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Quantization of Strings in Four Dimensions

1. Preliminaries .

In TN23 it was shown how one can define a novel quantization scheme for open strings in three di-
mensions based on the use of real twistor coordinates for the underlying null curve. This is described in
greater detail in [1]. Our purpose here is to present a tentative approach to the corresponding problem in
four dimensions for real Minkowski space M. The fundamental space-time object is a curve é“(s) which is
both null and periodic:

q")“(s)q'ﬁa(s) =0, qlS“(s +27) = d;“(s) .
The periodicity condition is equivalent to
¢%(s +2m) = ¢°(s) + P*

where P, a future-pointing vector, is the total momentum of the corresponding string when the string tension
T'is set at unity. The world-sheet of an open string is then given by X1, 0) = ¢%(1 — o) + ¢%(1 + 7).
Closed strings are obtained by combining pairs of such null curves with equal total momentum, For further
discussion see [2-9].

Since ¢%(s) is null there is a spinor field 74/(s) such that
¢4 (s)rar(s) =0 .
One normalizes 74’ so that ¢44" = 7474’ It follows that

x
1 1
pAA — ds#hnh

-

“ A curve Z%(s) in twistor space may be defined, up to a phase, by impdsing the following incidence
relations at every point on the curve:

wh(s) = i¢AAI(s)7rA/(s) .
The space-time curve is also incident with Z:
04 (s) = igA4 ()T ar(s) .

The reality of ¢* implies that various inner products of the twistor fields vanish. A minimal set of these
conditions, sufficient to imply the rest, is

Z%Z4=0, %4 =0, Z°5,=0.

In three dimensions the constraints corresponding to the first and third of these conditions can be solved
[1] by demanding that the twistor is real since the inner product is symplectic rather than unitary. In four
dimensions, however, these two constraints must be retained.

2. Loop Variables
Now the curve w4(s) is not periodic. Indeed,

wh(s+2m) = wA(s) + iPA4 4 (s) .

Also, the translations do not act properly on the twistor fields as given. Under a space-time translation of
the string: X — X9 4 V¢ the null curve ¢° transforms according to

8 gt Ve



and so .
wh(s) — wh(s) + %VAA,WAI(S) .

This is half the displacement in twistor space that one expects. Howver, one may define a new twistor curve
which is periodic and transforms suitably under translations as follows. Define

1 x
a a
Y = o _xds $%(s)

this quantity being the average < ¢% >, with respect to the given parametrization. Now define Q4(s) by
1 s I; ]
A =[P =t | ae) + 045

The new curve P%(s) = {Q4(s), mas(s)} has several useful properties. Since 24(s) is periodic, P%(s) defines
a loop on twistor space. Also, under translations Q4 transforms correctly:

QA(s) = Q4(s) + VA 1 as(s) .
The constraints are modified when expressed in terms of P*(s). An independent set can be taken to be
PP, =0 ,
P.“Pa + E%PAAlirA'irA: =0,
Pap, + 2—"7;13“’[%”,1, —Faia] =0 ,
where the reality of ¢ has been used.

3. Symplectic Structure _

The loop variables are important for they can be used to cast both the symplectic structure and the
angular momentum structure into particufarly simple forms. Consider first the symplectic structure. From
any Lagrangian field theory one can construct an associated 2-form. Applying these ideas to string theory,
suppose one has a string X?(7,0) and two nearby strings X¢ + V¥, X¢ + V', Working in the conformal
gauge the symplectic form is described by an integral:

20(Vi, V) = do{V$Viar = VitVaus}
' 0

The integral can be taken over the 7 = 0 cross-section, for the equations of motion and boundary condtions
ensure that w is independent of 7. This can be written in terms of variations in the corresponding null curve

as

2w (Vh, Vo) = i ds[696%61da ~ 626a616%] + 610%(7)b2da(—7) — 820° (7)61da(—7)

Now let V;* correspond to variations §; P* in P®, Then some calculation leads to:

. .4
w(Vi, Vo) = % ds {6,P%8,P, — 6,P%6,P,} .
: -

Thus if the open strings in space-time are represented by loops in twistor space then the symplectic‘struc\ture
on the space of open strings is just the integral around the loop of the standard twistor symplectic structure.

The twistor expression for the energy-momentum of the string has already been given in terms of the
loop variables. One may write down a corresponding expression for the angular momentum tensor M 9%

This is given in the space-time by

M= [Cdr {xext-x"x2)
0



the integral being taken over any constant-r cross-section. One may express this in terms of the null curve

M = [ ds{ggb — 6247} + ¢9(—m) g (x) — $°(m)g (=) .

. . . It — Alnt . .
This tensor may be expressed in spinor form as M® = yABeA'B’ L jA'B'cAB where uAP is symmetric. In

terms of the twistor loop coordinates one finds that

x
phB = ds iQA475)
. -
These expressions may be combined into a simple expression for the angular momentum twistor as an integral

over the twistor loop variables:

A% = wdsP("Ip)“’P.,

-7
Note that both the 2-form defining the symplectic structure and the angular momentum twistor have a
particularly simple form when expressed in terms of the twistor loop variables. This is not the case if one
uses the primary twistor curve Z%(s). Then one obtains integrals of similar type together with boundary
terms like those which appear in the space-time expressions involving the null curve ¢%(s). When expressed
in terms of the loop variables the structures describing the string are just the integrals around a loop in

twistor space of the structures appropriate to the space of null geodesics.

4. Symmetries and Constraints

There are two infinite-dimensional symmetry groups acting on the twistor representation of a null curve.
The first is the phase symmetry. The twistor curve and the loop curve P*(s) are only defined up to phase
rotations:

Pe(s) s ew(‘)Po‘(s) .

Infinitesimally we have
6P% =id(s)P* ,

where ¢(s) is a real-valued function. This symmetry is associated with a degeneracy in the 2-form w. If we
set 61 P* = i¢ P* we obtain

"
w(phase,Vs) = ——% ds¢b5(P*P,)
-

which vanishes on the constraint surface where PP, = 0.

The corresponding computation for reparametrizations or diffeomorphisms of the parameter set is rather
more involved. If, infinitesimally, we set s = o + f(o) and for simplicity set f = 0 at o = & then some
integration by parts leads to

- e . _—
w(diffeo, Vo) = = | dpfby|>(P*By— PoPy) + —PA4 7470 .
2 )., ) o

On the constraint surface, where P“f’a + E%PAA’irA'/rA: =0 and P*P, = 0, one obtains zero, as expected.
One may also verify that the angular momentum twistor satisfies

§A%P =

under changes in the twistor loop corresponding to phase rotations or reparametrizations The first invariance
is obvious; the second requires some integration by parts. ‘

Thus far the last constraint has not appeared. The only symmetry apparent in the space-time description

is the set of reparametrizations. We have injected a local phase symmetry by the use of twistor coordinates.

- Both these symmetries correspond to a degeneracy of the 2-form w. The last constraint plays a rather curious

role in that it corresponds to a degeneracy of w in a direction which points off the constraint surface, whereas



the vector fields corresponding to phase changes and reparametrizations are tangential to the constraint
surface. Specifically, it preserves the first two constraints but not the third one. One way of interpreting
this is to note that the vector field takes us from real null curves to those which are semi-complez, i.e., null
curves whose imaginary part is a null vector. The simplest way of describing this vector field is in terms of

the primary twistor curve Z*(s). The vector field is given by
d . .
82% = &;[ng"‘] ,
where g is a real-valued function.

5. The Constraint Algebra

Further insight into the structure of the constraints can be obtained by considering their Poisson bracket
algebra. At this point we must decide on a suitable bracket. We will use the brackets suggested by the 2-form
w. As usual, we may work with the loop.variables or their Fourier coefficients. Choosing the latter approach

we set
1 .
PQ’ — chems
V27 ";oo "
so that
o —
AP = N 2PV B,,
n=—oo
i _
w= Y idPYAdPny
n=—oo

with brackets

N~ [fOf 89 09 Of
{f,0}= ’r;w{apf 0P  0P* 9P, )"

Now let )
Un,N = P:Pn—Na ) Vn,N = '2_7T'PAA

The Fourier modes of the constraints may be written as Ay, Bn, Cy respectively, where

1
TnA!Tn-NA

00
Ay = Z Un,N
n=—o00
1)
By = Z {nUn,N + Vn,N}
n=-—o00
00
Cny = Z {nZUn,N +2nVn’N} .
n=-o00

The algebra of the U,V quantities is
{Vn,N; Vm,M} =0,

{Un,v, Vin,pt } = ilVin p 4 N6nm—nt — Vo a4 N8mn—nN1s
{Ua, N Upn,m } :vi[Um,M+N6n,m—-M ~ Un, s 4+N8m,n—N],
from which we deduce the following constraint algebra:
{An,AM} =0 /
{Bn,Bu} = i(N — M)Buryn '
{AN,Bu} =iNAnsnm ,

{AN,Car} = i2NBpryn — N2 Apran]
- {By,Cn} = i[(2N — M)Crryn — N?Baryn]



{Cn,Cp} = i[(M? = N*)Carin +2(N — M)Daryn] -
The quantity Dy = 3, {n®U, n + 3n?V,, y}. We note that a simple way of appreciating the structure of
this algebra is to construct the operators

. d N v, d2
—iNs — _o—iNs 2
ds O = —ie ds?

The algebra of these quantities under commutation is then isomorphic to that given above, with Dy =

—iNs &%
[ FPER

6. Quantization

The form of the constraint algebra poses some interesting questions when we consider quantization.
The form of w suggests that we consider a holomorphic polarization with the quantum states as functions
|¥(PZ) > of all the modes. We make the replacements

- e}
Fra — T 9P

The structure of the angular momentum twistor indicates that this scheme leads to a manifestly Poincaré
invariant set of commutation relations for all the relevant operators. However, the constraint algebra fails
to close: the constraints are second class in the sense of Dirac [10,11]. In general the imposition of such
constraints as quantum conditions can lead to inconsistencies and one is led to the construction of Dirac
brackets and the elimination of the second class class constraints before quantization. However, in the
present context it appears that with some care inconsistencies can be avoided, while the implementation
of the Dirac procedure presents formidable technical problems. We remark that our procedure is to be
regarded as a “covariant quantization” scheme. There are also schemes analogous to “light-cone gauge”
(LCG) quantization. However, in four dimensions it turns out that the LCG scheme also has second class
constraints, so that this form of gauge fixing offers little advantage over the manifestly covariant scheme.
Now we define operators
- a 9 ¥ 1 ISAA’ 0

Up Ny =~ Tnal
s n « 3 , nA A
6Pﬂ— 2 3wn_N

Here P4 is the quantum momentum operator. In these expressions only ﬁ,,,o has potential factor-ordering
problems. First we assume that these expressions are ordered with all derivative terms on the right. Then

some simple calculation gives
[Vn,N) Vm,M] =0 )
[Un,N’ f/m.M] = [Vm,M+N‘5n,m—M - Vn,M+N‘5m,n~N]»
[0, Umone] = (Ui 8 6 me vt — Un a1 4 NOmn—n]-

We might also consider operators with a factor-ordering contribution:
0n,N — ﬁn,N + /\n(SN,O .

The same algebra is obtained provided that A, = ¢, a constant independent of n. When we define the
quantum constraints in the obvious way, e.g, by

(e

ANZ Z ﬁn,N
n=

-0

and so on, inspection of the fl, B’, C constraints shows that any non-zero ¢ will lead to infinities in the
operators Ag and C’o, while the operator éo is unchanged. So we may consider Ag and Cp as only defined



\O

up to a constant. If we speculate on regularization the infinity in Co may be regarded in a natural way as
2¢3, n? = 0, by (-function techniques, but there seems to be no good reason for assigning any particular
value to the constant in Ag. Apart from this factor-ordering term, the quantum constraint algebra is precisely
equivalent to the classical constraint algebra with {, } — i[, ]. So, for example, we have

[By, Bu] = (N — M)Bpyn

so that the twistor quantization scheme has vanishing conformal anomaly. The price we pay for this is the
introduction of unphysical degrees of freedom and extra constraints to go with them. [This is similar in
spirit to the BRST quantization procedure where the introduction of ghosts removes the anomaly but extra
constraints appear to fix the ghost degreeé of freedom.]

Now we consider how the constraints are to be imposed. The absence of a conformal anomaly means
that one might initially consider imposing the constraints for all N. This appears to generate far too many
conditions. For example, we would like the quantum analogue of the rigid rotator to be part of the scheme.
Classically this is a massive two-twistor state which does not satisfy the condition Dy = 0. It turns out that
the quantum condition D0|\I' >= 0 eliminates the massive solutions, so we do not wish to impose it. Now
classically the reality constraints satisfy identities such as A_n = An, so we really only need to impose the
constraints for N > 0. The algebra for N > 0 closes, provided we adjoin suitable Dy, En, ... constraints.
The first D condition which appears is just Dy from [C’g,é’l]. Further commutation with Co generates E
and so on. So we have a new set of constraints consisting of a block starting at the zero Fourier mode and a
block starting at the N = 1 mode. The entire set is generated by a finite subset. There are several choices; a
minimal one is Ag, Ay, By, Co. We remark that at this stage, since Ajp cannot be generated by commutation
of any of the other N > 0 constraints, we may assign the c-number in it as we wish.
~ 'There are two ways in which constraints can be imposed quantum mechanically. Unfortunately the
strong form

‘ Cl¥ >=0

leads to difficulties. One cannot find any solutions which are functions of finitely many twistors! The weak
form, and all that is needed ultimately, is that the matrix element of any constraint between bhysical states
should be zero: -

< ®C|¥ >=0. (*)

However, we do not know in detail what inner product is to be used. Nevertheless, we imagine that it is
related to the standard twistor inner products in some way. In particular, if ¥ and @ are each functions of
k twistors, this expression should reduce to an integral over a k-fold product of twistor spaces (and their
duals), the relevant variables being those of which ¥ and & are functions. One might imagine then that the
operation of working out the inner product involves setting all but & twistor variables to zero and integrating
over the remainder. Suppose we denote by K the subspace where all twistors but the arguments of |¥ >
vanish. If our speculations about the inner product are correct, then one way of arranging that the matrix
element % vanishes is to work out C|¥ > and demand that its restriction to K is zero.

A few remarks are pertinent at this point. First, if we do not impose the constraints in their strong
form, the problems arising from the failure of the algebra to close are less significant, since further strong
constraints cannot be generated by commutation. So in fact several schemes are possible: we may apply
just the A, B,C constraints, or add the D,E,F... conditions, The examples worked out are not able to
distinguish between these possibilities, though the restriction to N > 0 for A,B,C and to N > 1 for the
others appears to be necessary for an interesting theory.

Second, it should not be surprising that we cannot find solutions to the strong constraints in terms
of finitely many twistors. Any state which solves all the constraints must be a state which is quantum
mechanically invariant under phase changes and reparametrizations. Consequently it would have to depend
in a highly symmetrical way on all the twistor modes. For example, suppose we consider a classical null
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geodesic, which corresponds to a single twistor up to a phase. This could be represented by any one P;j" ,
or by a collection of proportional P¥. The corresponding quantum state would have to depend in a totally
symmetrical way on all the P¥ to be phase invariant. [This can be seen in practice by looking at the action of
the A constraints.] Since the investigation of such totally symmetric states is rather impractical, we consider
invoking some form of “gauge fixing”. We can regard the restriction procedure described above as a rather
brutal form of this. The operation “set all but finitely many twistors to zero” can be regarded as a possible
gauge condition.

First let us suppose that all but P are zero. All the 14 opérators vanish, and the only contributing
constraints are the N = 0 conditions. Let E} denote the homogeneity operator —Uk,o. From Ag we find

{E}c + )\}I\II(P;,X) >=0,
where ) is the undefined constant in Ag. Then Cj is just k times Bo, and this gives us
EE|¥(PF) >=0.

Soif k = 0, we can consider single twistor states of homogeneity A, but if k # 0 we have states of homogeneity
zero. If we set A = 2, the k = 0 states are just massless scalars according to the standard scheme. However,
the most natural choice in this context is to set A = 0, which puts all values of k on an equal footing, and
suggests that the single twistor states are massless with helicity —1, i.e. negative helicity photons.

7. Regge Trajectories
Now suppose that all twistors except P* and P& are set to zero, where s > ». Again the restricted
constraints reduce to a few ‘éimple conditions. Let M? denote the quantum mass-squared operator Pep,.
After some preliminary manipulations we find that the independent conditions are as follows. From Ag we
find
{E, + By + A}¥ >=0.

From Bo we obtain 1
— y 2 — — _
{2 M —rE, sEs}]\I! >=0,

while Cy gives

TEONE 2, - szEs}I\I! >=0.
2
Finally Agy gives
4]
PX ¥ >=0,

Comparing the middle two constraints we deduce that
rS[E, + EJ|¥ >=0.

For consistency we must have A = 0 unless either 7 or s is zero, in which case it can be assigned freely.
A detailed analysis of two-twistor states was made in [12]. There is an underlying SU(2) symmetry
group with ladder operators

9 9
T, = Pe—— = p®
+ =8 pe 0 - = Bgpa

satisfying [Z;,7_] = 273, where
I3 = %{Es - Er} :

For a mass eigenstate (here any state homogeneous in each of its arguments) with non-zero mass, the spin
operator is just the Casimir
S*=T_ T, +T3(Zs+1).
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Comparing these relations with the constraints, we see that the states are annihilated by Z,. and every-
thing about the spectrum is determined by a knowledge of A (subject to the requirements above) and the
homogeneity of one of the twistors. We can write

A
I3:Es+§')

M? = 2n[(s — r)E, — 7))

acting on |¥ >. Thus we obtain a linear relation between the mass-squared and the spin Z3:
M? =2xf(s — r)Ts — (r +5)A/2] ,

yielding the desired Regge trajectory behaviour for the quantum rigid rotator.

Recall that we set s > r, so that the coefficient of Z3 in this relation is positive. Furthermore, since the
states are annihilated by Z; we must arrange that Z3 > 0. Thus all the states with A = 0 have non-negative
mass-squared and integral spin. If either » or s is zero a non-zero X is possible, and it is possible (e.g. with
A = 1) to get half-integral spin states. This example justifies one of our assumptions used in applying the
constraints; that only the N > 0 constraints be imposed. If we had allowed the negative N conditions to
be imposed also, we would have had to set Z_|¥ >= 0 also, which kills off all but a few trivial states and
destroys the Regge trajectories.

The constraint equations restricted to three or more twistors are rather more involved and so far a
definitive. picture has not emerged. We hope to discuss these and related issues (such as the Dirac bracket
and LCG schemes) elsewhere.
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Fattening Complex Manifolds

by Claude LeBrun

Let Y be a complex manifold, and let X ¢ Y be a closed complex
submanifold. The m—th order infinitesimal neighborhood of X in Y is [G] the

ringed space X(m) = (X,O(m)), where

Ckm)

_ mt1

where C& is the shéaf of holomorphic functions on Y and where I ¢ C& is the
ideal sheaf of functions vanishing on X; these objects arise as the natural
setting for formal power-series solutions of extension problems in which
analytic objects on X are to be extended to a neighborhood of X in Y. We may
use the above example as our guide in defining a fattening of a complex

manifold (X, 0) of order m and codimension k to be a ringed space

X(m) = (X,0, ,), where O is locally isomorphic‘to
(m) (m) )
LN TN o VI L

and is equipped with an augmentation homomorphism «: Ckm) — O which, with -
respect to the above local isomorphisms, just "forgets" {l,...,tk.

When k = 1, a fattening is the same as a thickening in the terminology of
[EL]. The purpose of the present article is to provide a solution to the
following problem: given a fattening X(m) of X, when does there exist a
fattening X(m+p) of higher order which extend; it? How many such extensions
are there? The results given here will strengthen and generalize thep,%.
result for thickenings given in [EL], 'and will be applied to a twiﬁfgr
correspondence for conformal gravity in a forthcoming paper.{L].

Let X(m) be a fattening of X, and observe that there is a natural

collection {X(‘)Il =0,1,...,m} of aésociated fattenings obtained by setting



\ Y

L+

o 1= O(m)/I(m),

(¢)
where I(m) c Ckm) is the ideal of nilpotents; we say that X(m) extends X(z).
These lower order fattenings come equipped with a useful family of
q

CQ‘)—modules, namely I(p) for p € ¢ + q. In particular, provided m > 0, we

may define the conormal bundle N* — X by

"
o) = Iy

because the right—ﬁand sheaf is'locally free over 0 = 0(0), and the normal
bundle N —+.X is defined to be its dual; these definitions are dictated by
the archetypal examples of the infinitesimal neighborhoods of X € Y. 1In the
special case of a thickening, I(p) turns out to be locally free on X(p—l) for
p € m, so that we may sensibly define a vector-bundle extension of N* to

X(P_") by

* .- > —_
Ckp—1)(N ) = I(P) if k=1, p4$m,

and duals or tensor products of N* will similarly be extended to X(p_1) by

dualizing and tensoring this sheaf as an Ckp_l) -module.

In a similar spirit, we may mimic TYIX by defining the extended tangent
bundle T — X by
AT) = Dero
(1)

{b: © —> 0 €-linear!D(fg) = fDg+gDF}
(1)

This extended tangent bundle fits into an exact sequence

0= T—T—N—0 ,
where T := Tl’OX, from whence [EL] CQ1> can be reconstructed, so that thé
family of all first order fattenings of X with normal bundle N is naturally

identified with H'(X, 0(TON')). We can extend this vector bundle to (Pt ’

P € m, by letting



. Ckp*l)(T) 1= Dero(p)(o(p),o(p_l)), p4m.

If p 2 0, there is a natural restriction homomorphism
m; Aut(Ckm+pQ-——9 Aut(Cka, where Aut denotes ring automorphisms. Set e

Aut(m)(o

(m+p)) = ker =,

Lemma 1. Suppose that p € m. Then for any fattening X(m+p) = (X,Ckm+p)) k

there is a natural isomorphism

' . : mt1
A () Ot * Do Oy Harp))

(p)

Proof. First we construct an isomorphism

mt1

7 ) i) T et L ()

by o(e) = &1 .

Let us see that this is well defined. If ¢ is an automorphism of Ckm+p)

mt1

© Llmtp)

acting triviaily on Ckm), we have (¢-1) and

Ckm+p)

*(f) ¢(g) - fg
fle-1)(g) + g(o-1)(£) + [(o-1)(£)](¢-1)(g)

f(e-1)(g) + g(o~1)(f)

(¢-1) (fg)

mt+1

2 _ s . . .
(m+p)] = 0. Thus ¢(¢) is indeed a derivation if.

because p £ m implies [I

mt1

0, . Omtp) Lmtp))

¢ £ Aut, (0 ). Conversely, if D & Der 3
(m) " “(mrtp) (mrtp) ‘

u

(1+D)(fg) = fg + fDg + gDf

fg + fDg + gDf + (Df)Dg .

[(1+D) (£)1[(1+D)(g)] ,
so that 1+D is an automorphism acting trivially on C%m), and ¢ is bijective.
To see that o is an isomorphism of sheaves of groups, notice that if

D. & Der (

Jj=1,2, then
] (mtp)

mt+p
Ckm+p)’1(m+p))’



| &

pti1 p
DJ(I(m+p)) C,I(m+p) DjI(m+p)
m+p+1 -
© Lltp) =00

so that p s m implies DID2 = 0 and
(1+D1)(1+D2) =1+ (DI+D2).

Thus ¢ is indeed an isomorphism, as claimed.

Finally, notice that these is a natural isomorphism

mtp mt+1
p: Der (0 » I ) =-—> Der (o, \,I )
S0 +
gy () (p) Oy () (mp)
because elements of Der (o ,Im+1 ) annihilate P by the above
Ckm+p) (artp)’ " (artp) (mrtp)

correspondence. This gives an isomorphism

. g m-*’l
pa: Aut(m)(Ck ) Dero (Ckp)’l(m+p))‘

) (p)

Q.E.D.
The right—hand sheaf would be more useful if it were constructed out of

Ckp) alone. The next lemma shows that such a construction is indeed possible.

Lemma 2. For any fattening X(m+p) = (X, 0 ),
=== < (mtp)

mt1 ~ Al

- I 20 I
(""'*'P) o(p—l) (P)

as a sheaf of Ckp_l)—modules, where O denotes the symmetric tensor proudct.

Proof. There is a natural surjective morphism

. m+1 mt1
00 e T )

m ~ m
given by p(% vy O ﬁJj) =Ly, Il
J =

37 4= v oy Vhere gy ® Ly Ty P Oy @04

]

~

T3 ﬂJj € Ckm+p) have projections to Ckp‘l) (respectively CQP)) equal to 73

(respectively ﬁJj) but are otherwise arbitrary.



To show that p is injective, notice.that the question is local, so that

we may take O , which we will treat as an O-module. Each element

(mtp) ~ Qv+p,k

of E)m+1 I may be expressed as
o Py K
PT1,k
p—1
L L f‘ fi 0} "Ofi 0(&“l (l ) s
g=o 1.‘.106 m+qék 0 mtq o m—1 m mtg
where the coefficients f ooy are elements of 0. The image of this
) mtq

element under u is

p—'! .
2 L LTI P
q=0 15106---éim+qék [} m+q o m+q !
which can only be zero if all the coefficients fi ey vanish, since the
o m+q
terms (i ---(i y» @ < p, are independent generators over O.
0 mtq

Q.E.D.

With these tools in hand, wé now give the main result of this article.

Theorem. Suppose that O < p ¢ m. The obstruction to the existence of a

fattening X(m+p) extending a given fattening X(m) = (X,Ckm)) is an element of

m+1

H? (X, Der (0, .,0 I, \)). If this obstruction vanishes, the family of
o (P) o(p—l) (P)

(p)

all such fattenings is acted upon freely and transitively by

1 mt1
H(XJMﬁ%w(%pVO%Fﬂ)HPﬂ).

Proof. The family of all fattenings of X of order m+p and codimension k

is the non—abelian sheaf cohomology set HI(X,Aut(Om+p k)). By lemmata 1 and 2
?

there is a short exact sequence of sheaves of groups

mt+1
D&rop k(c)p’k,oo,rl kI ’k)>j3—9 Aut(6%+p’k) — Aut(C%’k) .
b} H

where m is the natural restriction map and j is obtained by following (p'cr)—_l

with the natural inclusion of AUt(m)(C%+p,k> into Aut(CL+p’k). Since



Der(0 O"'+1

R I ) is abelian, we can apply the obstruction theory
(p) 0(p_1) (p)

developed in [EL] to the present situation. Thus, if t & Hl(Aut(C; k)), the
Y

obstruction to t being in the image of m is an element of

HZ(X,tDer (0 ,Gm+1 I )t‘l). Here the sheaf
Y pryk O Py k
p‘!k p‘—l’k :
tDer (0 ,Gm+1 I )1:-'1 is obtained from local copies of
’ o pyk’ O pyk
pyk p~1,k
Dero (o ,Om+1 I } by using a Cech representation of t as thé set of
Pk O psk
pak pi,k
. transition functions via the action of Aut(¢©@ ) on Aut (o ) by
m, k {(m) mtp. k

conjugation. But

= Der (to ,Gm+1

to Pk %0 2

1 pyk

= Der, (0, ,0™' I, )
CQP) (P) Ckp_l) (P)

if t is a Cech cohomology element representing Ckm). This yields the desired

result.
QDEOD.

Part of this result, namely the i clause, may be checked more directly,
in the spirit of ﬁothstein’s approach to defprmations of complex supermaniolds
(R]. Namely, given X(m+p), the family of all fattenings of order mtp agreeing
with X(m) is HI(X,Aut(m)(CQm+p))). If p € m, we may use lemmata 1 and 2 to

m+1

1
ite thi H (X o 0} I .
rewrite this as (X,Der( (p)’ 0(p*1) (p)))

A somewhat different way of stating the same result involves noticing that

m+1
Dero (0(p),00

(p) (p=1)

I(p)) may be rewritten as



Dero

(p)

\ 4

(0, .,0 )@ o™, =0 (T)® mFl 1 ., since a
(p)’ "(p—1) 0(p_!) (p) (p—1) 0(p_10(lp_1) (p)

derivation from 0(p) to an 0( p_l)—module is determined precisely by

arbitrarily chosen images for tl,...,(k,z!,...,z" £ 0(p), where

a(zl),...,a(z") & O form a local coordinate sysiem. This is particularly

appealing in the cases when either k or p is one, in which case

* .= . . (p-—l
O(p_l)(N ) e I(p) is a vector bundle on X

)

. When we ins‘ert these

changes, the following is obtained:

Corollary. Sﬁppose that either p=1 or that k=1, and let m ® p. The

obstruction to finding X(m+p) extending a given fattening X(m) is an element -

of H*(X,0

(p_l)(T ) 0"~'+1N*)). If this obstruction vanishes,

HI(X,O(p_l)(T Q O"'“N*)) parameterizes the family of all such fattenings

x(m+p).

When both k and p are one, this is the result .of [EL].
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Classical Strings in Ten Dimensions

L.P. Hughston
Lincoln College, Oxford OX1 3DR, England

and

W.T. Shaw*
Department of Mathematicst,
Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, U.S.A.

Abstract.

This article analyses the motion of a classical relativistic string in
flat complex ten dimensional space-time. A general solution is presented
for the equations of motion. The solution is given in terms of essentially
freely specifiable functions.

In deriving these results extensive use is made of spinors for ten di-
mensions, the basic properties of which are described in some detail. In
particular, a significant role is played by those spinors in ten dimensions
which satisfy the ‘purity’ property of E. Cartan. These constitute an
eleven dimensional algebraic variety V' in the sixteen dimensional linear
space of reduced (Weyl) spinors for the group SO(10). A general classi-
cal relativistic string in ten dimensions can be represented by means of
a set of arbitrarily specifiable twice-differentiable curves in V.

As a byproduct of the investigation a general solution is also given
for the equations of motion of a classical relativistic string in eight di-
mensional space-time,

Seldom have thinkers become so absorbed in revery, or so far estranged from reality, as to imagine

for our space a number of dimensions exceeding the three of the given space of sense...

-Ernst Mach, Space and Geometry, 1906

T appean PN ?(uc. Rod goc.



19

The Isoperimetric Inequality for Black Holes,.

The Isoperimetric Inequality for black holes is the name which has
become attached to the inequality :

A ¢ 16wM= 1

which is conjectured to hold between the area A of a 2-surface S and the
mass M contained by or associated with S in some way, when S is a black
hole ar an outermost trapped surface in an initial data set (Penrose
1073, Gibbons 1984). It forms part of what Penrose (1973, 1982) calls
the establishment picture of the Cosmic Censorship Hypothesis.

In a variety of situatiomns, (1) is equivalent to an integral
inequality on smooth, strictly positive functions on the unit sphere S%.
In this note I shall recall what these situations are and say something
about the integral inequality.

The inequality 1s

41:Sf2 as ¢ (‘g(f + £11TE12) dS)= 2

Since f is positive we can substitute f = g= to simplify the right-hand-
side a little:

an (g a5 ¢ (g7 + 41VgI= d9= 3

I shall also want to consider a slightly different inequality and ask:
for what k is it true that '

an (g* a5 < ([g= + xIYgl= a»= 4

The first inequality was found by Gibbons and Penrose (Penrose
1973, Gibbons 1984) during an attempt to violate the Cosmic Censorship
Hypothesis. They considered an ingoing shell of null matter, or
equivalently a matter-distribution supported on an ingoing null-cone N,
in flat space. The space-time to the future of the null-cone is curved,
and the matter density can be adjusted so as to give a trapped surface 8
on N. Fow (2) turns out to be equivalent to (1) for S, where f defines
the location of S on N. Penrose and Gibbons argued further that the CCH
would be viclated if (1) was.

The same inequality arose in a study of Robinson-Trautman metrics
(Penrose 1973). It is possible to prove that these metrics have a past-
trapped surface on each of the special shear-free null hypersurfaces.
Inequality (2) implies that the area of this trapped surface and the
Bondi mass assaciated with the corresponding null hypersurface satisfy
.

Inequality (2) arose for the third time in the work of Ludvigsen
and Vickers (1983). where it is equivalent to (1) for the general case
that

- A is the area of a marginally future trapped surface S on .a null
hypersurface N which extends to

- ¥ is the Ludvigsen-Vickers quasi-local mass an N which increases
into the past and tends to the Bondi mass at ﬂ"}



Finally, I found (2) as being equivalent to (1) for a static
'black-hole-in-a-box' (Tod 1985,1986) where

- A is the area of the cross-over 2-surface S on the Killing horizon

- M is Penrose's quasi-local mass at S.

It is rather remarkable that exactly the same inequality turns up in all
four places.

" Penrose (1982) inquired whether a proof of (2) was known. The
first proof that I knew of was mine (Tod 1985) where I deduced it from
the Sobolev inequality in R* (see eg Aubin 1982)., Actually what this
proves is inequality (4) but with k=3. Of course this is sufficient, but
its rather unaesthetic since it is precisely (2) which keeps turning up.
Later I used the Sobolev inequality in E® to deduce (4) but with k=8/3
(Tod 1986). FNow the question naturally arises of what is the smallest k
which will dao?

At GR1l Malcolm Ludvigsen told me of a proof of (2) due to
R. Osserman and R. Schoen and contained in a letter to him. The proof in
this letter (from 1984) goes as follows: start with

an {2 a5 ¢ ({2 as= + (XIVfl ds)= 5
which we shall justify later. Now use
N
( gl‘7fl dsr= ¢ ( gf-dS)('Sf“‘I‘7flz ds)
on the right-hand side in (B):

1 Al
4njf2 ds ¢ (&f ds)= + (S'f ds) ¢ Sf"‘lVflz ds)
$ (Sf+5éf“lVf|2 ds)= 6

Here I have introduced a 2 in the denominator of the second term which
Osserman didn't do in the letter, I presume because he was aiming at
precisely (2). This is now (4) but with k=2. Thus from (5) we obtain a
still further sharpening of <4). To justify (5), Osserman remarks that
it reduces to the isoperimetric inequality on the unit sphere if f is
the characteristic function of a daomain D. This is

4rA ¢ L= + A=

ar Al4n~4) ¢ L= 7

where A is the area of D and L is the length of the boundary.

The final step in proving (4) this way is a proof of (5). Géran
Bergqvist, a student of Malcolm Ludvigsen, recently sent me a preprint
by G. Talenti of the University of Florence (Talenti 1986)which does
Just that. The paper is to appear in General Inequalities 5 pub,
Birkhauser and the proof uses the isoperimetric inequality (7).

This still leaves open the questiaon of the smallest k in (4). I
have two reasons for thinking it might be k=1. The first is that, if we
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linearise g about one, say g=1+eV then for k=1 (4) is equivalent to the
Poincaré inequality:
\1VV|2 as » 2§v2ds if Vfds =0 8
8

<

which in turn is essentially the statement that 2 is the smallest non-
zero eigenvalue of -y* on the unit sphere. The second is that, if
g=1lt+tcos6é, {tl<l, which is the most testing case in the linearised
inequality, then (4) holds with k=1.

In conclusion, (4) is proved for k=2 although it is k=4 which
turns up in the examples, and the proofs of (4) use various
isoperimetric inequalities which adds support to calling (1) the
isoperimetric inequality for black holes.
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Real Classical Strings
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Abstract.

A general solution is constructed for the equations of motion of
the classical relativistic string. All allowable string configurations are
encompassed, apart from a special set of measure zero characterized by
the vanishing of a certain invariant for which the motion of the string
is restricted to a time-like hyperplane. The solution is given in terms of
an essentially freely specifiable curve lying in the hypersurface PN, the
space of ‘null twistors’.
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Examples of Anti-Self-Dual Metrics

by Claude LeBrun

Recall that an oriented Riemannian 4-manifold (M,g) is called
anti-self-dual if its Weyl curvature C satisfies C = -*C, where ¥ is the Hodge
star operator. An interesting class of such manifolds is provided by the
Kahler manifolds of scalar curvature zero ([21, [7]). In this note we produce
such manifolds with isometry group SU(2); we pay particular attention to
certain special cases which are complete and asymptotically locally flat,

We begin by considering a Kahler potential ¢(u), where u = 1z,12 + lz,1%
thus

@ = idde
is the Kahler form of a metric on a spherical shell centered at the origin in
¢*. Letting V(u) be defined by

© ~ w=-Vdz ~dz - dz ~dz_,
the Ricci form of @ is given by

P = 193 log V
and the scalar curvatufe R s\atisfies

Rw~w = prw,
The equation R = 0 may therefore be written as

(aae) ~ (@2 log V) = O.
The symmetry of the situation allows us to merely carry out our calculations

at the zl-—axis. Letting ¥ = leg V,

dae"

’ 1" - - ’ - -~
(¢ +us )dzl dzl + ¢ dz2 dz2

il

aoy = (¥ +wy")dz ~dz + y'dz ~dz,
at the zl—axis, so that our equation reads

0= ‘(0’+u¢")'¢' + (¢ +uy")e’



e3>

or
0= % %ﬁ (u’o'vf).
Hence, for some constant A, u®e’y’ = A.
Now let y = u¢’. Then ‘

’

span yy
V=96 (¢ +ue") = T

o4 AR A |
and ¥ = o log V = v + 7 e Thus

uyy"
A=u"e'y =uy + Rt

[X]

u(y’)? —yy +uyy"

:
[a %

g
]

d . 2
ao [wy” -y7].
It follows that

¥y + Ay + B = uyy

ydy |

and logu=1/ §3¥K§I§

Hence, letting (y +Ay+B) = (y+a ) (y+_),

o /(a —a« ) a /(& —a )
C(y+a2) 2 2! (Y+a1) ! 12 y 2 «,
(1) u =
Cly+a) ea/(Y+a)’ a = o = a
Yy
Now ¢ = f 3 du =y log u -f log u dy
al [24
= (y-ml) X - + (y+a2) X —x
1 2 1
2 2
al a?
T o log(yta ) — —— log(yta )
1 2 2 1
+ const,
s0
(2). ¢(u) =y —allog u —azlog(y+a2) + const,

where y(u) is obtained by inverting equation (1).
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In order to give the metric explicity, we now introduce a new ccordinate
r = vy, and let'ai, v, 0 bea left-invariant coframe for S’ coinciding with

dxz, dyz, dyl at (z’,zz) = (1,0). The Kahler form is then given by

19 o (p7vue) (A - Vo) + ue’(a )

1
+
=
Q

o’
+
a1

7~~~
q
§

N

But since uyy’ = y:+Ay+B,

dy du* y dr2 y? dr? dr?
= = — = .3 = R
du 4u uy y3+Ay+B 1+ é? + ET
r r
N . 2 A B 2 2
Similarly, uy'e = (1 + 0zt ;7) re”, and hence
2
(3) g=—9 o et + A v Bye Y,
A B r 3
1+—2-+—"'

If A = 0, this is the metric of Eguchi-Hanson {3]; it is Ricci-flat, and

the potential ¢ is explicitly given by

2 2
s(w = utb? + 2 logT b -b) ~ B log(ATHpTb)

for B = -b°. (Eguchi and Hanson adopt the opposite orientation convention,
and so consider the metric to be self-dual instead of anti-self-dual.)

If B = 0, the potential ¢ may again be given explicitly, namely by

¢(u) = u+ A log u.

Provided that A > 0, this metric is the standard metric {5] on the blow-up of
¢ at the origin: the fact that it has zero scalar curﬁature was discovered
by Burns [1]. Its anti-self—duality is of importance because it is
conformally isometric to the Fubini-study metric (in an orientation reversing

manner), the map being



bho

#: ¢°-{0}) — ¢’~{0}

2 14
1 2

(lz 1241z 12’ |z |23+]|g |2)'
1 2 1 2

¥(z,,2z ) =

(We have restricted the Fubini-study metric to ¢* «c cmz; by dilation we take
its Kahler potential to be log (1+Au), thereby making ¢ the required conformal
map. )

Both the Eguchi-Hanson and Burns metrics can be made complete by replacing
the origin with El and, in the Eguchi~Henson case, modding out by Zz; thus,
the metrics naturally live on complex line bundles over El. We now generalize
procedure .

Suppose that « = —az, «, = kaz, where a > 0 and k is a non—negative
integer. Restrict attention, for a moment, to fibers of the Hopf map

Gz—{O} — !1. Then g becomes

= dr? a’ ka® 2, 2
g‘fiber - (1 - 9‘3')(1 N .}_{22)4’ (1 - r? y(1 + 32 ) r'de”.
r? r3

Now divide out by the action of Zk+1, introducing a new angular coordinate

~

e

i]

(k+1)e, and simultaneously  introducing a new radial coordinate

; = r® -a’, The fiber-wise metric thus becomes
~2 .~2 2 -~
dr ka r? -
1 = L8 A +{1+ de?
& fiber 231+ Jﬁ“_) ( ;.2+a2) (1+k)=
r2+a?
2
P
1 1+{r/a)3 -
= —— | dr? + | il de? -
2
1+ Aka 1+k
r?+a?
Since (1 + ¥ /(1+k) differs from 1 by terms of order f’, this metric
1+(r/a)?

extends smoothly across the origin r=0.
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Let us now notice that this process is compatible with the complex

structure by inspecting equation 1, which in the present circumstances yields

HMawy | Yin

Izllz + Izzl (r +ka® ) (r" -a") .
If we identify the complex ¢{-plane with the quotient of a fiber by Zk+1 via
the map
l/(k+1) 1/(k+l)
t —_— ‘/ 2+C 2 ./ 2+C 2 h
we obtain

2

1% = (2° -a%) (ri+ka®)k,
so that the radial coordinate r is smoothly related to 1¢! by

1¢1 = p(r? + (krl)az)t/K
Essentially the saﬁe argument shows that the only other complete metric
that can bg obtained from the above family is the flat metric A = B = 0.
Thus,‘we have the following: |
Proposition. Let L — denote the line bundle with chern class +1.

~k admits a complete zero scalar curvature

For any integer k » 0, L
asymptotically flat Kahler metric. Up to multiplication by an overall
constant, there is exactly one such metric which is SU(2) invariant.

(The last observation follows from the fact that the metric (3) is only
multiplied by an overall constant if A and B are changed in a fashion
preserving AZ/B.)

Adding a point at infinity to any of these metrics gives rise to a
compact self-dual orbifold.

It remains to be seen if these metrics are closely related to the metrics

of Gibbons-Hawking {4] and of Hitchin {6]. .
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