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1 Introduction

These are notes from my lecture at the Twistor String Theory workshop held at
the Mathematical Institute Oxford, 10th—14th January 2005. They are almost
the same as the slides I used, except that I have compressed them to save paper
and corrected a couple of errors.

2 Twistor geometry
Twistor space T is C* with coordinates
7% = (2° 7, 7%, 73).
Projective twistor space PT is CP3. Z € PT has homogeneous coordinates
AN ANANAI
A plane in PT is a CP? given by an equation of the form
Z%A, = 0.

In other words it is determined by a dual (projective) twistor [Ag, A1, As, As].
A line in PT is a CP! given by the intersection of two planes

Z%A,=Z"Bs =0.

Of course there is some freedom in the choice of A, and Bg.

What is the space of these lines in PT?
Each is determined by a skew simple (0,2) twistor L,g. The condition for
simplicity can be written

3La[ﬁL75} = LagL,ﬂ; + LQ,YL(W + LaéLﬂ’y =0,
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which defines a quadric @ in CP? (called the Klein quadric).
By changing the coordinates we can see that @) is actually the space of
generators of the cone

T2+ V2 W2 -X2_Y2_22=0

in CS.

Here is the change of coordinates: T = %(Log — L19)
V = Lys+ 5Lo

W = La3 — 3 Lot

X = =(Lo2 — L13)

V2
Y = \%(LOQ + L3)
Z = \%(Lm + Los)

Here is the embedding of M in the cone:

1

@ 2(1+xbxb),x17x27x3)

1
A 5(1 — zbay),

Thought of in R® our cone is the O(2,4) null cone of
ds® = dT? + dV? — dW? — dX? — dY? — dZ*.
Each of its generators (except those for which W — V' = 0) meets the plane
W-V=1

in a point, and the intersection of this plane and the cone is just Minkowski
space M.

So the space of generators is a compactification M of M.

It is the conformal compactification: the extra generators form a null cone
at infinity.

We have shown that there is a four real dimensional family of lines in PT
corresponding to M, but we have not so far shown how to identify them in PT.

For a twistor Z to lie on a line L it must satisfy two linear equations. Except
when the line is given by Z? = Z3 = 0, these can be written

ZO\ _ i (242 al i (2P
7)) =\t —in? 20— a3 )\ 2



where % is the space-time point corresponding to L. More concisely, if we write
7% = (w?, 7as) we have
wA =izt Al
If Z also lies on the line corresponding to yAA', then

A 1 = yAA/T('A’
and so the matrix 244" — yAA/ must be singular. The condition for this is that
x® and y® are null-separated.

If in
’
wt =iz

we think of the twistor as fixed and solve for the point 244" we find that

AA AA’ A_A
T =x5 +pum

for arbitrary p4.
So Z% = (w?,ma/) corresponds to this alpha-plane: it is a totally null two
complex dimensional plane in complex Minkowski space.

PT CM*©
complex
projective point

line
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of of
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In general an alpha-plane will have no real point, but when it does it contains
a whole real null ray: if z54" is real then so is
44 = xg‘Al +radrd

for any real r.
If Z% is the twistor for this alpha-plane then

S(Z) = wATa+ot T
= 70724 71734 7072 4 7173

= 0.



This Hermitian form ¥ divides PT into three regions:

2(Z) >0 PT+
%(Z) =0 PN
%(Z) <0 PT~

PN is the space of real null rays: it is a five real dimensional manifold with a
C-R structure. We could imagine discovering projective twistor space this way.
If 244" is real then any Z lying on the corresponding line in PT satisfies

wA =izt A
and hence has £(Z) = 0.
Thus points in real (compactified) Minkowski space correspond to lines lying
entirely in PN.

Any two twistors on a given line in PN represent null rays through the
corresponding point in M.
So intrinsically the line in PN is the celestial sphere of the space-time point.

Lines lying entirely in PT* correspond to points

’ ’ . ’
AN AN G AA

with yAA/ timelike and future-pointing, or in other words points 244" in the
future tube.

This will lead later to a very elegant twistor description of positive frequency,
using the fact that positive frequency fields can be characterized by having
holomorphic extensions into the future tube.

3 The Penrose transform

Consider the twistor function

FZ = ey

(AaZ®)(BsZ")

where Ay = (A, AY), By = (B4, BY) are two constant dual twistors.
We aim to calculate a field at the point 44" in CM. Restrict Z¢ to the line
L, so that

AoZ® = (iApz™ + A a0 =V a0

BoZ® (iBaz?* + B Yy = 84 mu



and consider the contour integral

1 1
o)~ 35 § @)

This is well defined on CP! since the integrand has total homogeneity zero.
Further, there will exist a contour around which to do the integral provided the
two poles are distinct:

’
Wc/d’frc .

a' Bar #0.

This is satisfied unless L, intersects the line A, Bg, or in other words unless
2 is on the null cone of a point y in CM.
The contour integral above yields

2
Y

which is a solution of the wave equation
Oy = 0.
Solutions of the massless free field equations for spin n/2
VAY our =0
(for positive frequency positive helicity) and

VA s =0

(for positive frequency negative helicity) may be solved in a similar way.

Let f_n—2(Z%) and f,_2(Z%) be holomorphic and homogenous of degrees
—n—2and n— 2.
Define fields @4/ p/(x) and 4. g(z) by:

1 ,
SDA/MB/(I') = %WA/"'WB’ffnf2(Za)7TCId’]TC

T 2mi

10 0 o
wA...B(x) = % f W . an_g(z )Trcldﬂ'

where both integrands are first restricted so that Z lies on L,.

The remarkable thing here is that ¢ and ¥ are automatically solutions of
the massless free field equations.



It is easy to write down examples of such functions by choosing rational
functions, and we can easily check when their singularities are such that the
contour integral is well defined.

In general this can be fiddly, though. Also, it is clear that many twistor
functions will give the same space-time field.

Define
Fy = {Lp: Ly is a one-dimensional
subspace of T}
Fy, = {Ly: Ly is a two-dimensional
subspace of T}
F=F. = {(Li,Ls): Ly and Ly as above
with L; a subspace of Lo}
Then

F, =PT, F,=CM°

and F can be identified with the primed spin bundle, with (local) coordinates
(x%, mar).

We have the double fibration
F

PT CM

where

v:(x® mar) — a®

o (zmar) — (x4 7, mar)

The inverse image of a point in PT under p is the whole alpha-plane in F.
So a function f(z? ma/) on F pushes down to a function on PT if it is constant

on alpha-planes: /
m A Vaa f=0.

We may restrict the double fibration to the future tube CM™ and corre-
sponding regions F™ and PT™.

Let U be a cover of F* by open sets U;.
An element of C°(U, S) is a function f; (of type S, defined on U;) for each i.
An element of C*(U, S) is a function f;; (of type S, defined on U; N U;) for

each 1, j.



We have maps
§:C° — (!
{fit — Apify—pifi}

and

§:Ct — C?

{fii} — Apifix +pifei +prfih
In our example we had just two sets:
Up={2%:Z%Ay #0}, Uy ={Z° : Z°B,, # 0}

and our function was actually fo1 defined on Uy N Uj.

Let Z! (m) be the sheaf of germs of symmetric n-index primed spinor fields
war... g (x,7) which are

holomorphic on F+,

homogeneous of degree m in w4,

solutions of )
Vatoa..p =0.

Consider the onto map

72 (m=1) = Z(m)

/

YA.B'C' QOA/...B’C’TFC .

We have the short exact sequence
7 / 71'C/ /

where 7 is just the kernel of the map <.

’

Ya per €T = Ya pord =0,

and hence
Yar. . por =mar...wpmor f(x, ).

Further, the zero rest mass equation on 4/ p/c: implies that f(z,7) must

satisfy o
™ VAA/f =0.

It is therefore a twistor function homogeneous of degree —n — 2.



We may now write our short exact sequence as

Al TRl T/ 71—0,
0—=T(-n—-2) """ 2 ,(-1) = Z,(0) 0.

In the following array the squares commute and the rows are exact, but in
the columns we only have Imdy C Kerdy, in general. However, in the central
column Imdy = Kerd;.

0— C°U,T) — C'WU,Z,.(-1) — CO(Z/I,Z;L(O))/ — 0

hiar.. B hiar. .prorm?
1 6o 1 do 1 o
0— CtUu, 7y — Cl(Z/{,Z;lH(—l)) - CYU,Z.(0) —0
fij 7TA/---7TB’7TC’f'Lj
N 11 g
. L A Ap Ao fiApdAP
B o 271 %77 WE/)\EI

’

A
hiar..pom = pipAr.B

We started with f;; in the kernel of d;1, but for any f;; in the image of §y we
would have obtained zero, so we actually want the class of f;; in

Kerd, /Iméy = H' (U, T (—n — 2)).

To see that this procedure leads to an isomorphism we proceed as follows.
From our short exact sequence there is a corresponding long exact sequence
of cohomology groups, which includes this part:

— H(F52,,,(-1))
B ZL0) - HUEST(—n - 2) -
HY(F 2,,(-1) —
The first term is global sections of 2/, (—1) over F*.
For fixed z®, such a section would give a global section homogeneous of

degree —1 on CP!, and there are no such sections.
Thus HO(F+; 2/ ,(—1)) = 0.

A similar argument, slightly more technical, shows that

n

H'(F*: 2),,(-1)) = 0



so that we are left with an isomorphism

*

HO(F* 21,(0) & A (F* T(n - 2)

The term on the left represents solutions of the zero rest mass equations on
F*, homogeneous of degree zero in 4. They must therefore be independent of
w4, and defined on CcCMT.

The term on the right is a cohomology group on FT but the coefficients are
twistor functions, so

HYFT;T(—n —2)) = HY(PT; O(—n — 2)).

We have shown that the space of zero rest mass fields pas.. g/ (z) of helicity
n, holomorphic on CM*, is isomorphic to H*(PT*; O(—n — 2)).
In fact this works for other open subsets

X Cc CM°
and the corresponding spaces
Y=vYX)CF

and
Z =u(Y) C PT,

as long as the fibres of u|y are connected and simply connected.
We have glossed over the details of how to relate the various sheaves on X,
Y, and Z.
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