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Abstract

In this paper, we discuss some methods for calculating induced maps on homology and
cohomology for some Lie groups. We begin with the n-torus and then move on to the special
unitary group SU(2). We also describe ways in which our results for SU(2) may be used to
calculate pushforward maps on the homology of general SU(n). This motivates the investiga-
tion of embeddings of SU(2) into SU(n). We prove two results in this direction, the first that
all embeddings of SU(2) into SU(3) which are also group homomorphisms are homotopic,
the second that all embeddings of SU(2) into SU(n) which induce isomorphisms on third
homology are homotopic. We finish with a brief discussion of Lie algebra cohomology and an
example calculation.

1 The n-Torus

The first space we shall consider will be the n-dimensional torus Tn. The n-torus may be thought
of as the product space (S1)n = S1 × · · · × S1. Another nice way to think of the torus is as the
quotient space of Rn under the equivalence relation which identifies v, w ∈ Rn if v − w ∈ Zn. We
might think of this as saying that the torus is Rn modulo the obvious translation action of Zn on
Rn. For this reason, the n-torus is sometimes denoted by Rn/Zn.

Using this identification of the torus, we may easily define a large family of continuous maps
from the torus to itself. Consider an n × n matrix A with entries in Z. There is a corresponding
continuous map from Rn to itself given by pre-multiplication by A.

fA : Rn −→ Rn

fA : v 7→ Av (1)

As v−w ∈ Zn ⇒ Av−Aw ∈ Zn, this descends to give a well-defined continuous map [v] 7→ [Av]
from the torus Rn/Zn to itself.

One natural question to ask about these maps is: What are the induced maps on homology and
cohomology?. The homology (with coefficients in Z) of the n-torus may easily be calculated using
the Künneth formula, which states that there is a natural short exact sequence

0 −→
⊕
i

Hi(X)⊗Hn−i(Y ) −→ Hn(X × Y ) −→
⊕
i

Tor(Hi(X), Hn−i−1(Y )) −→ 0,

where by naturality we mean that continuous maps X → X ′ and Y → Y ′ induce a commutative
diagram of the corresponding short exact sequences [3].

Proposition 1.1. The homology and cohomology of the n-torus are given by

Hk(Tn) = Hk(Tn) = Z(n
k)

for 0 ≤ k ≤ n and the groups are 0 otherwise.

Proof. To compute the homology we will use the description of the n-torus as S1 × · · · × S1. The
homology of S1 is easily calculated by giving it a ∆-complex structure and computing the simplicial
homology, establishing the base case.

Now Künneth’s formula gives a short exact sequence

0 −→
⊕
i

Hi((S
1)n−1)⊗Hk−i(S

1) −→ Hk((S1)n) −→
⊕
i

Tor(Hi((S
1)n−1), Hk−i−1(S1)) −→ 0
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By induction, the homology groups of the n− 1-torus are free, so the Tor vanishes and we get an
isomorphism

Hk((S1)n) ∼=
(
Hk((S1)n−1)⊗H0(S1)

)
⊕
(
Hk−1((S1)n−1)⊗H1(S1)

)
∼= Z(k−1

n−1) ⊕ Z( k
n−1)

∼= Z(k
n)

(2)

Because all these groups are free, the cohomology will be the same by the universal coefficient
theorem for cohomology.

We now turn to calculating the maps induced on (co)homology by the maps (1). Calculating
the maps induced on first homology is easy once we remember that the first homology of (S1)n

is generated by 1-simplices which wind once around one of the circles and remain constant in the
other co-ordinates. In our identification of the n-torus with Rn/Zn, this corresponds to a 1-simplex
starting at the origin and going in a straight line to the point ei = (0, . . . , 1, . . . , 0). The map fA
will take this to a straight line segment from the origin to the point Aei. It is not hard to see that
this is homologous to Ai,1e1 + · · · + Ai,nen. We will employ a slight abuse of notation and write
this as (fA)∗(ei) = Aei.

Identifiying H1(Rn/Zn) = Ze1 ⊕ · · · ⊕ Zen ∼= Zn, we get that the pushforward is simply given
by pre-multiplication by the matrix A, (fA)∗(v) = Av. It is not immediately clear how to go about
calculating the induced maps on the higher homology groups. We could write out generators for
the higher homologies and see how they are mapped by fA, but this would be extremely tedious
and inefficient.

The calculation turns out to be easy, however, by considering the cohomology ring. First,
we can compute the induced map on cohomology using the Universal Coefficient Theorem. The
theorem gives a natural short exact sequence

0 −→ Ext(H0(Tn),Z) −→ H1(Tn;Z) −→ Hom(H1(Tn),Z) −→ 0.

BecauseH0(Tn) is free, the Ext vanishes and we get a natural isomorphismH1(Tn;Z)→ Hom(H1(Tn),Z),
where naturality means that the pull-back of a map from Tn to itself will induce a commutative
diagam with the isomorphism (see below). Now, as H1(Tn) is Zn, there is an obvious identifica-
tion of Hom(H1(Tn),Z) with Zn by picking a dual basis such that the dual map (fA)′∗ to (fA)∗
((fA)∗ being pre-multiplication by A) is pre-multiplication by the transpose AT . Thus, we get a
commutative digram

H1(Tn;Z)
∼=−−−−→ Hom(H1(Tn),Z)

∼=−−−−→ Zny(fA)∗
y(fA)′∗

y·AT

H1(Tn;Z)
∼=−−−−→ Hom(H1(Tn),Z)

∼=−−−−→ Zn

so we see that the map (fA)∗ induced on first cohomology by fA is multiplication by AT .
We now calculate the cohomology ring of Tn. We can do this using a form of the Künneth

formula.

Proposition 1.2. The cohomology ring of the n-torus is the exterior algebra ΛZ[e′1, . . . , e
′
n] where

|e′i| = 1 and each e′i is the inclusion of a generator for H1(S1) into the i-th copy of S1 in (S1)n.

Proof. The Künneth formula (for example, Theorem 3.15 of [3]) gives an isomorphism

H∗((S1)n−1)⊗Z H
∗(S1) −→ H∗((S1)n)

defined by a ⊗ b 7→ a × b. Thus, by induction, we have H∗((S1)n) ∼= ΛZ[e′1, . . . , e
′
n−1] ⊗ ΛZ[e′n] ∼=

ΛZ[e′1, . . . , e
′
n]. The fact that the ei’s arise from generators of each copy of S1 follows from the

definition of the Künneth isomorphism.

One important fact about the cup product is that it obeys the following naturality property
(see, for example, Proposition 3.10 of [3]): for a map g : X → Y of topological spaces, its pull-back
g∗ : H∗(Y ) → H∗(X) satisfies g∗(α ^ β) = g∗(α) ^ g∗(β). This might be re-phrased as saying
that the induced maps on cohomology respect the ring structure given by the cup product.

Using this fact, we may easily calculate the induced maps on the higher cohomologies from the
induced map on first cohomology.

2



Proposition 1.3. The induced map (fA)∗ on k-th cohomology acts on a general generator by

(fA)∗ : e′i1 ∧ · · · ∧ e
′
ik
7→ AT e′i1 ∧ · · · ∧A

T e′ik ,

where we are treating e′i both as the i-th element of the dual basis to e1, . . . , en and as the i-th unit
column vector.

Proof. This follows immediately from the naturality of the cup product by

(fA)∗(e′i1 ∧ · · · ∧ e
′
ik

) = (fA)∗(e′i1) ∧ · · · ∧ (fA)∗(e′ik) = AT e′i1 ∧ · · · ∧A
T e′ik .

Corollary 1.3.1. The induced map (fA)∗on n-th cohomology is multiplication by det(A).

Proof. Consider the map δ : Mn(Z) → Z defined by (fA)∗(e′1 ∧ · · · ∧ e′n) = δ(A)e′1 ∧ · · · ∧ e′n. In
the equation

(fA)∗(e′1 ∧ · · · ∧ e′n) = AT e′1 ∧ · · · ∧AT e′n,

each factor in the wedge product represents one of the rows of A, so since the wedge product is
bilinear in each factor and x ∧ x = 0, the map δ is alternating and bilinear on the rows, and for
A = I, clearly (fI)

∗ is identity so δ(I) = 1. Thus, we must have that δ = det.

Corollary 1.3.2. The induced map (fA)∗ on k-th homology acts on a generator

(fA)∗(ei1 ∧ · · · ∧ eik) = Aei1 ∧ · · · ∧Aeik .

In particular, the induced map on n-th homology is multiplication by det(A).

Proof. As before, the Universal Coefficient Theorem gives a commutative diagram

Hk(Tn;Z)
∼=−−−−→ Hom(Hk(Tn),Z)y(fA)∗

y(fA)′∗

Hk(Tn;Z)
∼=−−−−→ Hom(Hk(Tn),Z)

so the dual map (fA)′∗ to (fA)∗ is identified with the map (fA)∗. Now writing out the map (fA)∗

with respect to the basis (e′i1 ∧ · · · ∧ e
′
ik

)1≤i1<···<ik≤n, we have

(fA)∗(e′i1 ∧ · · · ∧ e
′
ik

) = AT e′1 ∧ · · · ∧AT e′n =

 n∑
j=1

ai1,je
′
j

 ∧ · · · ∧
 n∑
j=1

aik,je
′
j



=
∑

1≤j1<···<jk≤n

 ∑
σ∈Sym{j1,...,jk}

ai1,σ(j1) . . . aik,σ(jk)sign(σ)

 e′j1 ∧ · · · ∧ e
′
jk
.

From this, we see that the map (fA)∗ with respect to the basis (ei1 ∧ · · · ∧ eik)1≤i1<···<ik≤n must
be given by

(fA)∗(ei1 ∧ · · · ∧ eik) =
∑

1≤j1<···<jk≤n

 ∑
σ∈Sym{i1,...,ik}

aj1,σ(i1) . . . ajk,σ(ik)sign(σ)

 ej1 ∧ · · · ∧ ejk

=
∑

1≤j1<···<jk≤n

 ∑
σ∈Sym{j1,...,jk}

aσ(j1),i1 . . . aσ(jk),iksign(σ)

 ej1 ∧ · · · ∧ ejk

=

 n∑
j=1

aj,i1ej

 ∧ · · · ∧
 n∑
j=1

aj,ikej

 = Aei1 ∧ · · · ∧Aeik

This completes our computation of the induced maps on homology and cohomology for the
torus.
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2 SU(n)

We will now investigate calculating the induced maps on homology for the Lie group SU(n). We
will first focus on the simple case of SU(2). In this case, calculating the induced maps on homology
will be relatively simple due to a simple togological characterisation of SU(2).

As a matrix Lie group, SU(2) is defined as the set of invertible 2× 2 matrices with entries in C
satisfying A∗ = A−1 and det(A) = 1. It is not to difficult from this to derive that SU(2) consists
precisely of those matrices of the form (

a b

−b a

)
for a, b ∈ C, |a|2+|b|2 = 1. From this there is a clear homeomorphism from SU(2) to the unit sphere
in C2 sending the above matrix to (a, b) ∈ C2 so we have that SU(2) and S3 are homeomorphic
as topological spaces.

This gives us that the homology and cohomology of SU(2) are

Hn(SU(2)) = Hn(SU(2)) =

{
Z n = 0, 3,

0 otherwise.

Furthermore, calculating the induced map on homology for the sphere Sn is relatively easy due to
the following standard fact, which may be found, for example, as Proposition 2.30 of [3] or in [8]:

Lemma 2.1. If f : Sn → Sn is a continuous map and x ∈ Sn satisfies that f−1(x) is finite, then
the degree of f is given by

deg f =
∑

y∈f−1(x)

deg f |y

where deg f |y is the local degree of f at y.

We will now use this result to calculate the induced map on cohomology of two classes of maps
from SU(2) to itself.

Example 2.2. Define the map kA : SU(2) → SU(2) to be evaluation with the commutator at
A ∈ SU(2).

kA : X 7→ AXA−1X−1.

We will show that the induced map on homology is the zero map. We claim that this this map is
not surjective, and thus by the above lemma with x taken to be a point not hit by kA, the induced
map on homology is zero.

If A = I then the map sends all elements to I and we are done. Assuming A 6= I, observe that
that map will not in fact hit A as

AXA−1X−1 = A =⇒ XAX−1 = I =⇒ A = I.

Example 2.3. Define pn : SU(2)→ SU(2) to be the map pn : X 7→ Xn for n ∈ Z. We claim that
the induced map on homology is multiplication by n. To prove this consider a general element X
of SU(2). We first suppose n ≥ 0. We wish to calculate p−1n (X); that is, the number of n-th roots
of X in SU(2). By Spectral Theorem, X may be diagonalised, so we have

X = P

(
λ 0

0 λ

)
P−1

with |λ| = 1. Suppose Y ∈ SU(2) is a matrix satisfying Y n = X. We also have

Y = Q

(
µ 0
0 µ

)
Q−1,

so Y n = X becomes

Q

(
µn 0
0 µn

)
Q−1 = P

(
λ 0

0 λ

)
P−1

Assuming λ is not 1 or −1, λ and λ will be distinct and so we will have µn = λ and P = Q (or
µn = λ and Q is P times the matrix swapping the two basis vectors), so if λ1/n is a square root of
λ and ω is a primitive n-th root of unity then X has exactly n n-th roots

P

(
λ1/n 0

0 λ1/n

)
P−1, P

(
λ1/nω 0

0 λ1/nω

)
P−1, . . . , P

(
λ1/nωn−1 0

0 λ1/nωn−1

)
P−1.
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Thus, aside from at I and −I, the map pn is n-to-1 onto all points of SU(2), so for each X ∈
SU(2)\{I,−I}, Y ∈ p−1n (X), there is a neighbourhood of Y which is mapped homeomorphically by
pn to a neighbourhood of X. By picking some points X and Y and passing to to local co-ordinates,
we may find that the derivative of pn at Y has positive determinant so pn is orientation preserving.
By doing the same for the map p−1 we may check that this will be orientation reversing so that
(p−n)∗ = (p−1)∗ ◦ (pn)∗ = ·(−n). Thus, the degree of the map pn is n.

We will now study the Lie group SU(n) for n ≥ 2. Our first order of business will be to
calculate the homology of SU(n). Our method for doing this will be the use of a certain spectral
sequence associated to a fibration involving SU(n).

2.1 Homology of SU(n) via the Serre spectral sequence

The group SU(n) can be thought of in some sense as describing the group of ‘rotations’ of Cn,
with SU(n) acting in a natural way on Cn by pre-multiplication. We may thus let SU(n) act on
the unit sphere in Cn (which is homeomorphic to S2n−1). The stabiliser of any given point will be
the set of rotations fixing the axis through that point, and will therefore be a certain subroup of
SU(n) consisting of the rotations of some copy of Cn−1 in Cn, ie a subgroup SU(n− 1) ⊆ SU(n).
This gives us a fibration SU(n− 1) ↪→ SU(n)→ S2n−1 [9].

Given such a fibration, there is a convenient way to compute the homology using a spectral
sequence: [4]

Proposition 2.4. Given a fibration F ↪→ X → B such that π1(B) = 0, there is a spectral sequence
(Erp,q, dr) satisfying:

1. dr : Erp,q → Erp−r,q+r−1 and Er+1
p,q = ker(dr)/im(dr),

2. E∞p,n−p
∼= F pn/F

p−1
n for some filtration 0 ⊂ F 0

n ⊂ · · · ⊂ Fnn = Hn(X),

3. E2
p,q
∼= Hp(B;Hq(F )).

The spectral sequence of the above proposition is known as the Serre or Leray-Serre spectral
sequence. We may use it to calculate the homology of SU(3) as follows.

Consider our fibration SU(2) ↪→ SU(3) → S5. The E2 page of our sequence will have terms
E2
p,q
∼= Hp(S

5;Hq(SU(2))) ∼= Hq(SU(2)) for p = 0 or 5 and 0 otherwise.
We claim that Hk(SU(3)) is isomorphic to Z for k = 0, 3, 5, 8 and 0 otherwise. The only

columns we need to worry about are p = 0 and p = 5, so all the maps dr are 0 except possibly on
the r = 5 page. However, none of the maps from the p = 5 column will hit any of the non-zero
entries of the p = 0 column (see Figure 1 below), so the sequence collapses on the second page.
We see from part 3. of the above proposition that

Hk(SU(3)) =

k⊕
p=1

F pk /F
p−1
k =

{
Z k = 0, 3, 5, 8,

0 otherwise,

by summing along the diagonals.

4 0 0

3 Z Z

2 0 0

1 0 0

0 Z Z

0 1 2 3 4 5

Figure 1: The E5 page
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More generally, there is a similar spectral sequence for the cohomology groups of a fibration
satisfying exactly the same propoerties but which converges as an algebra to the cohomology ring
H∗(X) of the given space. Using this, we may use essentially the same argument as above and
induction using the fibration SU(n − 1) ↪→ SU(n) → S2n−1 to get that the cohomology ring for
SU(n) is the exterior algebra Λ[x3, . . . , x2n−1] with generators satisfying |xi| = i [9].

2.2 Induced maps on H∗(SU(n))

We now wish to calculate the induced maps on homology for some maps from SU(n) to itself.
Some of these maps are made easier to calculate due to the calculations we have already made for
SU(2). More precisely, consider the following inclusion of SU(2) into SU(n):

i : SU(2) ↪→ SU(n); A 7→
(
A 0
0 In−2

)
.

This inclusion respects raising a matrix to the n-th power in the sense that the following diagram
commutes:

SU(2) SU(2)

SU(n) SU(n)

pn

i i

pn

where pn denotes the power map ·n on both SU(2) and SU(n). Applying the H3 functor to this
diagram gives (we will take as given that the embedding i induces identity on third homology; we
may easily justify this using the argument in the proof of Theorem 2.10):

H3(SU(2)) ∼= Z H3(SU(2)) ∼= Z

H3(SU(n)) ∼= Z H3(SU(n)) ∼= Z

·n

∼= ∼=
(pn)∗

A simple diagram chase shows that the induced map (pn)∗ on the homology of SU(2) is also
multiplication by n.

This argument generalises to prove the following simple fact

Proposition 2.5. If i : Y ↪→ X is an embedding of Y in X inducing the identity map on k-th
homology, f : X → X is a continuous map and f |Y its restriction to Y ∼= i(Y ) ⊆ X satisfying that
f ◦ i = i ◦ f |Y , then f and f |Y induce the same map on k-th homologies Hk(Y ) ∼= Hk(X).

Corollary 2.5.1. If f : SU(n) → SU(n) is a continuous map and f |SU(2) its restriction to
SU(2) ∼= i(SU(2)) ⊆ SU(n) satisfying that f ◦ i = i ◦ f |SU(2), then f and f |SU(2) induce the same
map on third homologies H3(SU(2)) ∼= H3(SU(n)) ∼= Z.

Example 2.6. The commutator map kA(X) = AXA−1X−1 on SU(n) for A ∈ i(SU(2)) induces
the zero map on third homology by Example 2.2 and the above corollary.

We may, however, wish to calculate induced maps on homology where our given map does not
commute with an embedding of SU(2). We might however hope that the image of some SU(2)
subspace might be able to be ‘homotoped back to our original subspace’ in some sense so that the
induced map may be calculated in a similar fashion. This motivates the study of in which ways
SU(2) may be embedded in SU(n).

2.3 Embeddings of SU(2) in SU(3) via representation theory

We will now prove two results regarding embeddings of SU(2) into SU(n) for n > 2. The first
result is weaker than the second, but is proved using a nice argument utilising the representation
theory of SU(2). The second result is much more powerful than the first and uses significantly
heavier topological machinery.

Suppose we have an embedding ρ : SU(2) ↪→ SU(3). Assume also both that this embedding is
injective and that it is a group homomorphism. I make the following claim.
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Theorem 2.7. The embedding ρ : SU(2) ↪→ SU(3) is homotopic to the embedding i of 2.2. In other
words, all embedddings of SU(2) in SU(3) which are also group homomorphisms are homotopic.

Proof. The key observation is that the map ρ defines a 3-dimensional representation of SU(2). It
is a standard result in the basic representation theory of Lie groups that the irreducible represen-
tations of SU(2) may be described as follows [2]:

Let Vm be them+1-dimensional space of homogeneous polynomials of degreem in two variables.
Define the representation Πm : SU(2)→ GL(Vm) by

(Πm(X)f)(z) = f(U−1z)

for z ∈ C2. Now, it is a theorem that every finite-dimensional representation of a matrix Lie group
is completely reducible1 (see Theorem 4.28 of [2]), so our representation ρ must be isomorphic
to one of the representations V0 ⊕ V0 ⊕ V0, V1 ⊕ V0 or V2. The first of these is just the trivial
representation, which is certainly not faithful and thus does not correspond to an embedding of
SU(2). Observe also that in the last of these, Π2(−I) = Π2(I) = I, so this representation is also
not faithful. We theorefore conclude that all embeddings ρ of SU(2) in SU(3) are isomorphic as
representations, and therefore must be isomorphic to the representation i.

We have shown the existence of an isomorphism of representations between ρ and i; that is, a
vector space isomorphism φ : C3 → C3 satisfying φ(ρ(X)v) = i(X)φ(v) for all X ∈ SU(2), v ∈ C3.
Now φ is given by pre-multiplication by some invertible matrix A ∈ GL(3;C), so we have

Aρ(X) = i(X)A =⇒ ρ(X) = A−1i(X)A. (3)

We know make use of the following Lemma, the idea for the proof of which I found in [5].

Lemma 2.8. If Π : G → GL(n;C), Σ : G → GL(n;C) are two unitary representations which
are isomorphic via an intertwining map A with Π(X)A = AΣ(X), then Π and Σ are unitarily
equivalent.

Proof. Observe that
Π(X)A = AΣ(X) =⇒ A∗Π(X) = Σ(X)A∗

since Π and Σ are unitary. We thus have

A∗AΣ(X) = A∗Π(X)A = Σ(X)A∗A

so that A∗A and Σ(X) commute. Now as A∗A is self-adjoint and positive, we may take its positive
square root (A∗A)1/2. This may be expanded as a power series in A∗A, so it commutes with Σ(X)
as well. Now A(A∗A)1/2 is unitary (see the proof of Theorem 2.17 of [2]) and satisfies

Π(X)A(A∗A)1/2 = AΣ(X)(A∗A)1/2 = A(A∗A)1/2Σ(X),

so A(A∗A)1/2 defines a unitary equivalence between Π and Σ.

Now in light of the above lemma, we may assume that A in (3) is unitary. Now as U(3) is a
path-connected Lie group (see Proposition 1.13 of [2]), we may pick a path A(t) from I to A lying
in U(3). Observe that A(t)−1ρ(X)A(t) ∈ SU(3) for all t ∈ [0, 1], X ∈ SU(2), so the map

h : SU(2)× [0, 1]→ SU(3)

h : (X, t) 7→ A(t)−1ρ(t)A(t)

defines a homotopy from ρ to i.

2.4 Embeddings of SU(2) in SU(n) using the Hurewicz Theorem

An element of the n-th homotopy group of a spaceX may be characterised as a homotopy class [f ] of
pointed maps f : (Sn, y0)→ (X,x0). Using this characterisation, one can define a homomorphism
from the relative homotopy group π′n(X,A, x0) to the relative singular homology group Hn(X,A)
by

h′ : π′n(X,A, x0)→ Hn(X,A)

h′ : [f ] 7→ f∗(α)

where f∗ is the induced map on homology f∗ : Hn(Sn)→ Hn(X,A) and α is some fixed generator
for the singular homology Hn(Sn). This map is called the Hurewicz map [3]. We will make use of
the following theorem (Theorem 4.37 of [3]):

1We do not actually need this relatively strong result. In our case we have a unitary representation ρ : SU(2)→
SU(3) ⊆ GL(3;C), and it is also a result that any finite-dimensional unitary representation of a Lie group is
completely reducible. See Proposition 4.27 of [2].
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Theorem 2.9 (Hurewicz Theorem). If (X,A) is an n− 1-connected pair of path-connected spaces
with n ≥ 2 and A 6= ∅, then the Hurewicz map h′ : π′n(X,A, x0) → Hn(X,A) is an isomorphism
and Hi(X,A) = 0 for i < n.

If we let n = 3, X = SU(n), A = {I}, then the Hurewicz map is

h′ : π′3(SU(n), {I}, I)
∼=−→ H3(SU(n), I)

h′ : [f ] 7→ f∗(α)

with α a fixed generator of H3(S3). Now as SU(2) ∼= S3, a map SU(2)→ SU(n) can be thought
of as representing an element of the homotopy group π′3(SU(n), {I}, I). The Hurewicz theorem
tells us that if two maps SU(2)→ SU(n) induce the same map on homology, then they represent
the same element of π′3(SU(n), {I}, I), in other words they are homotopic as pointed maps.

This is relevant to our discussion of embeddings of SU(2) in SU(n) because it tells us that
homologous embeddings of SU(2) will be homotopic. We now prove the following result.

Theorem 2.10. All embeddings of SU(2) in SU(n) which induce isomorphisms on third homology
are homotopic to the obvious inclusion

i : A 7→
(
A 0
0 In−2

)
Proof. In light of the above discussion and the Hurewicz Theorem, we need only prove that the
inclusion i incduces an isomorphism on third homotopy. We make use again of the fibration
SU(n− 1) ↪→ SU(n)→ S2n−1. Now to a fibration F ↪→ E → B there is an associated long exact
sequence of homotopy groups (Theorem 4.41 of [3])

· · · → πn(F, x0)→ πn(E, x0)→ πn(B, b0)→ πn−1(F, x0)→ · · · → π0(E, x0)→ 0.

Specialising this to the case of the fibrations SU(2) ↪→ SU(3) → S5 and SU(3) ↪→ SU(4) → S7,
we get

· · · → π4(S5, I)→ π3(SU(2), I)
(i1)∗−−−→ π3(SU(3), I)→ π3(S5, I)→ · · ·

· · · → π4(S7, I)→ π3(SU(3), I)
(i2)∗−−−→ π3(SU(4), I)→ π3(S7, I)→ · · ·

where the maps i1, i2 are the obvious inclusions into the first block SU(2) ↪→ SU(3), SU(3) ↪→
SU(4). Now since π4(S5, I) = π3(S5, I) = 0, we see that (i1)∗ is an isomorphism by exactness, and
as π4(S7, I) = π3(S7, I) = 0, the same holds for (i2)∗. Thus, i∗ = (i1)∗ ◦ (i2)∗ is an isomorphism.
It is clear how this arguement may be extended by induction to SU(n) for general n.

3 Lie Algebra Cohomology

In this last section, we will discuss how the cohomology of a compact Lie group may be calculated
using its Lie algebra and how the induced maps might also be calculated. A remarkable fact is that
the cohomology of a differentiable manifold M may be calculated by calculating the cohomology
of the chain complex [7]

0→ Ω0(M)→ Ω1(M)→ Ω2(M)→ · · ·

where Ωk(M) is the space of differential k-forms on M and the boundary maps are given by the
exterior derivative [6]

d : Ωk(M)→ Ωk+1(M)

d : fdx1 ∧ · · · ∧ dxk 7→ df ∧ dx1 ∧ · · · ∧ dxk.

De Rham’s Theorem states that the cohomology calculated in this way will indeed be isomorphic
to the singular cohomology of M with coefficients in R [1].

In the case of G a compact Lie group, the space of differential k-forms may be identified with
the dual of the k-th exterior power, (Λkg)′ of the associated Lie algebra g. The exterior derivative
becomes identified with the map

d : (Λkg)′ → (Λk+1g)′

d(ζ)(x1 ∧ · · · ∧ xk+1) =
1

k + 1

∑
i<j

(−1)i+j+1ζ([xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xk+1).
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The de Rham cohomology for the Lie group may then be recovered by calculating the cohomology
of the associated chain complex. The justification for this identification is described in detail in a
paper by Chevalley and Eilenberg [1].

The induced map on de Rham cohomology for a map f : X → Y is given by the pushforward on
differential forms [7]. From this, it should be possible to calculate the corresponding chain map on
the associated Lie algebra chain complex and use this to calculate the induced map on cohomology
purely algebraically. However, I have found that calculating the pushforward on differential forms
and then associating this to the Lie algebra is computationally difficult in practice.

We finish with an example of calculating Lie algebra cohomology.

Example 3.1. We will now calculate the cohomology of SU(2) by calculating the Lie algebra
cohomology of the associated Lie algebra su(2). The Lie algebra su(2) consists of the 2×2 traceless
skew-Hermitian matrices with entries in C: [2]

su(2) = {X ∈M2(C) : tr(X) = 0, X∗ = −X}.

A basis for this as a real Lie algebra is given by

x =
1

2

(
i 0
0 −i

)
, y =

1

2

(
0 1
−1 0

)
, z =

1

2

(
0 i
i 0

)
,

satisfying the commutation relations

[x, y] = z, [y, z] = x, [z, x] = y.

Now, as su(2) is 3-dimensional, all the k-th exterior powers of su(2) for k > 3 will be zero, so our
chain complex is

0→ R→ su(2)′ → (Λ2su(2))′ → (Λ3su(2))′ → 0→ · · · .

We now need only calculate the boundary maps d. The map d0 : R → g is always zero. Now, a
basis for su(2)′ is x′, y′, z′ and for (Λ2su(2))′ is (x ∧ y)′, (y ∧ z)′, (z ∧ x)′. To find what, say, dx′

is, we calculate

(dx′)(x ∧ y) =
1

2
x′([x, y]) =

1

2
x′(z) = 0,

(dx′)(y ∧ z) =
1

2
x′([y, z]) =

1

2
x′(x) =

1

2
,

(dx′)(z ∧ x) =
1

2
x′([z, x]) =

1

2
x′(y) = 0.

Thus, dx′ is the element of (Λ2su(2))′ = Hom(Λ2su(2),R) sending x∧y to 0, y∧z to 1
2 and z∧x to

0, so dx′ = 1
2 (y ∧ z)′. By performing similar calculations, or by simply noting the symmetry of the

commutation relations, we get that dy′ = 1
2 (z∧x)′ and dz′ = 1

2 (x∧y)′, so d1 : su(2)′ →: (Λ2su(2))′

is an isomorphism. Now Λ3su(2) is one-dimensional with basis x∧y∧z. Now for any ζ ∈ (Λ2su(2))′,

d(ζ)(x ∧ y ∧ z) =
1

3
ζ([x, y] ∧ z)− 1

3
ζ([x, z] ∧ y) +

1

3
ζ([y, z] ∧ x)

=
1

3
ζ(z ∧ z)− 1

3
ζ(y ∧ y) +

1

3
ζ(x ∧ x) =

1

3
ζ(0)− 1

3
ζ(0) +

1

3
ζ(0) = 0,

so d2 = 0. Thus our chain complex is

0→ R 0−→ su(2)′
∼=−→ (Λ2su(2))′

0−→ (Λ3su(2))′ → 0→ · · · .

This gives the Lie algebra cohomology as H0
Lie(su(2)) ∼= H3

Lie(su(2)) ∼= R and Hk
Lie(su(2)) = 0 for

k 6= 0, 3, which is indeed the same as the de Rham cohomology for SU(2).

4 Supplementary Note and Acknowledgements

The preceding is a summary of a summer project undertaken over the summer of 2022 under
the supervision of Prof. Jason Lotay. While the large portion of the project has consisted of
background reading and learning about algebraic topology in general, I have decided only to
include brief summaries of that reading which I felt necessary to explain and motivate my own
arguments and computations.
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I make no particular claim to the originality of anything presented here. However, the compu-
tations of induced maps on the n-torus and on SU(2), the computation of Example 3.1, the results
of Section 2.2, and Theorems 2.7 and 2.10 are my own arguments. I hope the reader finds them
as interesting as I have.

I would like to acknowledge the London Mathematical Society for providing a grant to fund this
project. Thank you also to the Mathematical Institute at the University of Oxford for providing
funding. I’d also like to thank Prof. Jason Lotay for taking the time to supervise this project.
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