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1 Introduction

These are notes from my lecture at the Twistor String Theory workshop held at
the Mathematical Institute Oxford, 10th–14th January 2005. They are almost
the same as the slides I used, except that I have compressed them to save paper
and corrected a couple of errors.

2 Twistor geometry

Twistor space T is C4 with coordinates

Zα = (Z0, Z1, Z2, Z3).

Projective twistor space PT is CP3. Z ∈ PT has homogeneous coordinates
[Z0, Z1, Z2, Z3].

A plane in PT is a CP2 given by an equation of the form

ZαAα = 0.

In other words it is determined by a dual (projective) twistor [A0, A1, A2, A3].
A line in PT is a CP1 given by the intersection of two planes

ZαAα = ZβBβ = 0.

Of course there is some freedom in the choice of Aα and Bβ .

What is the space of these lines in PT?
Each is determined by a skew simple (0,2) twistor Lαβ . The condition for

simplicity can be written

3Lα[βLγδ] = LαβLγδ + LαγLδβ + LαδLβγ = 0,
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which defines a quadric Q in CP5 (called the Klein quadric).
By changing the coordinates we can see that Q is actually the space of

generators of the cone

T 2 + V 2 −W 2 −X2 − Y 2 − Z2 = 0

in C6.

Here is the change of coordinates: T = i√
2
(L03 − L12)

V = L23 + 1
2L01

W = L23 − 1
2L01

X = i√
2
(L02 − L13)

Y = −1√
2
(L02 + L13)

Z = −i√
2
(L12 + L03)

Here is the embedding of M in the cone:

xa → (x0,
1
2
(1− xbxb),−

1
2
(1 + xbxb), x1, x2, x3)

Thought of in R6 our cone is the O(2, 4) null cone of

ds2 = dT 2 + dV 2 − dW 2 − dX2 − dY 2 − dZ2.

Each of its generators (except those for which W − V = 0) meets the plane

W − V = 1

in a point, and the intersection of this plane and the cone is just Minkowski
space M.

So the space of generators is a compactification Mc of M.
It is the conformal compactification: the extra generators form a null cone

at infinity.

We have shown that there is a four real dimensional family of lines in PT
corresponding to M, but we have not so far shown how to identify them in PT.

For a twistor Z to lie on a line L it must satisfy two linear equations. Except
when the line is given by Z2 = Z3 = 0, these can be written(

Z0

Z1

)
=

i√
2

(
x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

) (
Z2

Z3

)
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where xa is the space-time point corresponding to L. More concisely, if we write
Zα = (ωA, πA′) we have

ωA = ixAA′
πA′ .

If Z also lies on the line corresponding to yAA′
, then

xAA′
πA′ = yAA′

πA′

and so the matrix xAA′ − yAA′
must be singular. The condition for this is that

xa and ya are null-separated.

If in
ωA = ixAA′

πA′

we think of the twistor as fixed and solve for the point xAA′
we find that

xAA′
= xAA′

0 + µAπA′

for arbitrary µA.
So Zα = (ωA, πA′) corresponds to this alpha-plane: it is a totally null two

complex dimensional plane in complex Minkowski space.

PT CMc

complex
projective point

line

point alpha-plane

intersection null-separation
of of

lines points

In general an alpha-plane will have no real point, but when it does it contains
a whole real null ray: if xAA′

0 is real then so is

xAA′
= xAA′

0 + rπ̄AπA′

for any real r.
If Zα is the twistor for this alpha-plane then

Σ(Z) = ωAπ̄A + ω̄A′
πA′

= Z0Z̄2 + Z1Z̄3 + Z̄0Z2 + Z̄1Z3

= 0.
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This Hermitian form Σ divides PT into three regions:

Σ(Z) > 0 PT+

Σ(Z) = 0 PN

Σ(Z) < 0 PT−

PN is the space of real null rays: it is a five real dimensional manifold with a
C-R structure. We could imagine discovering projective twistor space this way.

If xAA′
is real then any Z lying on the corresponding line in PT satisfies

ωA = ixAA′
πA′

and hence has Σ(Z) = 0.
Thus points in real (compactified) Minkowski space correspond to lines lying

entirely in PN.

Any two twistors on a given line in PN represent null rays through the
corresponding point in M.

So intrinsically the line in PN is the celestial sphere of the space-time point.

Lines lying entirely in PT+ correspond to points

zAA′
= xAA′

− iyAA′

with yAA′
timelike and future-pointing, or in other words points zAA′

in the
future tube.

This will lead later to a very elegant twistor description of positive frequency,
using the fact that positive frequency fields can be characterized by having
holomorphic extensions into the future tube.

3 The Penrose transform

Consider the twistor function

f(Zα) =
1

(AαZα)(BβZβ)

where Aα = (AA, A
A′

), Bα = (BA, B
A′

) are two constant dual twistors.
We aim to calculate a field at the point xAA′

in CM. Restrict Zα to the line
Lx so that

AαZ
α = (iAAx

AA′
+AA′

)πA′ ≡ αA′
πA′

BαZ
α = (iBAx

AA′
+BA′

)πA′ ≡ βA′
πA′
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and consider the contour integral

ϕ(x) =
1

2πi

∮
1

(αA′πA′)(βB′πB′)
πC′dπC′

.

This is well defined on CP1 since the integrand has total homogeneity zero.
Further, there will exist a contour around which to do the integral provided the
two poles are distinct:

αA′
βA′ 6= 0.

This is satisfied unless Lx intersects the line A[αBβ], or in other words unless
x is on the null cone of a point y in CM.

The contour integral above yields

ϕ(x) =
2

AABA(x− y)2
,

which is a solution of the wave equation

2ϕ = 0.

Solutions of the massless free field equations for spin n/2

∇AA′
ϕA′...B′ = 0

(for positive frequency positive helicity) and

∇AA′
ψA...B = 0

(for positive frequency negative helicity) may be solved in a similar way.

Let f−n−2(Zα) and fn−2(Zα) be holomorphic and homogenous of degrees
−n− 2 and n− 2.

Define fields ϕA′...B′(x) and ψA...B(x) by:

ϕA′...B′(x) =
1

2πi

∮
πA′ . . . πB′f−n−2(Zα)πC′dπC′

ψA...B(x) =
1

2πi

∮
∂

∂ωA
. . .

∂

∂ωB
fn−2(Zα)πC′dπC′

where both integrands are first restricted so that Z lies on Lx.

The remarkable thing here is that ϕ and ψ are automatically solutions of
the massless free field equations.
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It is easy to write down examples of such functions by choosing rational
functions, and we can easily check when their singularities are such that the
contour integral is well defined.

In general this can be fiddly, though. Also, it is clear that many twistor
functions will give the same space-time field.

Define

F1 = {L1 : L1 is a one-dimensional
subspace of T}

F2 = {L2 : L2 is a two-dimensional
subspace of T}

F = F1,2 = {(L1, L2) : L1 and L2 as above
with L1 a subspace of L2}.

Then
F1 = PT, F2 = CMc

and F can be identified with the primed spin bundle, with (local) coordinates
(xa, πA′).

We have the double fibration
F

PT CM

µ ν
�

�
�

�	

@
@

@
@R

where
ν : (xa, πA′) → xa

µ : (xa, πA′) → (ixAA′
πA′ , πA′)

The inverse image of a point in PT under µ is the whole alpha-plane in F.
So a function f(xa, πA′) on F pushes down to a function on PT if it is constant
on alpha-planes:

πA′
∇AA′f = 0.

We may restrict the double fibration to the future tube CM+ and corre-
sponding regions F+ and PT+.

Let U be a cover of F+ by open sets Ui.
An element of C0(U ,S) is a function fi (of type S, defined on Ui) for each i.
An element of C1(U ,S) is a function fij (of type S, defined on Ui ∩ Uj) for

each i, j.
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We have maps

δ0 : C0 → C1

{fi} → {ρifj − ρjfi}

and

δ1 : C1 → C2

{fij} → {ρifjk + ρjfki + ρkfij}

In our example we had just two sets:

U0 = {Zα : ZαAα 6= 0}, U1 = {Zα : ZαBα 6= 0}

and our function was actually f01 defined on U0 ∩ U1.

Let Z ′
n(m) be the sheaf of germs of symmetric n-index primed spinor fields

ϕA′...B′(x, π) which are

holomorphic on F+,
homogeneous of degree m in πA′ ,
solutions of

∇A
A′
ϕA′...B′ = 0.

Consider the onto map

πC′
: Z ′

n+1(m− 1) → Z ′
n(m)

ϕA′...B′C′ → ϕA′...B′C′πC′
.

We have the short exact sequence

0 → T i→ Z ′
n+1(−1) πC′

→ Z ′
n(0) → 0

where T is just the kernel of the map πC′
.

ψA′...B′C′ ∈ T ⇒ ψA′...B′C′πC′
= 0,

and hence
ψA′...B′C′ = πA′ . . . πB′πC′f(x, π).

Further, the zero rest mass equation on ψA′...B′C′ implies that f(x, π) must
satisfy

πA′
∇AA′f = 0.

It is therefore a twistor function homogeneous of degree −n− 2.

7



We may now write our short exact sequence as

0 → T (−n− 2)
πA′ ...πB′πC′→ Z ′

n+1(−1) πC′

→ Z ′
n(0) → 0.

In the following array the squares commute and the rows are exact, but in
the columns we only have Imδ0 ⊆ Kerδ1, in general. However, in the central
column Imδ0 = Kerδ1.

0 → C0(U , T ) → C0(U ,Z ′
n+1(−1)) → C0(U ,Z ′

n(0)) → 0
hiA′...B′C′ hiA′...B′C′πA′

↓ δ0 ↓ δ0 ↓ δ0
0 → C1(U , T ) → C1(U ,Z ′

n+1(−1)) → C1(U ,Z ′
n(0)) → 0

fij πA′ . . . πB′πC′fij

↓ δ1 ↓ δ1 ↓ δ1

hiA′...B′C′ =
1

2πi

∮
γi

λA′ . . . λB′λC′fijλD′dλD′

πE′λE′

hiA′...B′C′πA′
= ρiϕA′...B′

We started with fij in the kernel of δ1, but for any fij in the image of δ0 we
would have obtained zero, so we actually want the class of fij in

Kerδ1/Imδ0 = H1(U , T (−n− 2)).

To see that this procedure leads to an isomorphism we proceed as follows.
From our short exact sequence there is a corresponding long exact sequence

of cohomology groups, which includes this part:

· · · → Ȟ0(F+;Z ′
n+1(−1))

→ Ȟ0(F+;Z ′
n(0)) → Ȟ1(F+; T (−n− 2)) →

Ȟ1(F+;Z ′
n+1(−1)) → · · ·

The first term is global sections of Z ′
n+1(−1) over F+.

For fixed xa, such a section would give a global section homogeneous of
degree −1 on CP1, and there are no such sections.

Thus Ȟ0(F+;Z ′
n+1(−1)) = 0.

A similar argument, slightly more technical, shows that

Ȟ1(F+;Z ′
n+1(−1)) = 0
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so that we are left with an isomorphism

Ȟ0(F+;Z ′
n(0))

δ∗∼= Ȟ1(F+; T (n− 2))

The term on the left represents solutions of the zero rest mass equations on
F+, homogeneous of degree zero in πA′ . They must therefore be independent of
πA′ , and defined on CM+.

The term on the right is a cohomology group on F+ but the coefficients are
twistor functions, so

Ȟ1(F+; T (−n− 2)) ∼= Ȟ1(PT+;O(−n− 2)).

We have shown that the space of zero rest mass fields ϕA′...B′(x) of helicity
n, holomorphic on CM+, is isomorphic to Ȟ1(PT+;O(−n− 2)).

In fact this works for other open subsets

X ⊂ CMc

and the corresponding spaces

Y = ν−1(X) ⊂ F

and
Z = µ(Y ) ⊂ PT,

as long as the fibres of µ|Y are connected and simply connected.
We have glossed over the details of how to relate the various sheaves on X,

Y, and Z.
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