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A twistor diagram for second-order P4 scattering

It's well-known that the twistor diagram

can be thought of as corresponding to the first-order @4 scattering integral
represented by the Feynman diagram

X

R.P. long ago raised a tentative suggestion (in Quantum Gravity I, pp’
366-7) that a twistor diagram of form

(1)

might correspond to a second-order 94 Feynman diagram of form

L
—

(No choices of channel are implied in (1) or (2)).

(2)

As RP. pointed out, such a correspondence would require the double line in
the twistor diagram to play the role of the "off-shell” Feynman propagator
in the Feynman diagram. For some reason no-one has ever examined this
suggestion in any detail, perhaps because @ theory has not been taken



very seriously as a physical theory. However, massless @4 theory does have
interest in its own right as a component of the “standard model" of
contemporary field theory, and it is perhaps the simplest theory (being
without gauge fields) in which to study higher-order diagrams. It turns out
that study of this integral does open _ the door to a much wider class of
Feynman diagrams than has hitherto been considered, and later articles in
this Newsletter will go into some of these implications.

In this piece, however, 1 shall study this second-order amplitude

simply as a matter of concrete calculation. To do this 1 shall consider a
specific channel (i.e. allocation of in- and out-states), namely

/ (3)

AN

Choosing elementary in- and out- states, this Feynman diagram is simply a
notation for the following integral ‘

M dt/ A (x—x")
(x— Pl)‘(x/p&)z(n/r)z(xb ﬂ,‘)l()(/ - 15 (e~ S)t
‘ (4)

~ A .
where P, P, S are in the past tube and 1,“, 'p:) " are inthe
future tube. In Fourier-analysed form this is
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The idea is that the scattering amplitude is now coded as this function of
the six points p™.......s% , which we have to show can be represented
as the result of integrating a twistor diagram. Following R.P.'s suggestion,

we might try for size the twistor diagram

(6)

(using a notation by which external H"s are labelled by the corresponding
points in €M ).

Can this diagram possibly yield the correct function of the points as given
by (4), (5)? Ne it cannol.To see this, consider operating on both (5) and

(6) with : s
W7 2
( Py ’ P~ N br*\)

In (5) this is equivalent to introducing a factor  (k, +k, + ) = LZ
. . . . . : ~1
into the integral, cancelling the inverse derivative operator Q& )

Equivalently we could apply the same operator to (4), noting that

a*@_*zzz_,,(./fgnmn_,,\____.%
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=

and then using integration by parts to turn [ . onto QF (-’ )
producing (by definition) § (x - ‘) . Either way, we obtain the finite,

non-zero * @ " integral
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On the other hand, applying the same operator to (6), we note (again using
integration by parts) that

applying EF . 0 P to the integral is equivalent to applying
!

2%

to its interior, and similarly for 3[;2.9() ) b 9 . Since of course B?. .0 P,

the whole operator is equivalent to applying

;X?EJA — ‘Z‘jaw val'i_)"‘f - ﬁwatj"

It is easy to check that this operator yields zero identically when applied
to (6), ie. without requiring any conditions on the contours employed. So
(6) cannot possibly be equivalent to (7), and it is no use hunung for new
contours for (6) in an attempt to get it to work.

Thuis RP.'s suggestion isn't right as it stands. In fact what we have
seen is that the double line in (6) must represent an “on-shell” zero-mass
propagaior. It corresponds not to the Feynman propagator but to the
positive frequency propagator

AT O )
satisfying (), A O(—%() = ©
(This all really amounts to no more than the simple idea that a on-twistor
function can only represent a zero-mass field).  However, these
observations point directly to a correct interpretation of (6), namely as the

integral obtained by replacing A_(x-x?) by & (") in(4), or

equivalently, by replacing G% )'l by SF(U) in (5).

0 k.



One can easily verify this identification by an exact computation of
the twistor and space-time iniegrals.

Before going further it is important to note that the Feynman integral
~ (4), (5) is actually divergent- it can be described as divergent at k” = 0.
There is a strong analogy with the likwise divergent Maller scattering
amplitude. Recall that the twistor diagram for Melfer scattering,

makes finite sense as a genuine contour integral when the internal lines
are made Jnhomogeneous, denoting factors like

(wz—k) |y loglwz—k)

where K is some number, as yet unspecified.
[see my papers in Proc. Roy. Soc. A 397 pp 341-396 (1985)].

The result of the integration is theh of form:
finite amplitude independent of k

plus a k-dependent term which corresponds to the divergence in the
space-time integral.

Oversimplifying slightly, to make the essential point, this k-dependent
term looks like

CO& k X j i
We can thus think of E ﬁ

as the period of

It will soon become important, [ believe, to make these ideas precise.



So following the analogy, we are led to look for a twistor diagram
whose period is equivalent to (6). By “twistor diagram” I now mean an
mhomogeneous twistor diagram. ALL the diagrams written down from
here onwards will be implicitly inhomogeneous.

As I know of no systematic way of deriving the sought-after diagram

I shall simply state the thing I guessed and show how it can be verified.
This is: ‘

(8)

To verify the identity of (8) with (4) and (5) we must operate with

> 3 .3 )
(a’y‘\*ﬁ,*f

and actually do some calculation! The result of applying the operator is, to
employ an obvious abbreviation:
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Using integration by parts, this sum can be rewritten as:
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By a diagram identity (see my paper on Comption scattering, Proc. Roy. Soc:
A 386, at page 189), the second and fourth terms can be rewritten as
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and they cancel, being dual formulations of the same scalar function of the
six points. We are left with three terms which - hey presto - agree with the

formula for the g® integral that I worked out long ago but in which I
couldn't detect any recognisable shape. (See Advances in Twistor Theory
page 254, and then my article in TN 12 for further comment on how the
formula was obtained. The calculation behind this formula should be
revamped now that at last it falls into a recognisable pattern.)

We may likwise study the channel represented by the Feynman

diagram
\/

VAR

(9)




and verify that it corresponds to:
Y,

(10)

In this- channel there is no divergence and no period. Study of this channel
makes it particularly striking how peculiar the resull is, by virtue of its
asy mmetric representation of a function symmetricinp, f,,r ; 4, i, S

It is very far from obvious that

‘(‘11)

although this must be true. 1 would expect this to be connected with
properties of the 3-twistor symmetry group. One can certainly make the
claim (11) look more plausible by noticing a connection with the 2-twistor
symmetry group. Consider the operator U.%Y acting on
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Much diagram-chasing and copious use of integration by parts massages
this into a sum of terms in each of which a numerator just cancels a pole.
Thus, if the poles are all essential to the contour, the sum is zero. Actually
this is not quite true because the poles are now implicitly /nhomogeneous
like (UX - k) ! and further argument is required to convince one that in
this case inhomogeneity doesn't make any difference.

The reason we are'interested in this operator is that it shows that the
interior of diagram must project out an eigenfunction with eigenvalue 0 of
the operator Y., U. dy , which here is equivalent to the spin operator for
scalar fields. Thus the diagram can only "see” the fields attached at Y and
U through the spin-0 part of their product. This is equivalent to saying
that it can only yield a functional of the one-point function

-
?(‘)L -—4{,1/)1 { x« -\ 5
and not (as @ priori one would expect) of the two-point function

J -4 (y~s 1Y

Obviously this applies similarly to U and W, and it's also immediate forW
and Y; this makes it reasonable that the diagram actually “sees” only the
one-point function

e
i(xfmJ%xer%mrs)ﬂ

This argument could probably be developed into something rigorous and
capable of interesting generalisation.

There are of course other non-zero channels, namely those of form

in which the number of particles going in is not the same as that of those
emerging. These amplitudes should a/se be calculable from the same
twistor diagram. At present I have no results regarding this question; my
feeling is that it is not possible without taking on board the re-think of
diagram structure and crossing symmetry which emerges in a later paper
in this Newsletter, and that it even then will require/inspire some fresh
and very interesting geometric ideas.
Andrew Hodges
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Some twistor diagrams for Closed-loop Feynman diagrams

This article leads on from the result obtained for second-order @4
scattering integrals to deduce some third- and fourth-order twistor
diagrams. We start with Feynman diagrams which are tree diagrams and
then move on to consider some which have closed loops. The discussion is
one of gradually diminishing rigour and is not intended to be definitive,
although I believe it to be basically correct. It gives a first glimpse of what
“ultra-violet-divergences” should look like in twistor diagram terms.

The starting-point is the correspondence:

2 7 /

(1)

(here and later a wavy line w~~A~~ for (-1)-lines is sometimes used -
purely to aid the eye in seeing the pattern of the diagram).

Now we may deduce at once the correspondence

where the springy line in the Feynman diagram prescribes an on-shell
propagator a"‘ instead of the Feynman propagator /\ F-

By symmetry, we have also

AN (3)




The point is that (2) and (3) give two necessary conditions to be satisfied
by a twistor diagram corresponding to the third-order Feynman diagram in
(%), namely that two different periods are correct. We could go on and test
('f') by the process of differentiation along the propagator lines, but I
haven't yet done this (it would be nicer, of course, 10 find a more general
theorem about how to extend tree diagrams...).

We can now make a further chain of propositions. Take (4) in another
channel, thus supposing:

We can put this in a more symmetrical form by using the diagram
identities

(%)



10 suggest:

(5)

At this point we can make a bold jump towards representing the simplest
possible " finite” Feynman loop diagram, namely

How do we make this bridge from trees to loops? The essential point is that
the loop integral in momentum space looks like:

J A*k .
((k=w)+ ) (tk-V)'T e Y(k-w)'t & )

But following the Feynman prescription for how to do the integral, we note
from simple observations in one-dimensional complex analysis that this
can be reformulated as

j‘ w | + 2, Swlar E’e—rms
((k_,\/)L-f v )(UCIV\/)L" L.2>

. | o
ie. as ? + @/\ + (& /
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although in fact this is only true formally; each term is divergent and only
the sum makes sense. Note that this is the first time that we have actually
made use of the Feynman propagator as opposed to Lo other solutions of
the inhomogeneous wave equation. Thus, it is only at this point that we
really begin to claim a connection beiween twistor diagrams and the
content of guanium freld theory. Now the positive frequency propagator
can be replaced by the idea of summing over a complete set of states, ie.

and this relates the loop to a sum over tree diagrams of the type we have
just written down. To do the summation over a complete set of states in a
twistor diagram we note that
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I put forward my guess that the sum can be represented thus:

(&)

&7

The "hexagon” diagram in the interior should be seen as a new construct,
not simply a concatenation of “boxes”. Integration of the Feynman diagram
shows that calculating the amplitude involves calculating the area of a
triangle, and I think something analgous is involved in (6). [I also hope it
will make sense of the "hexagon” diagrams that I noticed cou/d be used to

give another version of the 9 integral, in TN 12].

We can likewise wrile down the reasoned guess

(7)

Finally we can apply these ideas, at least formally, to “ultra-violet b o
divergent” Feynman diagrams. The simplest is perhaps

AN
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Employing the same ideas about relating to tree diagrams, we 8o back to
(1) and so write down '

(8

i\

Thus it can only be: ;) /

(06 ko °

so I expect my "k" to appear as the regulariser of an "ultra-violet
divergence. Is this reasonable? I think so: note that the idea of ultra-violet
divergence is usually defined by a power-counting argument which is
equivalent counting the order of the pole at infinity in momentum space.
Now in a conformal theory I cannot see why such a divergence shoud! be
thought different from a pole at zero in momentum space. Explicitly, the
divergent integral

A

o) L)’
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that we are studying here, is confor mally equivalent to

o{# ‘</ |
_______-—’——————{'*"_“""
0 (! w ) Y ©)

- an integral which would normally be regarded as infra-red divergent,
and not “seriously” divergent at all. A particular point of interest is that
such poles at zero momentum do arise when external fields of zero energy
are attached at vertices, and this is exactly what is done in the “standard
model” picture of generating massive fields through interaction with the
constant Higgs scalar field (i.e. the elementary field based at 1). It is my
view that infra-red divergences, ultra-violet divergences, and the
conformal breaking which leads to massive states, should all be related.

The field opened up by these observations seems very rich indeed.
There seems no reasons why these approaches to higher order diagrams
and loop diagrams should not be applied analogously in the other
conformal field theories which are components of the standard model.

Pt otged
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Inhomogeneity and Crossing Symmetry

The picture clearly emerging from the preceding work is that the ¢*
vertex inside a Feynman diagram corresponds to the configuration

(1)

inside a twistor diagram, and that a virtual @ propagator line is reflected
in a pair of twistor diagram lines

I

which can be thought of as collapsing together to give the positive
frequency field propagator

0

The fact that there are four (-1) lines in (1) can be thought of as
corresponding to the presence of four "off-shell” Feynman propagator lines

in the Feynman ¢* vertex. This all fits very well with the general
programme for diagram theory outlined. in TN 23, with the feature that in
this field theory the twistor vertices look like

N
(o) o
e !

I now wish to go back to the "box diagram" for the first-order &4
scattering amplitude from which all this started, and to discuss the issue
which has been glossed over in the preceding articles. This is the now

venerable question of the so-called "hard channels” - the fact that the box
diagram doesn't really possess crossing symmetry.

rather than

Recent work by M.AS. and S.AH. (qv, TN 23 and the article in this
TN), has improved upon my naive “philosophy 0" approach of doing



7 O

contour integrals in which the external fields appear as representative
functions. They have investigated the question of how the diagram
evaluation procedure can be re-interpreted more satisfactorily in terms of
genuine mappings of the various external H's into the complex numbers. It
was vaguely hoped that by finding a procedure which looked properly at
the Hl's, rather than at their representative functions, procedures
corresponding to the "hard channels” would emerge. But they don't.

The basic, crude, difficulty with the original (projective) box diagram
is this: given the piece of diagram

suppose we wish to allow [ and g both to represent in-states. Take these to
be coincident elementary fields (x-p)2 say. Now if the contour -integration
is to respect the Hl's, it must have the effect of reducing the twistors W, Z
to spinors based on the line corresponding to p®. But we can ¢ do this
because then W.Z vanishes. Any proposed rescue of the procedure must
find a way round this problem in one way or another. M.AS. and S.AH.
have shown that looking more seriously at the external fields as H!'s
doesn't find such a way round it. .

The so-called “hard contour” found by me gets round it by doing a
contour integral which doesn r see all the external functions as Hl's. The
answer turns out to be a functional of fields, although it is a mystery as to
why this should be so. Using this procedure has been very useful as a
stopgap, not least because it generalises from the simple box to all the
other diagrams we are interested in, but it is obviously unsatisfactory.

Given this basic difficulty, we can ask whether the definition of the
box diagram should be modified in some way. One idea that has popped
up repeatedly ever since the question of crossing symmetry first arose in
the early 1970s, is that the space in which the integration is done should
be b/own upin some way. Another idea arose when I saw the significance
of inhomogeneous propagators for getting massive fields and for
regularising divergences. Maybe /nfomogenesty could solve the hard
contour tool After all, if the diagram line becomes (W.Z - k)'! then we can
allow WZ = 0. Unfortunately, it is easy to see that just putting k's into the
diagram as it stands doesn't make any difference.



Actually 1 think these #re relevant and helpful ideas, but to show
why 1 want to approach the question from a fresh and more physical
angle. The point to be made - which has not before been made - is that we

are interested in this 8% amplitude no? just as a calculation of the integral

\M (2 G, (x) §,(%) g, (%) 4%

but as a special case of a calculation in a gquantum field theory - a field
theory with all the structure of particle and antiparticle creation and
annihiliation which is encoded so beautifully into the Feynman propagator
formalism.

The view I take now is that we will only get a twistor transcription of

this amplitude by seeing it as a very special case of the general ¢% vertex -
very special because all the Feynman propagators are reduced to positive
frequency propagators. This will make the theory /oo more difficult, but
it is actually a very positive indication for diagram theory. It will suggest
that twistor diagrams are naturally associated with the content of quantum
field theory;and only make sense when understood in the context of a field
theory. A shadow or reflection of the field theory ‘must be retained in the
twistor formalism even in this first-order level.

Until recently I would have had no idea of how to write down a

twistorial object corresponding to the general 8% vertex, but now it seems
obvious that we should write down (1). Thus I should expect to see the
first-order amplitude emerge as some sort of reduced version of (1).

We can get an idea of what sort of “reduction” may be involved by
looking at the field theory more analytically. The Feynman vertex is

\/(y, yu)sjd*x Ly (i p) O (0—4,) D¢ (- ) L (- 5)

which must satisfy the equation

%.%’\/(y,%f“r) = dp(y/t)él;(f’f)ap(f’f)



What is V? It is conhected with.the function

D(})) 14,05) = j?m Ao A’ﬂ | |
g L Jy (1 +ot -}/A)((//ri/)l((«ffn( ¥ (/,,/)161,—:),2 rr(frf)'({;f)'a(/&)

which one can evaluate using the di/ogarithm function, although
this hardly helps very much. D(p,q,r,s) is the function of four points I called

a “super-amplitude” in an earlier stab I made at understanding the 9%
amplitude (see Advances in T'wistor Theory, page 256). It satisfies the

equation Y 3 } ),L % = J"t
2.0 Dip4,vs)= )p—9) (p—v) (-7
I use the vague phrase “connected with” because V is a function only in the
sense that the delta-function is; we can't make any real sense of this
without a correct treatment of these things as singular functions (using
relative cohomology?).

[ Ligression and Confession: The basic idea of that earlier work in
A.T.T. was, I believe, correct; but the calculation given there, which claimed
to get the dilogarithmic function D from a twistor diagram, was certainly
NOT correct. It relied on an unjustifiable change in the order of
integrations. It can't be right because anything resulting from the diagram
given there would have to satisfy the zrm equation in each of the p, q, r, s -
and D doe;}sn'l.l

However, this connection suggests the following idea: the function D
has three periods which agree with the three different channel
amplitudes. Thus we may consider looking at periods of the twistor
diagram (1) and see what we get.

My claim is that we can indeed get the three required contour
integrals by doing this. Specifically, there exists a "period” contour such
that

2

independently of P, Q, R, S. Now il is already well-known that
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(1)
2 X
possesses three contours, one for each channel. We can write the whole

\

prescription as:

This, I claim, is how we should think of the first-order 87 amplitude.

The rationale of ‘these further (-1) lines is given in the Appendix where I
have put an outline of the detailed calculation.

Naturally the same idea must be applied to the larger diagrams that
have been built up out of the box diagram; e.g. we should write

<=7
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This may look complicated at first but I believe the complexity is due
to the fact that we are necessarily doing /f7e/d theory and that the
inhomogeneity and logarithmic (-1) lines, although they do not appear
explicitly in the final amplitude calculation, are essential to the predictive
theory. The proposed formalism enjoys the following features which I
would regard as crisZeriafor a satisfactory twistor diagram theory:

(1) There is a single entity (a differential form on a product of twistor
spaces) which can be integrated in different ways to yield amplitudes
corresponding to the various possible allocations of in- and oui-states.

(2) That entity is composed of factors corresponding to twistor
diagram lines

(3) The twistor diagram lines are all on the same fooung, ie.
consistently represent the same mathematical objects.

(4) The contour manifestly treats the external free fields as H!s

(5) The formalism does not depend upon the discrete permutation

symmetry peculiar to the 8 vertex, so that it has a chance of generalising
to other field theories.

(6) The formalism naturally extends to higher-order amplitude
calculations.

Notes on these features:

(1) This condition is required if the idea of crossing symmetry is to
have any content. If it fails, the various channefs become completely
independent. As an example of where it is NOT met, take the theory which
tells you to write down the three diagrams
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for the three channels. (M. L. Ginsberg's investigations have used this idea
in a more sophisticated form.) This not only loses the idea of crossing
symmetry but also turns out to violate condition (5), It only works
because of the discrete symmetry.

(2) This condition comes from pure faith that the prea’:’ctfﬁe power.

of the theory will eventually reside in a generaling rufethat uses twistor
diagram lines in analogy to Feynman diagram lines. If we scrapped it we
could of course just write down

WY 5‘2
X Z
and say that this gives the twistor version of the first-order
amplitude. We could do this in any way we liked for other amplitudes in

other theories and so put a long list of twistor-encoded amplitudes into a
big book. But this I believe would be stamp-collecting, not physics.

(3) This condition is again forced by the idea that the theory can be
generated from some rule in analogy to the specification of Feynman
diagrams", Each twistor line must be treated alike.

When we come to the integration of the new proposed gt vertex
‘diagram (see Appendix) we shall see haw each line is treated as a
“cestricting pole” (relative H'?).

(4) This rules out my “hard contours”,

(S) This rules out the cheating ideas already discussed under point
(1): it also rules out a theory which claims the totally symmetric diagram

as the fundamental object. It is peculiar to the ¢* vertex, and has no
analogy for massless QED for instance.
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Lastly, there is one criterion for a satisfactory theory which I don't
believe /s yel met by the proposed new diagram structure, namely that
we should understand this business of taking periods when free fields are
attached on the outside. In fact I have no idea how this should be
formulated. However, I quite like the fact that it is rather mysterious and
apparently more complicated than Feynman diagram evaluation. The
mystery may have something to do with the question of what a free
particle (observed at infinity) actually /s. It might even have something to
do with wave-function reduction.

Appendix

The contour integrals needed consist of a mountain and a molehill.
Let's get the molehill out of the way first: we need to show that '

(wY -2
+—
e

is a kernel which gives three contours. Taking elementary states, reduce
W, X, Y, Z immediately to spinors on the corresponding lines. Now use the
formula

N3
(2%0)

A ad j 2
@AR“AG&)(K«%WAQQ) R.Q 4+ 2uQ R+ W R, [

0

Contours can be specified precisely for this spinor intedral, and thereby
induced for our twistor integral (<t S.AH. and M.AS, this TN, who pay
particular attention to this question.) In fact we apply the formula twice
over, finding three different results according to which pairs of spinors are
linked together. The results of the integration are immediate from the
formula. By elementary twistor algebra and a change of variable, the
results are conveniently put in the forms’ '
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: -
”

s W) J T {w) » T(w)
together with a period contour which gives result :?TTA )

Here T(u) is a standard quadratic in u, its coefficients being formed from
the conformal invariants associated with the four points in CM.

One may (and must) check that given an assignment of in and out

~ states (i.e. points belonging appropriately to past and future tubes), these

functions of the points agree with the amplitudes for first-order gt
scattering, and are unambiguously defined. (One can easily see which
contour is the right one for which channel by looking at the special cases
where points coincide.)

[SAH and MAS consider the homology of the integral when the points
are not allocated to a specific channel but are in general position. In this
case the idea of "amplitude” is not well-defined since there is no unique
analytic continuation from the “physical” parameter regions where
amplitudes are defined, to a general parameter position. However, the
u-integral formulation of the results, given above, makes it very easy to
see-that in general position there is a linear dependence between the three
"channel” contours (as analytically continued) and the period contour; there
are just three independent contours. These primitive methods cannot show
there are no more than three, but MAS and SAH mention that they have a
proof of this.]

Now, the mountain. I will try to indicate the idea of the large integral
without getting into the quite substantial and sophisticated calculations.

We start with the projective twistor diagram formula
2 X N
Ny © \
-\ X

No YW \E
WY &H>
Y

a
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with the Y.X pole being "cancelled”. Hence formally

s
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apparently thus allowing three contours to exist. But they don't exist in the
original space, because they have to include points where YX = 0. They
might exist on a space bo/own upat YX = 0. We certainly can't regard the
pole YX as a 'restricting” pole. Thus, we should have to make the
formalism highly asymmetric, breaking conditvon (3).

Making the lines inhomogeneous does not in itself solve the problem.
However, it turns out if we make the diagram inhomogeneous and put in
exira (-1) lines znd make the whole thing symmetrical, we <o get the
effect of this "cancelling of a pole” while still treating every pole in the
diagram as a 'restricting pole”. (I suspect that there is some connection
with blowing up involved in this.)

Thus, we are led to

as a way of making proper sense of the naive ‘cancelling’ ea. Now let us
study it explicity. The first step is to consider



(;dL lines aow (/\.komnd.cnc ous)

U
l

(5)

just as before. (I do not claim this is obvious.) Note that the (-1) lines play
the role of "magic”. Now we are left with

§B*UA’D"V

The essential results all come from my earlier work but some extensions
are necessary. The integral has basically the same shape as

a_nd by taking the period contour recover

ptuofy }‘}f«\’ %(K/\O)S 52)/(* ({5(3 /k>}
. w—«/‘,—/
(T L

which I studied explicitly in connection with Maller scattering, but there
are differences because more of the legs are inhomogeneous; the powers
are different, and we have the singularity ( YAV >*3~

o -2 A
rather than (2’ 4 ) . The methods developed earlier are basically

adequate to coping with this generalisation, though it's not easy.
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As a guiding light in the calculations, note that
|V} .
Y, k

=~

V)
f— I I — k
Y l
since the pole "enforces” \% =K

and this can be written as L) U —
Sl by <\u “)

Now Kk (%( has the effect of extracting the period, ie. the

coefficient of log k. This means that we expect the combination

Gt g () -)

vk
V

to have the same effect as putting in (53( \\{/ - k)

and then treating this as a “double line”. But this can be reduced to a
projective twistor integral. Explicitly, we expect

puavty Y (v (o) (v g (] )
AV (- )

to have the same value as the projective integral

X 2
-2 ) (\Am&b Y2




3\

This is the beautiful phenomenon which makes sense of the
“cancelled pole” idea, while still keeping all the poles as restricting poles. It
is enough to tell us what the result must be, but it be justified properly. To
do this I use a CP? formalism to go back to my original contour for the
"Meller” result, so as to generalise it 1o the case here, where there are more
inhomogeneous poles. We also have to adapt it to the case here where
there are dowub/e poles on the outside and a sing/e pole inside, but one
advantage of the CP* formalism is that this can be effected by
differentiation with respect to CPY parameters. These methods suffice to
justify the result we expected above; now finally, to cope with the
appearance of the singularity

( Uw \"t
o
v w\?
rather than in (‘z 3 ) , note that these coincide in the case when W.Z = 0

and so expand in a power series in W.Z (One could however avoid the use
of power series if desired.)

' N\ 2
The result anyway is ( w)
Z A

independently of P and Q, although there is a subtlety: the contour is not
defined if
| WY P

xw -

so when we do the W Y X7 integral we must, strictly speaking, avoid this
space as well. This can be done, but it reinforces my comment earlier that I
don't understand the rules for “taking a period” .
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Finally, note that this idea of "taking a period” can be used to specify
the correct "magic” for integrating the inner product integral: the inner
product can be considered as '

o5

by a "period” contour, with a result independent of P and Q. Now in doing
the final integral

B g
)

2 %)

we are effectively doing two copies of the inner product integral, so it's
consistent to stick four more (-1) lines on to indicate the two dollops of
"magic” required to do this final integral. '

ack:
A batx /%,\)W Mow

Constraint-Free Analysis of Relativistic Strings

L.P. Hughston
Lincoln College, Ozford OX1 SDR, Great Britain
and

W.T. Shaw*

Department of Mathematicst,
Massachusetts Institute of Technology,
Cambridge, Massachusetls 02139, U.S.A.

We present a general solution of the equations of motion for a clas-
sical relativistic string in Minkowski space. For an ‘open’ string the
solution is determined by a single real null curve which satisfies a quasi-
periodicity condition. A formula is deduced which generates all such
curves in terms of freely-specifiable functions. For a ‘closed’ string two
such curves are required.

Our theory establishes a rigorous basis for the numerical investiga-
tion of ‘cosmic strings’, and also forms a starting point for a constraint-
free Lorentz covariant analysis of the quantum relativistic theory.



373
Cohomology and Projective Twistor Diagrams
Introduction:

We demonstrate in sections | and 2 the limitations of philosophies 1
and 2 when applied to the box diagram. Then in section 3 we describe a
more careful approach to the cohomology of twistor diagrams. Section 4
successfully applies this new method to the reduced version of the new
"box” diagram [2].

$1 Philosophy 1

As we mentioned in [1], philosophy | applied to the box diagram
yields an element of

H'(T1-7, n.)
where Hﬁ \E)%x ﬁ)x *3*)( P
z.

1
and Y consists of the two points where Z =2Z :

AB G
w Z
X Y
¢c> gf

Now the relative cohomology sequence is

H“ ( T . ,_()_,‘1) _ HH ( H ~,y} J)_n)"? H?—(I‘f)._ﬂ_h‘)—? H'I(U)J).YL) SN

A
1]

2 ' N Thow
H*LY; €)
i

so H' (TI:JY)_(L”’): ((L‘) | C®C

and we have evaluated the box diagram. Awz if we allow two fields to
coincide then Y = ' and the sequence becomes
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(1LY, ") - Hy H’ o)L =o

HIL"I,' C)
T

C

and our evaluation /a//s. So it must correspond to the use of the Light
contour, and in order to describe the pAysical contours we would need
some "magic” elements. (thanks to R]B for much of this argument.)

$2 Philosophy 2

This time cupthe four scalar elementary fields together, and simply
multiply by
bwxvyz

. 4 7N - . . ., .
Obtain an element of H (\[]’, )~_.Q ) and by ignoring its bidegree’
e
map itinto H b( ;(j;/- C)
AN L)
Poincaré duality tells us to look for functionals in H,é( (7 J 03).

A long algebraic topology calculation shows that
£\ .
ol 5 ¢) = c@c

and that one of these generators is the tight contour while the other one is
the Sparling contour. So this method of identifying functionals misses the
two “hard” contours. Worse, it is nof possible to get new funclionals by
dotting some of the elements and then forgemng the bidegree: recall that
the dot product is given by

B = & (x o)
where 5" is the Mayer- Vletons map, and consider

HP( A ) X% HP*'(A 3)

Hp(/\nﬁ) i HP’(‘ (Am%)

A
¢ r



Suppose 7{9 HF*“ LAW%? weresuch a new functiona!. Then gx'K;o,

otherwise we would already have identified it. But

OxY
50 Y isno good as a functional on &' , which is precisely what we want

it for.

83 Serre Duality

This section approaches afresh the question of finding functionals on
fields corresponding to (projective) twistor diagrams. We try to avoid
eliminating possible functionals until the last possible moment.

The least we can do is to cup the 4 H! s together, getting an element

H (kD [P-L)x (PEM)x (P-N) , O9L2,3)3, )

In fact, however, the 3 Mayer-Vietoris maps converting these cup products
into dot products are all isomorphisms. The following argument is just for
one of them.

W2 (% LB-L), G, )@ HLIPE k) xR 092, -)
v | ‘

of

H( n  Ot2)
! 8*
H%( V) ) C)(, 1 )’))
\’
K oute U A )

The groups at either end can be evaluated using the Kinneth formula and
are all zero for this homogeneity.

So functionals on 4 zero rest mass scalar fields are to be found in the
- space dual to

H (H) x [P PP — Kx Lx MaN ; O (=2, -2, -))
which by Serre duality is

We (TT -1 5 012,25 ,)



2

(where TL and /\ are as above). We can go further, though.

If we H7(H~’A)and We Hf (I[-A) the duality is given by

\/_;_]':A‘/k . Now consider the sequence
l-’

Fa—

- LA extoud
SR K ()L R (a0 T

where () is a bump functionequalto lon A
and0on T[ - % ov Mz@h\?owwvd '5,{ A%

I being what it is, when q = 5 the map /\5(: is an isomorphism.
Therefore

1= % /\75() for some & ¢ H‘(’(A 3 % (-2,2,-2,-%)

and /WAVL ,;_JMMS/\?(; :JN»%
« T-A\ TT-A T
Note that this last integral can be thought of as taking place throughout () ,

because although 3,4&5‘0 would be cohomologous to zero if extended to TV,
v\),fg "Sf is not. Indeed, from the usual definition of the dot product we
can see that W.% s autoinatically defined on TT . (The fact that W. %
is the the extensionto 1T  of \)\)Ag,\'?() is discussed in [1], 83.1).

A// linear functionals, then, on 4 elementary zrm scalar fields can be
obtained by dotting with an element of HLF( A ; @n, (-2,-2-2, ) ) |

and integrating. It is important to noté that it is only at zArsstage that we
make any choices about what our linear functionals are to look like.



Lt

Aside: This general procedure for identifying the space of
functionals is not specific to the box diagram. It warks well
for the scalar product:

M [/“,7)7 et kxt ; Oprp )
z

- where /u is the magic Hl - isthe required functional.

§$4 The Moving of the Goalposts

Until recently we thought that ithe twistor kernel for the massless
scalar @* integral was of the form

v

wwyy

bl

X ZXZ
and the object was to find a s corresponding to each of the 3 channels
for the process. It seemed like a difficult problem (not surprisingly, given
the long history of the "hard contour” question). In [2] however, APH

argues that the ("reduced”) kernel should look like

¥

GE)

wy
So we need 3 elements of ng (/\*% ;1; = 0%5 (9,7 (o)) .

We start by constructing some contours in /{—H (z N-3 ?g :015)

using APH's favourite method. Suppose

ep ARl
Lw &> (/\A) -—EO\fwAA), Ly 4> C‘/b MTat) WA');

Lv 4—9’ (/MA»"WM/“A), L5 &= C“‘LMPAU ﬂof‘) )

then .
WY ) =) A,
ik ) ) AT/ s 8!
and - f »
Wl"f - /b AA _ Aagl .
LY lov-b)™" (¢ -d) Mo Tal Mg P!

so the restrictionof H 1o /A isgiven by

) AA'RB!



3%

An'en! VAK BP AR g A
where G}A = ((L«b) ( ~d) [a-d) (bwc) )
Consider the degenerate cases which pick out the three channels.

(i)a=b,c=d The  expressionfor (X is now

1(‘)’“0) AA()S 733 (- C)g/ﬁgﬂ'ﬁ kS
where a -c¢ must be nonsingular. Let uﬁf’ be a non-singular matrix such

ABl @ '
that (a-c) W, is positive definite. Then setting

8~ A
Ap= W fa , Mg ="Us
we define a contour "ff ; on which (X is positive and on which
AN A/u, AT A AF becomes a multiple of AFAAF,\ A AR

Th - :
T [ @7 Mnauaratp e
Y

(ii) @ = d, b = ¢. In this case, R becomes

— i( (Cb/b)AA AATYN ’l(\({ (0&, b BB/MB[)B";

and a - b is non-singular. Choose a non-singular matrix VA so that
(ﬁ,-b d ﬂV&A is positive definite. Then, as before, the contour
¥» whichis defined by Ax= VY, , My =Va55,
is one for which the integral of & 4[1 }»Wﬁ JA s non-zero.
(iii) a=c, b=d. In this case |
QAM%‘ - 2 (ab }A[ '(W b)B’JS
= L 6/“3 A“'(Jk’b)oal (D‘”b)

because (a,/b}c,m(a/b)ﬁ)ﬁ = O .
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Al o '
Let 6A be a positive-definite matrix. Then on the contour Y3 defined
by Al _ O
}\A=6A/mﬂc , TFB,,.(? (05
we have

Aﬂ‘&

BR!
/\AWA/MB/):;’ = i’. ( ( /"{A/“ﬁ (.t B[JE&
which is of one sign for all /\A [) . Thus j QR A ,\rr/) i + O .

Moreover these constructions depend on the non singularity of such
matrices as

a - cincase (i); a-b in case (ii), a - d in case (iii)

and since non singularity and positive-definiteness are preserved under
small perturbations of R ,we conclude that these contours persist as

representatives for non-zero classes in N - H in the generic cases.
In fact the Leray exact sequence in homology can be used on the space
A- H to show that HI,, (A'H) cC) has at mos? 3 generators.

We now have the existence of 3 non-zero classes

% 5, sk S, e HE (A, Oyl ,)

where 2‘7 .0; (j=123)
d Q""

(in the sense of currents) and Q and the ){/ were constructed abave, We

[
need to show that there exisi extensions '5q of S j for each j where

(Sd e HY (A) OZT (-2,-2)->->))
and its image under the natural map
: 4
H4(_~)O‘W) - H (- )CQA)

is tf)d



e

Such gs are constructed easily enough by replacing & by
Wy

v Jv)
ﬁz and 'b(// by 3& where 3& is obtained from % by
[2)
replacing each point P on b:/ by a disc of real dimension 16 which is

transverse to A. in [T ( /\ is of real codimension 16 in TT ).

What is, perhaps, not quite obvious is whether the proposed
functionals

(‘bl)"-l)d,q,) > U‘}?)d [Ej ﬁ‘/':' ')'7—;%) e

not identically zero. It seems to us that the best chance of proving this is to
show that the integrals

3 DWx1Z
w.s. [IT] = f‘*“—"f“ WA
{ % [ +H )
S d Xz
(where 7T, is our 20-dimensional contour and the type of ihe integrand is

J

(12, 8), /@ being a 0’6 function whichis 1 on A and 0 except within
about a millimetre of A_ ) is equivalent to taking the residue of each »Fi‘eld’

o

=
at its line and then integrating the result, multiplied by & -, over 7(/ .
' 1S

(A likely method of proof would be to iterate the formula - which can
be established from the generalised Cauchy Integral Formula

Oﬂ,;&) _ 1 / f[%) o Ay )
2 —
< Z -0
Showing the equivalence of these integrals would have the further virtue
of relating our evaluation procedure to philosophies 0 and 2.
Many thanks to APH and RP for all the useful chatter.

Stocs Higget Michut, Smgar”
References: /

[1]S. A. Huggett and M. A. Singer in TN 23
[2] A. P. Hodges "Inhomogeneity and Crossing Symmetry" in this TN.
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Conformal Gravity, The Einstein Equations

and Spaces of Complex Null Geodesics.

R.J Baston and L.J. Mason,
The Mathematical institute, - New College,
24 - 29 St Giles, ' Oxford OX1 3BN.
Oxford OX1 3LB. U.K.
U.K.
Abstract

The aim of this work is to give a twistorial characterization of
the field equations of conformal gravity and of Einstein space-times.
We provide strong evidence for a particularly concise characterization
of these equations in terms of ‘formal neighbourhoods’ of the space of
complex null geodesics.

We consider second order perturbations of the metric of complex-
ified Minkowski space. These correspond to certain infinitesimal deform-
ations of its space of complex null geodesics, PIN.

PIN has a natural codimension one embedding into a larger space
(the product of twistor space and its dual)., We show that deformations
extend automatically to the fourth order embedding (that is, the fourth
formal neighbourhood). They extend to the fifth formal neighbourhood
if and only if the corresponding perturbation in the metric has
vanishing Bach tensor (these are the equations of conformal gravity).
Finally, deformations which extend to the sixth formal neighbourhood
correspond to perturbations in the metric that are conformally related
to ones satisfying the FEinstein equations, at least when the Weyl
curvature is sufficiently algebraically general.

One can attempt to construct such formal neighbourhoods in the
fully curved case. We present arguments which suggest that our
results will also hold when space-time is fully curved.

Pobtintad i Clansicat amck  Quentuan Grewily,

4 (\a91) 8\5 - 3zb.
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Remarks on Sommers' Theorem

L.P. Hughston

Lincoln College, Oxford 0X1 3DR, England

Abstract

According to Sommers a spinor field gA which satisfies
gAngA'AEB = 0 and is a p-fold principal spinor (p 2> 1) of
a massiess field of spin }(p+q) is also a repeated principal
spinor of the gravitatibnél field (unless p = 3g+2). A new

and much simplified proof of this result is established

here.

July 1987
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Twistor Cauchy Riemann Manifolds Associated to

Algebraically Special Space-Times.

L.J.Mason .

Tntroduction

It has been known for some time that a residue of the Kerr theorem holds
for. geodesic shear free null congruences in curved space-times. (See, e.g. Penrose &
Rindler, Spinors & Space-time vol II 87, and references therein to P.Sommers. See
also recent papers of Robinson & Trautman), This amounts to the fact that the (3-
dimensional) quotient‘space, PN, of the space-time, AL, by the congruence has a
naturally defined C.R. structure. From the Goldberg-Sachs theorem we know that,
in vacuum, algebraic speciality is equivalent to the existence of a geodesic shear
free ﬁull congruence. One might therefore hope that these residual twisfor C.R,
manifolds may be of use in solving the reduced vacuum equations for algebraically
special space-times, - and also for understanding the global structure of such

solutions, Here I wish to report on some preliminary results.

One would like to articulate the vacuum equations on an algebraically special
space-time, AL, in terms of ‘twistorial’ quantities on the guotient space, PN, in the
hope of some simpli‘fication in the field equations emerging. One may, for instance,
in the type N case hope for some generalization of the description of solutions in
linearized theory in terms of two free holomorphic functions of 2 variables. I have
not yet been able to do this in a satisfactory fashion. (The field equations in the
case of a twisting congruence have so far proved very difficult to solve; it is this
case, however, which has previously provided the most hope of globally regular
solutions. The twisting case is also the most interesting from the poiunt of view of

C.R. manilfold theory, since only then is the C.R. structure nondegenerate.)

Before one can approach this problem, a preliminary question arises as to
what further geome'try is required on PN over and above the C.R. structure in
order to be able to reconstruct the space-time. The answer to this preliminary
gquestion turns out to be of interest also because it has interesting implications for
the asymptotic structure of slgebraically special space-times. In particular, it seems

likely that no asymptotically simple vacuum algebraically special space-times exist.
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The residual C.R. Manifold

Let (.,ds”) be a Lorentzian space-time, and let 1%=0"0" be a vector field
aligned along a geodesic and shear free null congruence in M. Let PN be the
quotient space of . by the congruence. Then a natural C.R. structure on PN can
be defined as follows. Choose a spinor, " such that LAJOA:=1. The vector field
-'m.azoALA', by virtue of the geodesic and shear free condition on o®, satisfies
£m% =al®+bm® for some complex functions a and b. So the (complex) vector field
m“*ds descends to a vector field, 8§, on PN up to proportionality. In three-
dimensions, such a single complex vector field is sufficient to define a C.R.

structure on PN,

[Recall that a C.R. structure on a (2n +1)-dimensional manifold models the
structure that the manifold would inherit from a codimension one embedding in a
complex manifold, The C.R. structure can be specified by an integrable complex n-
¢dimensional sub-bundle, H, of the complexified tangent bundle. This models the
{1,0)-tangent véctors on the ambient complex manifold which are tangent to the
embedded submanifold. In this case n=1 and so D consists of a vector field up to

proportionality.]

The space PN can be thought of as a residual twistor space. For a geodesic
shear free congruence in Minkowski space, PN is the intersection of the Kerr

surface defining the congruence in PT with PIN.

The structures required to rebuild the space-time

I will consider only nondegenerate C.R. manifolds, i.e. those for which [§,5] is
not a linear combination of § and 3. (Degenerate C.R. manifolds are fairly dull
creatures and the vacuum equations and asymptotic structure for that case are

relatively easy to handle). This requires that the congruence be twisting.

Since general algebraically special metrics depend on functions of 4 variables,
we must [irst impose some conditions on M. The first conditions include all

vacuum algebraically special space-times., These are:

A=0=®, 00" =¥, ...0%0",
The final, slightly awkward condition is that: (o—pW,—®,;=0 in the frame given
below. This eliminates (2,1,1) vacuum space-times, but includes all type (3,1) and (4)

vacuum space-times.



We also need some technicalities concerning C.R. manifolds. On PN there is
a naturally defined C.R. complex line bundle, N—PN. This is defined to be the %
power of the canonical bundle 3, N=%"7. (The canonical bundle on PN is the
bundle of complex 2-forms orthogonal to §.) The reason for this definition of N is
that when PN is realized as a hypersurface in CP? then N is the restriction of
O(—1). (See my article on Chern-Moser connections in TIN21.) We‘can now state

the result concerning the structures required on PN required to rebuild A,

Lemma: Space-times in the class defined above are in 1-1
correspondence with pairs consisting of o 3-dimensional C.R.
manifold, PN, together with a (1,0)-form, i, with values in N?

whose associated 1-form on N (also denoted ) satisfies v dt =0,

(Note that by a (1,0)-form, o, | mean that o(§)=0, with the complex conjugete defin-

ition for a (0,1)-form.)

Proof: [ will proceed by writing everything out in coordinates.

The condition t,dt=0 implies that there exists a C.R. function, ¢ (¢ =0), on
PN, and a trivialization of N over PN such that ¢ =d<.

A trivialization of N provides also a fixed scaling for a 1-form, I, on PN
satisfying U8)=UE)=0. This can be seen as follows. Let N\ be a coordinate up the
fibre of N and let 8=M\l for some choice of 1. Then d6 defines all but one
component of a Hermitean form on OZ’I‘.N'/T[O’“.N'. On N we have the pullbacks, v,
from % of the holomorphic ‘volume’ ‘forms. The scaling on { can now be fixed by
requiring that the determinant of the Hermitean form on CTN/TOVN equals that
defined by dy®dr. (This procedure is well defined, and is not as ad hoc as if may
seem; it is intimately related to those required to define the Chern-Moser
connection for the C.R. manifold. See my article in TIN21.) Finally, to agree with
the reduction of the space-time metric below, we may choose a coordinate u (defined
up to the addition of a real function of ¢ and ¢) such that l=du+zd¢ +Zds.

We now compare this to a reduction of algebraically special metrics. Proofs

of the following can be found in the exact solutions book by M.MacCallum et. al.

Coordinates for AL can be chosen as follows. The curvature conditions
A=0=0, 0% =¥, ¢ D‘OC'OD’ imply that 0® can be scaled so that the 1-form

L=0" VboA,dmb is closed and therefore equal to the gradient of a complex function ¢,
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t=d¢. A coordinate 7 is chosen to be an affine parameter up each geodesic of the
congruence with =0 at the hypersurface of minimum expansion, p=—p. Finally a
coordinate u is chosen so that l=ladz® =du +zd{ +Zds, Thé coordinates (u,(,¢) are
constant along the congruence, and therefore provide coordinates on PN. With the
above curvature conditions and choice of coordinates, the general metric (with
diverging rays) is:

ds* =2 .n—2m-m

l =du +Zd¢ +zd¢ n=dr +Hdu +0d¢ +wd¢

= —p~td¢ m=—p5""d{

where (u,r,{,() are the coordinates and z,w and p are complex functions, and H is

real. It is convenient to define the vector fields:

The curvature conditions imply:

—_—1 N Fy-SURe
p—‘r_*_ip':‘ Py = 2\62 62)
w = (8% —i8p,) H = Y6AZ +5Az+p03+592)
z=2z(uss) - Y2 =260

The condition {p —p)¥,+®,, =0 restricts us to the case in which p2=0. It can now
be seen that, with this condition, the knowledge of z as a function of (u,6,6) is
sufficient to reconstruct the space-time. This can be found from the coordinate

expressions for ¢ and ! from the C.R. manifold point of view,

The combined remaining coordinate and frame freedom is:

o™ — M¢)o™, U — NNy,  ¢— /)\Q(g)dg, T S N N

and U — u4£(,5)

This is precisely the freedom associated with deriving the coordinate forms
of ¢ and 1 from the line bundle valued form t on PN, so we see that the

correspondence is well defined.l
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