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These pages reproduce the material shown as transparencies in the course of my 
presentation. I have added a number of further comments, which arose from 
answering the stimulating questions raised during the talk or put to me 
immediately afterwards. I have also added a few references.



§0.  The twistor diagram programme: We have twistor representations for free 
z.r.m. fields, thought of as in-states (positive frequency) and out-states (negative 
frequency). There are multilinear functionals of these fields yielding (Feynman) 
scattering amplitudes in Minkowski space. 

The aim of the twistor diagram programme has been to express these functionals 
directly and entirely in twistor space. 

We would like to do this in way that expresses:—

▼ manifest gauge invariance

▼ manifest finiteness

▼ manifest decomposition into atomic elements like the propagators in Feynman 
diagrams, with the hope of finding a new dynamical principle in twistor space 
analogous to the Lagrangian in space-time.

All the basic elements in the theory were identified by Roger Penrose in about 1970, 
and scattering amplitudes for massless QED were studied as helicity amplitudes. 

Perhaps no-one guessed how important helicity amplitudes would be...

Comment: in particular it would hardly have been expected in 1970 that Feynman 
diagrams for the strong interactions would be needed for interpreting actual 
collision experiments, and that the helicity amplitude approach to simplifying the 
Feynman predictions for SU(3) scattering would be vital in practical computation. 

Comment: by manifest finiteness I mean finiteness of the S-matrix for all finite-
normed states in the Hilbert space. This is a much more stringent criterion than 
the usual practice of computing functions of momenta, without worrying much 
about the singularities exhibited by these functions for special external momentum 
values. 

Momentum states are obviously very important for comparison with collision 
experiments, but for real consistency with the principles of quantum mechanics, the 
S-matrix should be completely well-defined for all states.



§1.  Zeroth order: The simplicity of the inner product for z.r.m. fields (i.e. without 
any interaction) gave an elegant starting-point for this programme.

If  ψ (x), φ (x)  are fields of helicity n / 2, with corresponding twistor representations 

€ 

f−n−2 (Z α ), 

€ 

gn−2 (Z α ), then the inner product 

€ 

ψ φ  is given simply by a contour 
integral:

€ 

ψ φ = f− n−2(Z α∫ ) gn−2 (Z α ) DZ

This is gauge-invariant and manifestly finite. We make a start on an analogue with 
Feynman diagrams by thinking of the Z as a ‘vertex’ and writing the integral as:

Comment: throughout, out-states are written as negative-frequency states, rather 
than as the complex-conjugates of positive-frequency states. This is the best 
convention with which to express crossing symmetry. The symbol 

€ 

ψ φ  implies 
linearity in both the ψ and the φ, rather than being antilinear in the ψ as in 
standard notation. 

For the definition of these standard quantum field ‘inner products’, which go back 
to 1930s work of Fierz, and the correspondence to this twistor integral, see the 
original Penrose and MacCallum paper (See References). The simplicity of this 
basic formula deserves to be more widely known. 



Comment: the black vertex implies a contour integration over the twistor variable 
Z, analogous to a Feynman vertex meaning integration over a momentum. I have 
written the form DZ deliberately vaguely. In the original projective diagrams this 
would mean the 3-form, but it could also be the 4-form (naturally with one extra 
dimension for the contour). For the non-projective diagrams to be introduced 
shortly, it must be the 4-form. 

Comment: some readers may expect the word ‘contour’ to imply a 1-dimensional 
path. However, the contours we need (i.e. representatives of an appropriate 
homology class) will be p-real-dimensional spaces in a p-complex-dimensional 
space. They will, typically, have a topology involving higher spheres, and should 
not be thought of as always reducible to the usual residue calculus.



§2. Representing the momentum space δ-function:

A prerequisite for scattering amplitudes is that we have a twistor equivalent of 

€ 

d 4 x∫   (x-space)      or        

€ 

δ p1 + p2 + p3 + ... + pr( )     (p-space)

To obtain such an equivalent, consider first scalar fields (other helicities can then be 
considered by spin-raising operations), and note the evaluation diagram:

where 

€ 

I αβ  is the ‘infinity twistor’, and W, Y are any two dual-twistors spanning the 
twistor line corresponding to the point x. The lines in the twistor diagram joining the 
vertex Z to W and Y simply represent simple poles 

€ 

(Wα Z α )−1 , 

€ 

(Yα Z α )−1

Comment: these first steps use a great deal of twistor geometry which, though 
elementary, may not be familiar. They follow from the correspondence of lines in 
projective twistor space PT to points in complexified compactified Minkowski 
space M. 

Thus the line spanned by WY corresponds to a varying space-time point x. The 
effect of the simple poles can be described as confining Z to WY.
The line defined by the infinity twistor  

€ 

I αβ  corresponds to the vertex I of the null 
cone at infinity in M.  

€ 

IαβX α Z β = 0 is the condition for WY to represent an 
infinite point; the factor 

€ 

I αβWαYβ   is the conformal factor which enters into the 
compactification of M. 

The representation of the f(Z) by two ‘ears’ suggests the two separated 
signularities needed to define it in its original naive ‘function’ form. More 
abstractly, it is implicit in this and all the contour integrals to be defined that the 
integration structure is to be consistent with the nature of f(Z) as a first-
cohomology element in one half of twistor space. Some of this has been made 
rigorous for the simplest projective twistor diagrams by Huggett, Singer, Eastwood 
et al., but virtually nothing has been done for non-projective diagrams. In 
practice, we assume that a contour integral construction which ‘sees’ the two 
singularities correctly is one that could, in principle, be described correctly as a 
functional on the first-cohomology space.



Now note that integration over real (compactified) Minkowski space can be 
translated into a compact contour integral in the product of the W and Y projective 
spaces. Essentially, this is an integration over the lines in twistor space parametrised 
by WY.

The form 

€ 

d 4 x  corresponds to the form     

€ 

(I αβWαYβ )−4 DW ∧DY  

The contour has topology  S3 x S1 x S1 x S1.

Comment: crucially, this is compact, hence the integral is manifestly finite. My 
remarks are intended only to give a rough idea of how the x-space integral 
corresponds to the twistor integral. The central idea is that the simple poles have 
the effects of constraining the external twistors all to lie on the same line WY —  
readers may compare this with Witten’s construction. 

We use an unfilled vertex     to represent an integration over a dual-twistor 
variable. 

Then the product of r scalar fields over Minkowski space can be given by the 
twistor integral:



Here the dashed line represents the numerator factor of 

€ 

(I αβWαYβ )r−4  which 
doesn’t affect the singularity structure. In the case r = 4, which we now consider, 
this factor is absent, showing the conformal invariance of the functional.

Comment: One advantage of twistor representation is that full conformal 
invariance, and the breaking of conformal invariance, is made manifest. Thus an 
expression which uses 

€ 

I αβ  as a fixed element can’t be conformally invariant. 
If r ≠ 4 one sees this conformal breaking directly. It will be scale invariant if it is 
homogeneous of degree 0 in 

€ 

I αβ . It will be Poincaré-invariant if it involves 

€ 

I αβ  
but no other fixed twistors. 

Historically, Penrose’s early evaluation of twistor diagrams began with the r = 4 
case, thought of as representing first-order φ4  scattering.

Crossing symmetry emerges as the following principle: for different allocations of 
positive and negative frequency fields, there will be different contours for the same 
integrand. 

Comment: An interesting fact, which may not be generally known, is that the three 
amplitudes in the three channels, when analytically continued in their parameters 
to a common region, sum to zero. This must reflect a linear dependence of the 
relevant contours. This should not be confused with the other relationship 
involving the sum of three expressions which will be noted later in connection with 
gauge fields.



§3.  First order: the interaction of four gauge fields

We will go immediately to pure gauge-field theory, using the Parke-Taylor formula.

It is immediate to write down a (formal) twistor-integral expression for the
four-gauge-field scattering amplitude. The Parke-Taylor formula 

€ 

〈12〉4

〈12〉 〈23〉 〈34 〉 〈41〉
δ p1 + p2 + p3 + p4( )    

can be translated into

The new lines represent those new singular terms 

€ 

(Iαβ Z1
α Z2

β )−1  etc.

The point of the above was to indicate that the transcription of the kernel of the 
Parke-Taylor formula is very simple and direct: the infinity twistor 

€ 

I αβ  picks out 
and combines exactly those spinor parts of the twistors which are indicated by the 
angle-bracket notation. 

However, one should also remember the four external functions, which are left as 
blank ‘ears’ in the twistor diagram. In Witten’s approach these are twistor-
momentum states in (2+2) space. There doesn’t seem to be an analogue for this in 
(1+3) space.

Note that you can read off whether the external function is to be positive or 
negative helicity from the homogeneities. The symbols + and – are redundant.



This integral is gauge-invariant but does not otherwise meet the demands of the 
twistor diagram programme.

(A) there are many different elements in the integral and it doesn’t resemble the 
simple Feynman diagram formalism.

(B) for finiteness there must be a contour avoiding all those new singularities

Comment: and just as importantly, (C) this integral does not show the conformal 
invariance which is of such importance, and which a twistor representation ought 
to be making manifest! All we can see is the scale-invariance.

We address (A) by noting that there are other twistor integral representations of the 
δ-function. 

As a general point: twistor geometry is not restricted to z.r.m. fields. Such fields 
arise particularly simply from 1-functions of one twistor. But more general fields 
(off-shell or massive, for instance), can be expressed by functions of two or more 
twistors. The algebra governing such representations has been studied by twistor 
theorists from the earliest days and it plays a role now. 

In particular, for four scalar fields, the completely symmetric formalism of evaluating 
all four fields can be replaced by an asymmetric formalism that only evaluates two 
of them. This is connected with the spin eigenstates of 2-twistor functions.

Comment: Roger Penrose’s second talk also emphasised the n-twistor functions 
and gave a definition.

We need a new diagram element: the double line for a double pole like 

€ 

(Wα Z α )−2

Then we have

        



With this new version of the δ-function, the translation of the four-field amplitude is 
effected by:

But it is now necessary to allow the contour to have a boundary corresponding to 
the boundary of compactified Minkowski space where in- and out-states are defined, 
viz. a boundary on hypersurfaces of the form

€ 

IαβX α Z β = 0,     

€ 

I αβWαYβ = 0

These boundaries will not be marked in what follows. They form part of the general 
problem (only partially solved) of determining contours for the resulting integrals. 

The advantage of this asymmetric formalism is that it allows an integration by parts 
to reduce the number of elements in the integrand. The poles like 

€ 

(Iαβ Z1
α Z2

β )−1  
will be eliminated. We just need a natural extension to:

▼ triple lines   for a triple pole like 

€ 

(Wα Z α )−3

▼ quadruple lines     for a quadruple pole like 

€ 

(Wα Z α )−4

and most importantly,



▼ a new element for the antiderivative of a single pole, i.e. some new element 
  which satisfies the formal relation

  

€ 

∂ /∂Zα         =    Wα  

€ 

(Wβ Z β )−1

The natural solution is to choose     to be the condition that the 
contour have a boundary on  

€ 

Wα Z α  = 0.
        

Comment: in the history of the subject several other apporaches were tried, e.g. 
involving logarithms. However, I now regard the purely geometrical idea of 
boundaries (i.e. relative homology) as being the most fundamental. Note that this 
definition implies that corresponding poles are always Cauchy poles, i.e. can be 
thought of restrictions to a submanifold.



Use the diagram notation to integrate by parts: formally we obtain

                  

                        



ending with

       

We could equally well have arrived at

       

and hence these must be equal. This is a first example of the non-uniqueness of the 
diagrams, to which we will return in §4. 

In both cases the ordering of the vertices round the central polygon is that of 
(1234), the ordering of the external gluons that went into the Parke-Taylor formula.

The unmarked boundaries on subspaces of the type  

€ 

IαβX α Z β = 0,   

€ 

IαβX α Z β = 0,  are now the only elements in the formalism which break the 
conformal invariance.



Comment: This conformal breaking is very important. Roughly speaking, the 
twistor diagrams just dscribed can be regarded as conformally invariant versions 
of the Parke-Taylor formulas. But it is only the integrand that is conformally 
invariant; the boundaries are not. As we shall see now, this is just a foretaste of 
the problem that forces itself on our attention through the demand for complete 
finiteness.

Now (B): is there a genuine contour for manifestly finite amplitudes? 

No. 

This is not because of any defect in the twistor-geometric approach. It is because the 
amplitudes, as so far defined, are in general not finite. The integral we have written 
down does not, in general, exist. There is in general an infra-red divergence in all 
these processes arising where the exchanged virtual gluon has zero momentum. 

The underlying problem is with the perturbation expansion: the first-order amplitude 
cannot really be distinguished from the zeroth order: i.e. no interaction. This is the 
well-known divergence in the forward direction for Coulomb-type interactions.

Three attitudes one could take:

▼ treat the resulting expressions formally, interpreting them for momentum states 
and not for finite-normed states.

▼ consider only those exceptional cases where there is no infra-red divergence (this 
happens when the in-states and out-states are such that they cannot occur without 
an interaction)

Comment: I mention these first two options as they reflect how, in practice, much 
development has been done. But they are obviously unsatisfactory strategies for 
anything claiming to be a fundamental theory.

▼ modify the theory. We can define a regularised amplitude as follows. Take the 
virtual gluon to have mass m instead of zero: this removes the IR divergence. 
Subtract log(m2/M2) x {the zeroth order amplitude}, where M is some fundamental 
mass. 

Now let m → 0. The limit is finite. In momentum space it is exactly the same as the 
original amplitude, except for the forward direction. There it is now finite, but 
depends on M.

There is a twistor-geometric approach which yields exactly this regularised 
amplitude. We modify all the poles and boundaries as so far defined.



 Instead of the singularities being 
(

€ 

Wα Z α ) to negative powers, and boundaries being on 

€ 

Wα Z α  = 0, we employ
(

€ 

Wα Z α
 – k ) to those negative powers, and boundaries on 

€ 

Wα Z α
 = k

There is a natural value k = e– γ   (the Euler constant γ arises rather as it does in 
dimensional regularisation, as the derivative of the gamma function).

The length scale M comes in by modifying the boundaries so that:

€ 

I αβWαYβ = 0,   

€ 

IαβX α Z β = 0   become  

€ 

I αβWαYβ = M ,   

€ 

IαβX α Z β = M

This modification leaves the δ-function formula and all previously finite amplitudes 
unaffected but now contours exist for the ‘divergent’ amplitudes too.

This is not the same as a cut-off. The k and M are not to be thought of as small.

Comment: It is very striking that in the redefined integrals, the twistors Z etc are 
actually now constrained NOT to meet lines WY etc — and yet the results of the 
integrals remain the same.

It uses geometry which isn’t equivalent to Minkowski space — it uses an extra 
dimension.

Comment: This idea is the nearest thing I know to Roger Penrose’s original idea 
of fuzzing out points, while keeping null-cone structure.

As a general point: twistor theory is actually based on non-projective twistor space 
and its deformations (emphasised by Roger Penrose, e.g. in connection with getting 
a complete description of gravity.) This gives a chance for putting in something new 
that could not be expressed in space-time.

Hope: this twistor-geometric modification will deal consistently with all divergences. 

Hope: it is connected with the proper twistor description of mass, gravity, and an 
underlying non-perturbative theory of scattering.

Comment: it will be noted that twistor diagrams involve ‘loops’ even at this 
simplest level of Feynman tree diagrams. Evaluation of these integrals, for 
elementary states, actually arrives at the same logarithm and dilogarithm functions 
of complex points, as arise in the ‘box function’ of momenta in standard Feynman 
diagram theory. It remains to be seen whether some use can be made of this.



Comment: In this presentation I motivated this development by the problem of the 
elementary infra-red divergence. But there are actually other good reasons to 
adopt this change to ‘inhomogenous’ elements; e.g. the consistency requirement 
that simple poles should always be treated as Cauchy poles leads naturally to it.

Comment: Obviously we have now definitely broken conformal symmetry, though 
we have confined the breaking to the boundaries, leaving the integrand 
conformally invariant. It should be noted that it is not just the IR problem which 
demands that conformal symmetry should be broken. In the Baston & Bailey book 
(see references) I gave an explicit example of a finite 5-field amplitude which is 
scale-invariant but not conformally invariant. 

Comment: As Roger Penrose raised, the m and k thus introduced might show up in 
some testable way at a higher level of the theory. Also, the choice of k as positive 
rather than negative involves a subtle time-asymmetry.

§4. Emergent form of twistor diagrams

The simple and double pole lines can be thought of as Cauchy poles which pull all 
the twistor functions on to the same space-time point for evaluation.

Boundary lines do this ‘pulling’ together but they also absorb the content of the 
Feynman propagators which are inverse differential operators. Normally these are 
left as inverse operators, i.e. as differential equations still requiring solution. The 
claim is that the contours with these boundaries actually specify the correct, 
complete finite, solutions for in- and out-states in the Hilbert space of free z.r.m.

Comment: the properties of these boundary lines is closed related to the properties 
of the Feynman propagator. Questions of coefficents of logarithms, and 
discontinuities across cuts, which others use in evaluating momentum-space 
integrals, relate directly to the ‘period contours’ that arise from leaving out one 
boundary line.

If we studied other parts of the standard model we would find  single, double and 
triple lines appearing in a natural way in diagrams which express the propagation of 
spin-0 and spin-1/2 fields

But in pure gauge-field theory we only get the boundary lines and the quadruple 
lines.

Come back to the question of non-uniqueness:

Even for zeroth order, the following integrals are equivalent:



so these elements are not like Feynman diagram elements. These integrals should be 
considered as representatives of a more abstract twistor object which embodies this 
functional of the fields.



For first order we have already, for the ( + + – – ) case, noted the equivalence of:

                   

But both of these are also equivalent to two ‘double-box’ representations:

                             

which (it appears) can be extended to chains of any length
 



For the remaining type ( + – + – ) the simplest representation is:

but it can also be represented as:

and again, it appears this can be extended in the obvious way as a chain of any 
length.

In every case the diagram can be considered as giving a planar polygon, and the 
gauge-theoretic trace always follows the edges of this polygon.

Note also that the difference between the ( + + – – ) and the ( + – + – ) integrals lies 
only in the boundary lines; the integrands are the same.



As the integrals are not unique they should be seen as representatives of some more 
abstract object. We can get some ideas of these more abstract objects by studying 
properties of these integrals and the amplitudes they represent.

If the four fields are labelled by (1, 2, 3, 4), write these (‘colour-stripped’) amplitudes 
as  A(1234), A(1324), A(1423). Guided by the ‘polygons’ found above, and the 
related trace property, which is the same whatever integral representation we use, 
we might picture these objects as 2-surfaces with edges:

The identity         A(1234) + A(1342) + A(1423) = 0

supports this notation. 

Then the complete amplitude is given by

A   =   Tr(1234) A(1234)  +  Tr(1343) A(1342)  + Tr(1423) A(1423)



In the integral representations given, the integrand can be taken to be the same for 
all the A( i j k l ). The differences between them lie entirely in the boundaries 
chosen. 

Thus the complete regularised amplitude A can be written

€ 

f1(Z 1 ) f2(Z 2 ) f3(Z3 ) f4 (Z 4 )
(Z 3.W3 − k)4 (Z4 .W4 − k)4∫ DZ1DZ2DZ 3DZ4 DW3DW4

with the contour consisting of

€ 

tr( i j k l )  V( i j k l )
Π
∑

where V( i j k l ) is a homology class (relative to the allowed boundary subspaces), 
with the linear dependence: 

V(1234) + V(1342) + V(1423) = 0

Comment: more precisely, there is such a linear dependence for each channel; and 
then a linear dependence for the sum over channels (when analytically continued) 
for each cyclic ordering!

All these features persist for 5 and 6 fields.



§5 Five- and six-field MHV amplitudes

Here again we can make no progress using the original 1-twistor transcription of the 
δ-function for five scalar fields. Instead, use this representation, which again arises 
from the algebra of 2-twistor functions:

Integration by parts leads to representations of the two different kinds of 5-field 
MHV amplitudes.

For ( + + + – – ) we obtain:.

and other alternative forms which have the same integrand but a different 
disposition of boundary lines and the same feature of an internal polygon in the right 
vertex order.



For the type ( +  – + + – ) there is only one simple representation:

A complete amplitude then takes the form over of a sum of 12 terms, six of one 
type and six of the other:

The ‘disgusting mess’ that Dr Bern discussed, boils down to:

€ 

f1(Z 1 ) f2(Z 2 ) f3(Z3 ) f4 (Z 4 ) f5(Z 5 )
(Z3.W3 − k)4 (Z 4 .W4 − k)4 (Z 5.W5 − k )4∫ DZ1DZ 2DZ3DZ 4 DZ 5DW3DW4 DW5

with all the content going into the choice of homology classes V(i j k l m)

There is one new feature: a limit in which one of the external  + fields (i.e. of 
homogeneity 0) is dropped. At least formally, the diagrams then become the 
appropriate 4-field diagrams.

Comment: Can these integrals be evaluated? Note that even for the simplest four-
field diagrams, evaluated on elementary states, the results involve dilogarithms. 
Five and six-field amplitudes will require more complicated polylogarithmic 
expressions. Instead of making such ‘evaluation’ a focus, it looks more sensible to 
develop methods to (1) show the completeness and finiteness of the prescriptions 
and (2) show how the results agree with usual momentum-space expressions.



For six fields the situation is similar, with an amplitude made up of

24 terms of type ( + + + + – – )
24 terms of type ( + + + – + – )
12 terms of type ( – + + – + + )

The first type has three equally good representations, of which one is

and the other types have just one:



Again we have polygons formed in the correct order of the external vertices. 

Again we have integrals which differ only through their boundaries. 

The ‘dropped photon’ limit going from 4→2 to 3→2 makes sense.

The pattern for all MHV processes is clear: an extended ladder of these boxes 
making up a simple polygon.

It looks very like the BCF representation....



§6. Conjectured diagrams for six fields, non-MHV cases

This section presents a conjecture for the ( + + + – – – ), ( + + –  + – – ), 
and ( + – + – + – ) amplitudes.

It is based on the idea of building up from sub-processes which are MHV.

A very early idea of Roger Penrose suggested the first-order diagrams before they 
were verified analytically.

Given the zeroth order (non-interaction) amplitude, written as:

                                                     

a first guess is that a spin-1 line joining them will create a first-order interaction. 

However, a single line corresponds to an ‘on-shell’ field, not to the ‘off-shell’ field. 
For this, it is necessary to connect with two lines, which can represent a function 
which is not zero-mass.

                                                        



This argument doesn’t account for details but is essentially right. The pair of 
boundary lines joining the two zeroth-order processes is a two-twistor function 
translating the Feynman propagator.

Now apply this idea to building 3 → 3 by ‘joining’ 2 → 2  to  1 → 1



Consider the ( + – + – + – ) case. We should somehow ‘join’ with a pair of 
boundary lines, the diagrams:

                                             

The following procedure achieves this in a way that has a three-fold symmetry. 



As before, this is not unique. Similar arguments lead to similar conjectured diagrams 
for the other two types of 3 → 3 amplitudes, also non-unique.

These conjectured diagrams satisfy some strong constraints:

(1) duality: complex-conjugating to exchange + and – yields a consistent result

(2) infra-red divergent parts are consistent

(3) 2 → 3 diagrams obtained by the ‘soft photon’limit are consistent. 

There’s another important piece of evidence in favour of diagrams with this 
structure.

For scalar fields with the φ 4 interaction, an early conjecture was that there would 
be a correspondence between Feynman and twistor diagrams like this:



 

But the central double pole here would be represent an on-shell field and not the 
desired Feynman propagator. 

A correct representation is proved (non-trivially!) to be given by



Why two extra lines? The three connecting lines correspond to a three-twistor 
representation of the scalar Feynman propagator, and this diagram seems to be 
intimately connected with the algebra of three-twistor functions.

Guess: the same is true for the (3 + 3) gluon processes when understood as a whole.

Guess:  2-twistor functions for MHV
           3-twistor functions for ‘next to MHV’
           .......

Comment: the general idea of ‘MHV subprocesses’ being treated as vertices, and 
joined together through the CSW argument, has obviously proved of great value. 
This must now be related properly to the proposed joining together of 
corresponding twistor diagrams. My guess, based on the remarkable simplicity of 
the CSW results, is that this should be quite straightforward. 



Twistor diagram representations will not necessarily give something more 
computationally tractable. In this scalar case we already know the ‘answer’, viz.

€ 

1
(p1 + p2 + p3 )2 δ (p1 + p2 + p3 + p4 + p5 + p6 )

However, this approach

▼ should connect with ideas of MHV vertices, but bringing in n-twistor algebra

▼ ... so might give a new way of looking at loop diagrams

▼ gives a new possibility for regularising divergences geometrically

▼ shows conformal invariant elements and makes conformal breaking explicit

▼ help to connect pure gauge-field theory with all massless field theories (including 
gravity, as suggested by Dr Nair’s results)

▼ ... help to suggest a fully twistor-geometric theory of fundamental physics.

Comment: I should like to express my gratitude to the organisers and the other 
speakers at this remarkable conference. The results and ideas communicated have 
already stimulated new developments of the theory presented here.
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