal to z% an

all indices and have homogenesity degree n and have the following

tableau symmetry: EEEEEEEF[I[[EE] —a blocks

-b blocks

Xa .
In general one has a tensor g, that is trace free and has some
o

Young tableau symmetry that is orthoganal to 25 on its lower indices,

and is defined modulo the addition of tensors of the form

W, PBand o)
fa.. L)

The translation from (nia,b,c,} to (n—rija-r,b—r,c—r) is

Z

implemented by lowering indices using £ etc. Each of these

wpos’

different representations gives rise to different fields on M.
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(However , the spaces of fields corresponding to the different
representations of the same bundle are isomorphic and the ideas

explained below can be used to compute the maps explicitly).

Since we now have the Penrose transform (say F%" and %ﬁ"
resp.) of tensors g?" and f?" on PT we need only compute the

Fenrose transform of Z“g' and Z%f"" in terms of " and & °

respectively. We can then impose the Fenrose transform of Zbgg"' = 0

as a further condition on * and regard the Penraose transform of

(affn.)(..)

Yowoa

Z as gauge fresdom.
We can compute the aetion of A component by component. Each
component of z% acts on each component of g by helicity raising. The

relevant formulae can be computed easily or copied out from [3,4 or

51. We obtain:

. I SR 2 e
< 0 3 " - :
For n we have Z gﬁ__ —> ¥ f..B'..E" where
5 i 0
g e = .

ﬁd.D ..E e cn . .E"

where the expression on the right is just the primary/secondary part
decmmpnsition of the ¥ index on ¥ in terms of the transform of g, .
[This can be made transparent by means of the following "manifestly
conformally invariant® method of writing éhe standard contour

integral formula:s

X9 pPee® g o g 2%..2%q% " z'Par®d,
Bo- X =0 B~

where Xaﬁ, the position twistor, is the canonical section of T«ﬁtll

on M whose value at ® £ M is the skew twistor corresponding to .

NMote that the primary part of the spinor decomposition of each of the

indices ¥..€ vanisheé; this corresponds to Xapr"Ez" = 0.1
For n > 0 the most elegant expression for Zagﬂ°“ on space—time

is in terms of its potential modulo gauge description:



O oa. Do . E’..F~

z gﬁ__ 3 ¥ f..DD" where:
0 -
wbg"DD,E =B o e (ELlo.)l  FL.BY)
o cC S.. DD’

where again the right hand side is the primary/secondary part
decomposition on the ¢ index on Y.

For n ¥ O the expression for Zﬁg"in terms of the field

. . . 4 Xa. . T T
description is: z gﬂ_. — ¥ B..D..F where
1 C L . 7
5% = _ D&y Uia . E..F)
fa. D..F T . Ke =
| “iVepta . E.LF
Remarks

It can be seen that for n # 0 (using the potential modulo gauge

ﬁ {x.-
9. .

correspond to reguiring that the spinor

description for n > 0) the conditions Z = 0 and the operation of

(“;~-)--
Ban

parts of ® are symmetric over their primed spinor indices.

quotienting out by Z

Alternatively if one uses the c = 0 representation of homogeneous
bundles and evaluate the n ¥ 0 cases as fields, one obtains a
description in terms of fields with no gauge.

Example: HY (). Let AadZ<x € HY(R1). 8o Am is homogeneous of

. . o _ _ A’
degree -1, and‘satlsfles z Aa = 0. Let raB = (wﬁB’ & B) be the
Penrose transform of ﬁ“. The equations VEB Fa = 0 become:

B
VBE B'A'HB

. B- Q' .
] = — 1 = 0
pﬁH Q, and VE 3 B i€ It B 0.
o . c’ A
u nd i = _).
The Penrose transfarQ of Z Am ist Ve . P B Ech a C
These imply ¥ = 0O 50 @é = va ¢ for some » defined up to a

LaThi
constant. S50 elements of HY () are evaluated as fields wAB
satisfying v Spp = O ¢QA = O %. (Note that the machine in [11]

gives only a composition series for HI{(RQ1), it produces:



|

0 -» {A.S.D. Maxwelld - HY(Q1) = {z| OZp = 03 - 0.)

An irritation is that there are possible finite dimensional
errars in the computation of the cohomology of irreducible bundles -
the sequences (#) have a nontrivial extension class (the obvious

elament of HV(PT,1) L) so that the corresponding long exact

e

sequence of {(¥) will in general have nontrivial connecting
homomorphism. This is also, of course, an irritation for those who
wish to compute the cohomology of a bundle from that of the
irreducibles in its composition series; especially if it emerges that
the bundle is trivial.

It is possible to use the helicity lowering formula to transform
the action of asaz® on tensors on PT to operations on the
corresponding fields on space—time. This leads, in the potential
modulo gauge case, to an elegant déscriptinn of Herz pmténtials in
terms of local twistors. An example of this is given in an
accompanying article in this WAl (See also [51.)

The formulae for multiplication by A go through in the curved
rase. However the action of asaz% is not in general defined.

Many thanks. to M.A. Singer for useful discussions.

1] Eastwood, M.G., The Generalized Penrose-Ward transform, Hath. Froc.
Camb. Phil. Soc., 97, 145-187, 1985

[23 LeBrun, C., Thickenings and gauge fields, Class. Quant. Grav., 3,
(1986), 1039 - 1059,

{3) Penrose, K., Twistors as helicity raising operators, A.T.T. §2.13.

£41 Fenrose & Rindler, Spinors and space-time vol 2.

{51 Woodhouse, N.M.J., Rea} methods in twistopr theory, Class,

and Guant. Grav., 2, (1989) 257 - 291,
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The Relationship Between Spin-2 fields, Linearized Gravity and

Linearized conformal Gravity.

This note explains the relationship between spin-2 fields,
linearized gravity and linearized conformal gravity in terms of local
twistors.

A spin 2 field is a spinor field TAECD with conformal weight -1,

. . AT, _
satisfying: VA iABCD = 0

Both linearized gravity and conformal gravity can be described

by a metric perurbation, h with conformal weight 2. Abuse

ah’?

on b e P B thea .
notation by writing iABCD = VicVp hQB)A’B’K.thE equations Qf

linearized gravity are the same as for spin—2, although the conformal

weight of *ABDD is now zero. The eguations for linearized conformal
. C _
gravity are: VA’VE'WABCD = 0.

[We need only concern ourselves with perturbations in the metric
such that fA'B'C’D' = V?A'VS’UC'D’)AB = 0 since in linearized
theory, metric perturbations for both gravity and conformal gravity
split into the sum of self dual and anti self dual parts [11.13

The relationship between these fields is clear on twistor space:

Spin—2 fields correspond to elements g(Z) ¢ HY{(G(2)).

Linearized conformal gravity corresponds to a general linearized
deformation of a region U in PT, ie g“a/az“ € H1{U,®) , where @ is the
tangent bundle of FT, ga has homogeneity degree one and is defined
modulo multiples of Z“. It is convenient to fix the freedom in gm by
setting 8g°/3z% = 0; this implies that the deformation preserves the

' : _ o, 3 3
holomorphic volume form, aAZ = E ... Z2°dZ" dZ° dZI°, on PT.
*KpBHH "~ -~

Linearised gravity corresponds to elements of HY (U,® which
preserve various structures on twistor space; this amounts to saying
that they are of the form (1%Pagsaz%as2z? for some skew simple

A

infinity twistor 1% and twistar function g € HI(U,8(2)).,
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It can be seen that a spin-2 field determines a linear gravity
field once one has made the choice of an infinity twistor, and linear
gravity is a subset of linear conformal gravity.

Infinitesimal deformations, g“, of U determine infinitesimal
deformations of the bundle ¥ on U (see previous article for
definition of ™. This determines a variation in the local twistor
connection as this is the Ward transform of ™. The 1iﬁeari;ed
deformation is giveﬁ by Bg?bzﬂ in Hl(U,ﬂg). The variation in the
connection is given by Penroze transforming 3g?32ﬁ as a homogeneity
degree zero matrix valued twistaor functinnvta a matrix wvalued 1-form
with A.5.D. (covariant) exterior derivative (which is the variation
in the curvature of the lacal twistor connection).

For linearized graVity the variation in the local twistor

Sazgraziaz’.

connection is therefore the Penrose transform of 1“
Penrose transforming all these objects according to the scheme

presented in my preceding article yields the following inter-—

relationships: Let g € H1{8(2)) EC(A’B'C') modul o VC(D’XA'B’)
C — z o 13 - 3
where V(D'SA‘B'C')C = 0. Then aZg/a3Zl7dZ ba.G“ﬁ £ T(“ﬁ)ﬂﬁ (M
where: c B’ ¢
5 _ chﬂdx 1hcﬁ dx
B ih A dx" ¥ A B‘dxc
cB c
v a2t g | AB AA‘ . BR’
and DG = ABCD where dzx =& _ ., .dx dx
AB. AR -~
0 0 .
The spinor parts of Gw3 constitute the potential chain for
. _ c’ _ c’ A’
Yapco*  Yaeco T Voo Feamscr T Yoo YaaiMe oo
_ c A'B’

Voo Vara 1 Vs %o -

To obtain the variation in the local twistor connection due to a

linear gravity field corresponding to g, choose a skew simple twistor

%A such that DIW3 = 0, then Imsﬁﬁa is the corresponding variation in

the connection and curvature:
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Mote that the decomposition of I“OGV into spinor parts is

o
done with respect to the choice of Ic'("c1 as infinity twistor.

Finally we can obtain the relevant quantities for linearized .

conformal gravity. Let g“ £ H‘(U,Wﬁ(i)) be evaluated as potential
o « D .. AD"  ~ D’

modulo gauge: g &= C c = (1hC " Fcﬁ’ ) satisfying:
C A A - (B'~ C° DY _ _
Vecnoe *U gepy T Y. amd FEES L = e
Then ngbzﬁ is given by Fmﬂ where:
] r A dx® ih AB dn " ]
% — c R c
£ ; c g BC
i 1PCA,de FCA' dx
whetre r* = 0 follows from ag7az“ = 0, and I’ A and F aire given
o - o cB cA'R

by the linearized limit of the standard curved space expressians for
these quantities in terms of the variation of the metric, habn

0f interest for “"googly" considerations is that one can obtain
these expressions from £ € HI(U,0(-4)), since then Iaﬁzﬁzafﬂz can be

evaluated directly onto space-time (see [2]1 for details) to give a 2

gp
g1 )

Gbtain potentials observe that d(15ﬁ2“2°fAz> = 0 and so z%zffa7 =

form F“ﬁ which is the self dual version of D(Bm given above. To

1
-

dﬁﬁ[ g, ¥ o

We can push Qﬁﬁ down to space-time to give a 1-—form G 'rdx "

which is the self dual version of 6__, so that Iﬂsﬁaﬁ is the

kB
corresponding variation in the local twistor connection. There is
here the slight subtlety that the gauge freedom in I.m;:;t?:‘:ﬁb is
constrained by the egquation DVCGC“b = 0 (as first noticed in a
Ciovi lar ' . context by Eastwood & Singer).
(o Hm

[11 Raston, K., % Mason, L.J,, Deformations of A and vanishing Bach
tensors, TH 20, 1985. :

[21 Woodhouse, M.M.J., Real methods in twistor theory, class & Puant.

Grav. Z, 1%985,257-291.
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Twistor quantization of Open Strings in Three Dimensions.

In this note I will outline the quantization of certain loops in real 4-dimensional
twistor space. Such loops represent quasi-periodic null curves in 3-dimensional
Minkowski space-time M 5. These null curves themselves represent open strings
(in the “conformal gauge”) propagating as timelike minimal surfaces in M ;. The
correspondence between null curves and minimal surfaces is valid in any dimension.
The focus here is on 3 dimensions because the twistorial picture is particularly
straightforward. Recall that in 4 dimensions a null geodesic corresponds to a null
twistor Z% modulo a phase. For null curves this phase degeneracy grows to be a
large gauge symmetry group and one has to contend with a highly degenerate 2-form
in attempting to write down the symplectic structure. These problems evaporate
in My o, where one may define both real spinors and real twistors. The phase
degeneracy may be eliminated completely.

The 3-dimensional case is interesting for other reasons. In the light-cone gauge
(LCG) quantization of a relativistic string (Goddard et al 1973) a special coordinate
system is chosen in order to solve the constraints of the theory before quantization.
This breaks Lorentz covariance classically. One checks after quantization that the
theory is covariant. One finds that the theory in dimension d is covariant if either

a) d = 26 and the ground state is tachyonic

b) d = 2,3, with no other restrictions.

Since a string in 2 dimensions leads a rather dull existence one is led to consider di-
mension 3. The remarks made here ignore questions regarding second quantization
and interactions. Within this rather narrow field of view the 3-dimensional case is
much preferred to the 26-dimensional case since there need not be tachyons within
the theory! (The LCG first-quantization of a superstring is covariant in 3 and 10
dimensions.) The other traditional space-time approach to string quantization is
covariant, with the constraints being imposed after quantization as conditions on
the “wave-function”. This form of the free theory is much less fussy about dimen-
sion at the first quantized level. The space of physical states (i.e. solutions of the
quantized constraints) has a positive semi-definite inner product provided only that
d < 26 and the ground state (mass)? is bigger than a certain negative number. Ev-
idently d = 4 has a rather ambiguous status within the framework of conventional

first-quantization techniques as applied to the free theory. The same can be said
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of the twistor quantization in that dimension, because of difficulties caused by the
phase degeneracy described above. There is very limited evidence that a theory of
quantum strings cannot be formulated consistently within a 4-dimensional frame-
work. It is perhaps more appropriate to suggest that the quantization procedures
used so far are inadequate to deal with the string problem, except in certain critical
dimensions. At the very least one should investigate alternatives. The approach
described here builds on the twistor description of strings at the classical level. A
fairly comprehensive bibliography of such ideas is given by Hughston and Shaw
(1987).

Let z* = (4, x, z) be coordinates for Minkowskian 3-space M, 5, with metric
ds? = dz®dz, = dt? — dz? — d2?

The points of M 2 correspond to symmetric 2-index spinors 48 via

Q;AB-—L t— =z T
V2l 2z ttz

and

2%z, = 2det 248 = 2482%Pe 40e5p .

Complex conjugation on tensors is extended to spinors as an involutory operation

. The inner product on spin space defined by

<a,a>= iatatBeyp

defines the group SU(1,1). The twistor equation is the condition

V(CD(UA)(QI) = {)

on a spinor field w#(z), where Vep = V(¢p) is the spinor covariant derivative.

Equivalently one may write

VCDLUA(:E) = 5A(C'7TD) (1)

for some spinor field 4. Application of the Ricci identity implies that 74 is constant
and that consequently the solution to (1) is wA(z) = w? + z4Brp , where w# is

constant. The twistor correspondence is defined by the zeroes of w#(z):

w4+ 2481 =0 . (2)
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Twistor space may be considered as the set of pairs Z% = {w?,74}. It comes

“equipped with an antisymmetric metric €og = €[qg}, defined by

Z{’Zfsﬂa = wApA — QAW‘A N

where 28 = {w?, 74} ; Z§ = {04 pa} . Raising and lowering of indices is
defined in the usual way: Zo = ZPegq = {74, —wA} and Z%Zq=0.

The incidence relation (2) defines the twistor correspondence between space-
time and twistor space. Given a space-time point 48 the set of all twistors incident
with 2 is an isotropic 2-plane: If Z{* and Z§ are any two points incident with z
then

237926 =0 . (3)

Projectively one obtains a null line in projective twistor space. Any two twistors
satisfying (3) define a unique point in space-time. Conversely, given a pair {w?, 74}
the corresponding space-time structure is a +-plane (in general odd dimension),

which in this dimension is a null line:

:cAB = a:OAB + t7rA7rB

‘Suppose that a twistor Z% is incident with a real space-time point: zt4P =

38 | Applying 1 to (2) gives wt4 + mABer =0, and so

z°7l = U)AWL —wiry =0 .

This condition may be solved by requiring that Z¢ is itself real: Z1® = Z® which,
with an appropriate choice of spinor basis, means that all the components of Z¢
are real. This is assumed from here on.

An open string in M; 3 corresponds to a quasi-periodic null curve in My ,. If
the world sheet of the string is given as X°%(r,0) and one works in the conformal
gauge, where the induced metric of the world-sheet is conformal to the flat metric
ds? = dr* — do? , then one can write X%(1,0) = ¢%(1 — o) + ¢°(7 + o), where
$(s) is both null and periodic: '

$()hals) =0, (s +2m) = do(o)

Here and throughout the operation " denotes %;. The periodicity condition is equiv-
alent to #%(s + 27m) = ¢°(s) + P, where P¢ is indeed the total momentum of the

string.
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Since ¢%(s) is real and null there is a real spinor field m4(s) such that
B (s)rs(s) = 0 .

One normalizes 74 so that <}§AB = w78, It follows that

PAB=/ ds n47B . (4)

bt

A curve Z%(s) in twistor space may be defined by imposing the incidence

relations at every point on the curve:
wA(s) + ¢4 (s)ms(s) = 0 .
The space-time curve is also inci‘dent with Z:
wh(s) + ¢2B(s)ip =0 .
It follows that Z*(s) must satisfy:
Z%(s)Za(s) =0 . . (5)

Given our assumptions about reality (5) is the only constraint on the twistor curve
and replaces the nullity assumption on the space-time curve.

The curve w?(s) is not periodic. Indeed,
wh(s +27) = wi(s) = PABrp(s) .

Another difficulty is that the translations do not act properly on the twistor fields
as given. Under a space-time translation of the string: X* — X% + V* the null -

curve ¢° transforms according to
a a 1 a
and so )
wh(s) = wh(s) — —2-VAB’R'B(3) .

This is half the displacement in twistor space that one expects. Both these problems

can be solved as follows. Define

1 1"
DA% = g7 BP0 =g | dsd%(s),
-
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the latter quantity being the average < ¢* >, with respect to the given parameter-
ization. Now défine Q4(s) by

wh(s) = {yP — sII*P}rp(s) + Q4 (s)

The new curve P¥(s) = {Q4(s), ma(s)} has several useful properties. Note
first that Q4(s) is periodic, so that P%(s) defines a loop on twistor space. Also,

under translations Q4 transforms correctly:
QA(s) — QA(s) — VAP rp(s)
The constraint is modified when expressed in terms of P*(s). Indeed, we have
PPy + 4Bn mg =0 . (6)

The loop variables are important for they can be used to cast both the symplec-
tic structure and the angular momentum structure into particularly simple forms.
Consider first the symplectic structure. From any Lagrangian field theory one can
construct an associated (not necessarily non-degenerate) symplectic 2-form. Apply-
ing these ideas to string theory, suppose one has a string X* (’r,&) and two nearby
strings X + V¢, X*+ V,*. Working in the conformal gauge the symplectic form is
described by an integral:

mwmm=/ddwww—www}-
0

The integral can be taken over the 7 =0 cross-section, for the equations of motion
and boundary condtions ensure that w is independent of 7. Now let V;* correspond

to variations §; P in P®. Then some calculation leads to:
w(Vh, Va) :/ ds §; P%6, Py . (7)

Thus if the open strings in space-time are represented by loops in twistor space then
the symplectic structure on the space of open strings is just the integral around the
loop of the standard twistor symplectic structure. This formula is significantly more
straightforward than its space-time counterpart, although it does not have the man-
ifest reparameterization invariance of the latter. (The action of reparameterizations

in twistor space is not just to replace the parameter by its new form.)
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Both the momentum and symplectic form are elementary integrals around the
leop in twistor space so one can write out the whole theory in terms of Fourier

modes. One expands P%(s) as

P(s) = 7 Z n exp(—ins)

where the components satisfy Z% = ZI‘:‘ . The 2-spinor form of each mode is

Zx = {w;j},pn’A}, Then the symplectic structure is given by

n=]

o
w=dwf Ndpo,a— Y dZ} , AdZS (8)

and the constraints (6) are given by the vanishing, for 0 < r < oo, of the quantities

oo

. 1 ar
Le= Y i(m+ Q)Zr‘inL ot é‘;PABPmM,APIn,B

m=1

m 1
+Z ZaZr ma+;1—’PABpr m,APm,B

and their complex conjugates. The total momentum PA® is given by

PAB = "Po Po + ZP(A 12

One may write down a corresponding expression for the angular momentum

tensor M4® as a sum over modes. This is given in the space-time by
™
M = / do {X°X>!-XxbXx2}
0

the integral being taken over any constant-7 cross-section. This tensor may be

expressed in spinor form as

Mab — M(AK)(BL) — ”ABEKL + ,UKLEAB ,
where u4B is both symmetric and real. In terms of the twistor loop coordinates

orte finds that . -
uAB = [ s UAgB)

-
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and hence that
AB _ L (()APOB) ' Z ~{wAptD) 4 Ll

The Poisson bracket algebra of the constraints may be computed, using the

canonical variables indicated by (8). One finds that for all integers m and n,
{Lm, Lo} =t(m—n)Lmin .

One recovers the Lie algebra of Dif f(S?) from the twistor Poisson bracket algebra.
The two sets of constraints with n > 0 and n < 0 each generate a closed sub-algebra
unrder Poisson brackets. Also, the constraint £y defines the mass m of the system,
via ) o )
Lo= o—m® + > 2nPgPl, =0 .
e

The path to twistor quantization of this system is now clear. The quantum
states are “functions” f(pg,Z2) of a spinor and a sequence of twistors which are
holomorphic in their twistor arguments and one makes the replacements

) D
A . .
“O T Bpa Zha = ~'8zs

One may make the following hypothesis to deal with normal-ordering ambiguity
in Lo: The functions f(pg) are quantum string states with mass zero.

This fixes the quantized r = 0 operator as

1 oo
- T
ﬁo—i}‘m +nz=:1nEn )

where £, = =722 577 is the nth homogeneity operator. The hypothesis also demands
that one only admits the conjugates of the non-negative r constraints when one

chooses the holomorphic polarization. These are

1 R
Z (’ITL + Zazzm-i‘ra + gPABpm,BPjTH"‘:A

-‘Zm AB - R
+Z aﬂZ rmoz+ P pr mAp:rnB

m=0
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where ZA:nﬂ = ~i5Q2—E: if m >0 and {po,B,—z’gi—o';} if m=0.

In spite of their apparent complexity, exact solutions of the quantum constraint
equations may be found quite easily. The functions f(po,4) are the basic allowed
states. The next set of states to consider are functions f(po,4,Z{), independent of
Z% forn 2 2. The constraints for these functions may be solved as follows. Define

b
e _ PO,AL"f1
- Po,BPf‘
The solution space is given by f = G(’?aPo,A’P;x,A) and contains both massless
and massive states. To get massive states one lets k£ be non-negative and sets
G = exp(ﬂ:\/imn)H(po,A,pl’A), where

m? =21k, H=(pyari) *8(po,a)

and ¢ is homogeneous of degree k — 1. The massive states of this type correspond
to functions homogeneous in each of their spinor arguments. The full spectrum of
states is not yet known. -

The quantized constraints define a twistorial representation of the Virasoro
(1970) algebra. To write this in standard form define

Then the full algebra becomes -

d
[Vm,Vn] = (m — n)Vm+n + 'i‘-z-( L. m)Sm,“n

and the states f(p, Z) satisfy
[Vo—h]f(p,Z) =0 3 me(p7Z) =0 3 mZ 1

where d = 2 and h = ‘11—. Note that in the space-time covariant quantization the

number d would be the dimension of space-time, here 3. The twistor representation

has a different central charge.
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Interesting questions:

1) What is the inner product?

2) How does one deal with the phase degeneracy in 4 dimensions, where the whole
theory is invariant under the transformations P(s) — exp(i¢(s))P*(s)?

3) How much of a coincidence is it that real spinors and twistors also exist in the

“critical” string dimensions 10 & 267
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Quasi-local mass for small surfaces

R M Kelly, K P Tod and N M J Woodhouse
The Mathematical Institute, St Giles, Oxford OX1 3LB, UK

Received 19 May 1986

Abstract. We calculate Penrose’s quasi-local mass for a small sphere by expuanding in
powers of the affine parameter along the generators of a light cone. We then check the
result and extend it to small surfaces of more general shape by technigues involving more
direct use of spinor calculus. In a non-vacuum spacetime, the mass inside a small sphere
is obtained from a 4-momentum P, which is the product of the volume enclosed by the
surface and the 4-vector T,,¢%, where 1“ is a unit timelike vector orthogonal to a spanning
3-surface. In the vacuum case, the mass vanishes at the fifth order in the diameter of the
surface, both for small spheres and for small surfaces of more general shape.

Class. Quantum Grav. 3 (1986) 1169-1189. Printed in Great Britain

More on Penrose’s quasi-local mass

K P Tod
Mathematical Institute and St John's College, Oxford, UK

Received 18 April 1986

Abstract. We define the ‘data’ of a 2-surface S in spacetime in terms of its first and second
fundamental forms and show how Penrose’s kinematic twistor for S is a functional of these
data. We find necessary and sufficient conditions in terms of the data for S to be ‘contorted’,
i.e. for its data not to be the data of a 2-surface in a conformally flat space, and we show
that S is non-contorted iff the usual (local) twistor definition of norm is in fact constant
‘on S. We find a large class of non-contorted 2-surfaces in the Schwarzschild solution and
show that the Penrose mass M, at one of this class is zero or Mg, the Schwarzschild mass
parameter, according as the 2-surface does not or does go round the central hole. Finally,
we calculate the 2-surface twistor space for a stationary black hole and prove the ‘iso-
perimetric inequality’ for the Penrose mass of a static black hole.

1. Introduction

This paper continues the investigation of Penrose’s quasi-local mass construction
(Penrose 1982a) begun in an earlier paper (Tod 1983). In the earlier paper, a number
of examples of the construction were given and the mass was calculated for a variety
of 2-surfaces in a variety of spacetimes. What énabled the calculations to be carried
through was that the usual definition of twistor inner product when applied to a pair
of 2-surface twistors gave a quantity constant on the 2-surface (Tod 1983). Con-
sequently, this usual definition defined an inner product on the 2-surface twistor space
and the mass could be calculated in terms of the norm of the kinematic twistor with
respect to this inner product.
It was remarked in Tod (1983) that a 2-surface S will have this property, that the
usual inner product gives a constant on S, if § together with its first and second
~ fundamental form could be embedded in a conformally flat 4-space. Penrose (1984)
has proposed that a 2-surface with this latter property be called ‘non-contorted’, and
conversely be cailed ‘contorted” if it cannot be so embedded. Thus a 2-surface S is
contorted if the presence of conformal curvature can be deduced from the first and
second fundamental forms of S, briefly, from the ‘data’ of S. Further, if S is non-
_ contorted then the usual inner product is a constant on S.

-
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