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Abstract

This thesis is comprised of three main results.

The first main result is the existence of GIT constructions for good moduli spaces of
compactified universal Jacobians, and their higher rank analogues, over stacks of marked
stable curves and stable maps. The construction is carried out in a way which allows for
changes in stability conditions to be governed by variation of GIT. We also prove that
the singularities of these good moduli spaces (when working over M, ,,) are canonical
when g > 4, extending work of Casalaina-Martin—Kass—Viviani.

The second main result concerns the construction of quasi-projective coarse moduli
spaces parametrising complete flags of subschemes of a fixed projective space P(V') up to
projective automorphisms; these flags are obtained by intersecting non-degenerate non-
singular subvarieties of P(V') of dimension n by flags of linear subspaces of P(V') of length
n, with each positive dimension component of the flags being required to be non-singular
and non-degenerate, and with the dimension 0 component being required to satisfy a
Chow stability condition. These moduli spaces are constructed using non-reductive
Geometric Invariant Theory, making use of a non-reductive analogue of quotienting-in-
stages developed by Hoskins and Jackson.

The final main result is the existence of quasi-projective fine moduli spaces of Gieseker
unstable torsion-free coherent sheaves of uniform rank 1 on a reducible projective curve
with Gorenstein singularities. These are the first examples of projective moduli spaces of
unstable sheaves on projective schemes which admit fully modular descriptions, without
any restriction on the Harder—Narasimhan length. These moduli spaces are constructed
by taking iterated universal extension bundles over fine compactified Jacobians of the

subcurves.
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Chapter 1

Introduction

In this thesis, we present the following three main results:

1. The existence of Geometric Invariant Theory (GIT) constructions for good mod-
uli spaces of compactified universal Jacobians, and their higher rank analogues,
over stacks of marked stable curves and stable maps, and its implications for the

geometries of these moduli spaces (Chapter @

2. The construction of quasi-projective coarse moduli spaces parametrising complete
flags of subschemes of a projective space P(V') which we call hyperplanar admissible

flags, using non-reductive GIT (Chapter [7)).

3. The existence of quasi-projective fine moduli spaces of Gieseker unstable torsion-
free coherent sheaves of uniform rank 1 on a reducible projective curve with Goren-

stein singularities (Chapter .

We refer the reader to the introductions of Chapters [0 [7] and [§] for more information
about these results, including the significance of these results and how these results relate
to other work in the literature.

The original motivation for the work presented in this thesis involved seeking new,
GIT based approaches to constructing moduli spaces of projective varieties. A fruitful
approach when studying a moduli problem in algebraic geometry using GIT is to add
additional structure/decoration into the moduli problem and formulate stability condi-
tions for the enlarged setup, depending on the additional data, in a way which allows
for the original setup to be recovered by restricting to certain stability conditions in the

enlarged setup. Having a larger space of stability conditions allows for more flexibility



to work with well-behaved stability conditions, in the sense that there are no strictly
semistable objects (so that the resulting GIT quotient is geometric) and that the points
of the resulting quotient can be described explicitly. As the stability condition is allowed
to vary, the resulting GIT quotients are related by variation of GIT, yielding information
about the original setup.

In addition to considering as usual ample invertible sheaves on the variety, the en-
visioned additional structure comes from considering morphisms from (marked) curves
into the variety, making use of the fact that moduli spaces of stable curves and stable
maps have well-understood geometries, especially when compared with moduli spaces of
higher-dimensional varieties. Including morphisms from curves into the varieties being
parametrised can be thought of as capturing information about dimension 1 subschemes
of the varieties, in contrast to the invertible sheaves corresponding to divisors (i.e. codi-
mension 1 subschemes). It is hoped that the results of this thesis serve as useful assistance

in providing constructions of moduli spaces of such decorated varieties.

Chapter Summaries

Chapters 2] through [5] constitute the preliminary chapters of this thesis. We begin by
reviewing the results from GIT that are required in this thesis, before moving on to
review results concerning moduli spaces and stacks of coherent sheaves on projective
schemes.

In Chapter [2] we focus on the classical situation in GIT, involving the construction
of categorical quotients for the action of a reductive linear algebraic group on a quasi-
projective scheme. We recap the connection between GIT and moduli theory, in par-
ticular concerning the existence of corepresentations, coarse and good moduli spaces for
moduli functors and algebraic quotient stacks. We also review a selection of additional
results relating to reductive GIT quotients, including the Hesselink—Kempf-Kirwan—Ness
instability stratification of the unstable locus.

Chapter [3] provides an overview of the results we require from non-reductive GIT,
with a focus on the existence of categorical quotients of projective schemes by actions
of linear algebraic groups with an internally graded unipotent radical. This includes an
overview of the quotienting-in-stages construction of Hoskins and Jackson, which applies

when forming non-reductive quotients of actions by parabolic subgroups of the special



linear group. We also review how the problem of forming quotients of unstable HKKN
strata relates to non-reductive GIT.

We review in Chapter |4] the notion of Gieseker (semi)stability of coherent sheaves
on a projective scheme, and how this yields projective schematic moduli spaces. We
also recap the existence of Harder—Narasimhan filtrations of unstable coherent sheaves,
and of the existence of schematic Harder—-Narasimhan stratifications arising from flat
families of coherent sheaves. We also review how the problem of constructing moduli
spaces of unstable sheaves of a fixed Harder—Narasimhan type is related to the existence
of quotients of certain unstable HKKN strata. We finish by reviewing the notion of
Gieseker stability with respect to multiple ample invertible sheaves, as formulated by
Greb—Ross—Toma.

In Chapter [5 the final preliminary chapter of this thesis, we review the aspects
of the theory of compactified Jacobians of a projective curve required in this thesis.
In particular, we explain how these moduli spaces relate to moduli spaces of Gieseker
semistable sheaves. We also prove some technical results relating to torsion-free sheaves
on reducible curves, in advance of Chapter

The final three chapters of this thesis, Chapters [6] [7] and [§] are where we present
the main results of this thesis. Summaries about the contents of these chapters can be

found in their respective introductions.

Notation and Conventions

e Throughout, we work over an algebraically closed field C of characteristic zero. All
schemes are assumed to be schemes over C. In particular, the notions of reductivity,

linear reductivity and geometric reductivity for algebraic groups coincide.
e The end of an example is denoted by a black square M.

e If X is a scheme, we occasionally use |X| to denote the underlying topological

space of X.

e A point of a scheme X is always understood to be a closed point of X, unless
specified otherwise. We use the notation k(z) = Ox 4 /mx , to denote the residue
field of x € X.

A wariety is an integral separated scheme of finite type over C.



We often use the abbreviation 1PS for one-parameter subgroup or the plural one-

parameter subgroups.

If V is a vector space, then P(V') is always understood to be the projective space
of lines in V. More generally, if E is a locally free coherent sheaf on a scheme X,
then Px(E) := Projx(Sym®*E") is the fine moduli space parametrising invertible
quotients EV — L — 0 of EV.

If G is an algebraic group, and if H is an algebraic subgroup of G which acts on
a quasi-projective scheme Z, then G x Z denotes the geometric quotient of H
acting on G x Z by h-(g,y) = (gh™!, hy); by [109, Theorem 4.19] G x Z exists

and is a scheme.
Let C be a reduced projective curve.

(i) C is said to be a nodal curve if each singular point p € C' is a node, meaning

that there is an isomorphism of complete local C-algebras (/’)\c,p = Cllz, y]]/(zy)-

(ii) C is said to have Gorenstein singularities if each local ring Oc,, of C is

Gorenstein, equivalently if C' admits an invertible dualising sheaf wc.

(iii) C is said to have locally planar singularities if at each singular point p € C,
there exists an isomorphism of complete local rings (’304, = Cllz,y]l/(f),
where f is a reduced power series. In particular, nodal curves have locally

planar singularities. Any curve with locally planar singularities is Gorenstein.



Chapter 2

Reductive Geometric Invariant
Theory

In this chapter, we present a review of the key results of reductive GIT and how it can
be used to form categorical quotients of schemes by actions of linear algebraic groups.
We also include various technical results which will be called upon in later parts of
this thesis, including the existence of the HKKN instability stratification of the GIT
unstable locus. We indicate how reductive GIT relates to moduli theory, as understood
both classically (i.e. in terms of existence of corepresentations of moduli functors) as
well as the contemporary perspective, in terms of the existence of good moduli spaces
of algebraic stacks.

The standard reference for reductive GIT remains the seminal book [L01], originally
written by Mumford and with later additions by Fogarty and KirwanE] Other references
include the books [103] and [I18§].

2.1 Schematic Quotients in Algebraic Geometry

Let G be a linear algebraic group acting on a scheme X.

Definition 2.1.1. A categorical quotient of the action G O X is a scheme X || G
together with a G-invariant morphism X — X [/ G which is universal for all G-invariant
morphisms X — Y whereY is a scheme. A universal categorical quotient is a categorical
quotient X — X /| G such that the base change X x x yqT — T is a categorical quotient
for all morphisms T — X || G where T is a scheme.

LA word of caution: the now accepted notion of GIT stability in the literature is what Mumford
referred to as proper stability in [101].



From the universal property, if a categorical quotient exists then it is unique up to
unique isomorphism. Within the context of GIT, a special class of quotients are given

by good quotients.
Definition 2.1.2. A morphism of schemes q: X — Y is said to be a good quotient if:
1. q is G-invariant;

2. q 1s surjective;

Co

. q s an affine morphism;

4. the natural morphism Oy — q,Ox induces an isomorphism of Oy -algebras Oy —
(Q* OX)G;

5. if Z C X is a G-invariant closed subset of X then the image q(Z) is closed in Y;

and
6. q separates disjoint G-invariant closed subsets of X.

A geometric quotient is a good quotient q : X — Y with the additional property that for
each closed point y € Y, ¢ '(y) is a single G-orbit. A universal good quotient (resp.
universal geometric quotient) is a good (resp. geometric) quotient q : X — 'Y such that
the base change X xy T — T is a good (resp. geometric) quotient for all morphisms

T — Y, where Y is a scheme.

Remark. A good quotient of an action of a linear algebraic group is always a categorical
quotient. If ¢ : X — Y is a good quotient then for any point z € X, the fibre ¢~!(g(z))
coincides with the orbit closure G - z. In particular, if each point of x has a closed orbit

then ¢ is a geometric quotient.

Remark. The key example of a good quotient is given as follows. Let A be an algebra of
finite type acted on by a reductive group G. By a theorem of Nagata [102], the invariants
A@ are of finite type. The morphism Spec A — Spec A /| G := Spec A is then a good
quotient. Conversely, any good G’-quotient ¢ : X — Y (whether G’ is reductive or not)
is locally given by taking G’-invariants of rings of sections of G’-invariant open affine

subschemes of X.



We give a few elementary results needed in this thesis concerning geometric quotients.
These results are very likely standard, however we provide proofs where necessary when

satisfactory references are lacking.

Lemma 2.1.3 ([118], Exercise 1.5.3.3). Let X be a scheme acted on by G x H, where

G and H are linear algebraic groups.

1. If there exists a good quotient X — X || G x H, then there are good quotients
X—=>X/)Gand X |G — (X ))G)J H, and there is an isomorphism (X |/ G) | H =
X /) GxH.

2. Conversely, if there are good quotients X — X /G and X |G — (X J G) J H,
then there ezists a good quotient X — X [/ G x H, and there is an isomorphism
(X)G)JH=X)GxH.

Lemma 2.1.4. Let q: X — X/G be a geometric quotient for the action of a reductive
linear algebraic group G on a scheme X of finite type. Let Z C X be a G-invariant
locally closed subscheme of X. Then q restricts to give a geometric G-quotient q|z :
Z = q(Z) C X/G, where q(Z) is a locally closed subscheme of X/G.

Proof. Let Z be the closure of Z in X; as Z is locally closed in X then Z is open in Z.

Since ¢ is a good quotient then ¢(Z) is closed in X/G; moreover ¢(Z) inherits a canonical
scheme structure from Z (if Z C X is locally Spec A/I C Spec A then ¢(Z) C X/G is
locally Spec(A/I)¢ = Spec AY/I¢ C Spec A®). The restriction g| : Z — ¢(Z) is then
a geometric G-quotient.

As q is surjective, there is an equality q(Z) = q¢(Z) \ q(Z \ Z), and so ¢(Z) is open in
q(Z). Since the property of a morphism being a geometric quotient is local on the base,

g restricts to a geometric quotient Z — ¢(Z). O

Lemma 2.1.5. Let q : X — X/H be a Zariski-locally trivial quotient for the action
of a linear algebraic group H (not assumed reductive) on a scheme X of finite type.
Let Z C X be an H-invariant locally closed subscheme of X. Then there exists a
unique scheme structure on the set-theoretic image q(Z) and a locally closed immersion
q(Z) — X/H such that Z = q(Z) xx/g X as schemes and such that q|z : Z — q(Z) is

a locally trivial quotient.



Proof. Once again consider the closure Z. The image ¢(Z) is closed in X/H; we endow
q(Z) with the scheme-theoretic image scheme structure. Over an affine open Spec A C
X/H where q is trivial, we have ¢~!(Spec A) = Spec A x H, where H acts trivially on
the first factor and by multiplication on the second. Writing ¢(Z) N Spec A = Spec A/
for I C A an ideal, as Z is H-invariant we have Z = ¢~ '(q(Z)) = Spec A/I x H, and
q|7 is the projection Spec(A/I) x H — Spec(A/I). It follows that g| : Z — ¢(Z) is
a locally trivial H-quotient and that Z = ¢(Z) x x/H X as schemes. By restricting to
the open subscheme Z C Z, the same statements hold for Z in place of Z, since ¢(Z) is
open in q(Z).

The uniqueness of the scheme structure follows from the fact that locally trivial
quotients are categorical quotients and categorical quotients are unique up to unique

isomorphism. ]

Lemma 2.1.6. Let G be a linear algebraic group acting on quasi-projective schemes
X and Y. Let H = Stabg(yo) C G be the stabiliser of a point yo € Y, and let Z =
X x{y} € X xY. Then the map oz : G x Z — GZ, (g,z) — gz descends to an
isomorphism G x" 7 = GZ.

Proof. The orbit map oy, : G = G x {yo} = G - yo is faithfully flat (cf. [95, Proposition
7.4]) and hence is a principal H-bundle (with respect to the fppf topology). As the
diagram

G x Z Y G L)

oz Uyo

is Cartesian, oz is also a principal H-bundle, and in particular a geometric H-quotient.

The lemma then follows from the uniqueness of geometric quotients. ]

2.2 GIT for Reductive Linear Algebraic Group Actions
2.2.1 Definition of the GIT Quotient

Throughout, let X be a quasi-projective scheme acted on by a reductive linear algebraic
group G. In this situation, GIT is used to construct quotients of appropriate G-invariant

open subschemes of X which are themselves quasi-projective, satisfying many other



desirable properties. In order to construct GIT quotients of X by G, an extra piece of

data is required.

Definition 2.2.1. A linearisation L of the action G O X is an invertible sheaf L on the
quotient stack [X/G]. It is said to be (very) ample if the pullback of L along X — [X/G]

is (very) ampleﬂ

Equivalently, a linearisation is a choice of an invertible sheaf L on X together with
a lifting of the action G O X to a bundle action of G on the underlying line bun-
dle of L. Given a choice of linearisation L, for each integer n the invertible sheaf L™
is also a linearisation, and there is an induced action of G on the space of sections
HO(X,L"). Setting R(X,L) := D.>0 HY(X,L"), we may consider the subalgebra of
invariants R(X, L)% = D,>0 HO(X,L™%. By a theorem of Nagata [102], the ring of
invariants R(X, L)® for the reductive group G is finitely generated over C.

Definition 2.2.2. The GIT quotient of X by G (with respect to L) is the scheme
X /; G =Proj R(X, L)%,

The inclusion R(X,L)¢ C R(X,L) defines a map X --+ X /; G; the domain of

definition is the locus of semistable points.
Definition 2.2.3. Let L be a linearisation for the action G O X.

1. A point x € X 1is said to be semistable (with respect to L) if there exists n > 1
and f € HO(X,L™)Y such that f(z) # 0 and Xy is affine, where X; = {2’ € X :
fa') # 0},

2. A point x € X is said to be stable (with respect to L) if dim G - = dim G and if

there exists n > 1 and f € HY(X, L") such that f(x) # 0, X; is affine and the

action of G on Xy is closed.

3. A point x € X is said to be polystable (with respect to L) if there exists n > 1
and f € HO(X,L™)Y such that f(x) # 0, X; is affine and the orbit of x in Xy is

closed.

2By an abuse of notation, we will consider linearisations as being invertible sheaves on X; that is, we
identify a linearisation L of the action G O X with its pullback along X — [X/G].



The locus of semistable points, denoted X**(L), is naturally a G-invariant open sub-
scheme of X. X**(L) contains X*(L), the locus of stable points, as an open subscheme,
and XP*(L), the locus of polystable points, as a subset. All stable points are polystable,

and in turn all polystable points are semistable.

Definition 2.2.4. The complement X"5(L) = X \ X®(L) of the semistable locus is
known as the unstable locus. A point x € X is said to be unstable (with respect to L)
if v € X"5(L).

Definition 2.2.5. Let x,y € X*(L) be two points. x and y are said to be S—equivalentﬂ

if their orbit closures in X%(L) intersect.

The S-equivalence class of a polystable point x is the orbit G - x. Every semistable
point x is S-equivalent to a unique orbit of polystable points; this orbit is characterised

as being the unique orbit of minimal dimension in the semistable orbit closure of x.

2.2.2 Main Theorem of Reductive GIT

The main properties of the GIT quotient X /; G are given by the following theorem.

Theorem 2.2.6 (Mumford, [I01]). Let X be a quasi-projective scheme acted on by a

reductive linear algebraic group G with linearisation L.

1. The restriction ¢ : X**(L) = X J/; G of X --» X J/; G to X**(L) is a universal
good quotient and a universal categorical quotient for the action of G on X*%(L).

In particular, q is surjective.

2. The image q(X°(L)) is open in X [/, G, and the restriction q|xs) = X°(L) —
q(X*(L)) =: X*(L)/G is a universal geometric quotient.

3. The GIT quotient X J/; G admits an ample invertible sheaf M such that ¢* (M) =
LN]Xss(L) for some N > 0; in particular, X J/; G is quasi-projective. If L is ample
and if X is projective, then X J/; G is projective.

4. If x,y € X*5(L), then q(x) = q(y) if and only if x and y are S-equivalent. In
particular, there is a bijection of sets XP*(L)/G — X J/; G.
3The ‘S’ stands for Seshadri.

10



This theorem is summarised by the following diagram:

R(X,L)SCR(X,L)

X N T » X ) G

I ]

o good quot. o
Xs5(L) X*(L)/G

/

geom. quot.

/

2.2.3 The Hilbert—Mumford Criterion

« _o0—

X*(L)

At first glance, the definitions of GIT stability and semistability seem intractable to work
with in practice. However, in many situations the GIT stable and semistable loci can
be characterised in a more computationally-friendly manner, in terms of one-parameter
subgroups (1PS) of the group.

Let X be a projective scheme acted on by a reductive linear algebraic group G, with

an ample linearisation L. Let A : G,,, — G be a 1PS. Given a point x € X, let
20 := Im A(t) -z € X Cm),
t—0

The A(G,,)-action on the restriction of L to the fixed point zg is given by a character of

G,,, of the form t — t".
Definition 2.2.7. The Hilbert-Mumford weight of A on x is given by u”(z, \) :== —r.

Suppose L is very ampleﬂ The Kodaira embedding of L yields a G-equivariant closed
embedding

L
xHpy P(H(X,L)Y),

with L the pullback of Opn(1). Given z € X and a 1PS \, write x = [v] € P, where
v = xpeg+ -+ ey, with eg, ..., ex a basis of CV*! chosen such that A(t) - e; = t"ie;
for integers rg, ..., 5. One may then express the Hilbert—Mumford weight of A on z as

pX(z,\) = min{r; : z; # 0}.

4This is not a genuine restriction, since replacing L by L™ for any positive integer n does not alter
the semistable loci nor the GIT quotient.

11



Theorem 2.2.8 (Hilbert—Mumford Criterion: Projective Case, [101]). Let X be a pro-
jective scheme acted on by a reductive linear algebraic group G, with an ample lineari-

sation L. Let x € X be a point. Then:
1. x € X*%(L) if and only if u"(x,\) > 0 for all non-trivial 1PS of G; and
2. x € X5(L) if and only if u"(x,\) > 0 for all non-trivial 1PS of G.

We have the following equivalent formulation of the Hilbert—-Mumford criterion; let
T be a maximal torus of G. Since any 1PS of G is conjugate to a 1PS of T', we have
equalities

XG—(S)S(L) — ﬂ qg- XT_(S)S(L).
geG

The condition that p’(xz, A) > 0 (resp. u”(x,\) > 0) for all non-trivial 1PS X of T' can

be expressed in terms of the T-weights of the coordinates of the point x.

Theorem 2.2.9 (Hilbert-Mumford Criterion for Tori). Let X be a projective scheme
acted on by a reductive linear algebraic group G. Let T be a mazimal torus of G. Assume
X is endowed with a very ample G-linearisation L, with X C PN = P(HY(X,L)V).
Choose coordinates on CNTL which diagonalise the action of T. For each x € X, let
conv(z) C Lie(T)V be the convex hull of the T-weights corresponding to the non-zero

coordinates of x. Then:
1. z € XT=%5(L) if and only if 0 € conv(x); and
2. x € XT=3(L) if and only if 0 € int(conv(z)).

Another version of the Hilbert—-Mumford criterion exists in the situation when a
reductive linear algebraic group G acts on an affine space V with respect to a character
x:G — Gmﬂ In other words, we endow V with the G-linearisation Oy (x) whose

underlying line bundle is the trivial line bundle, with action
g-(v,2)=(9-v,x(9)z), g€G, veV, zeC.

The ring of G-invariants R(V, Oy (x))¢ = D,>0 HO(V, Oy (x™))% coincides with the ring
of x-semi-invariants of the underlying coordinate ring of the affine space V.

Let (—, —) denote the natural pairing between characters and 1PS of G.

5This situation is sometimes referred to in the literature as “twisted affine GIT”.
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Theorem 2.2.10 (Hilbert—Mumford Criterion: Twisted Affine Case, [75], [58]). Suppose
G is a reductive linear algebraic group acting on an affine space V' linearised by Oy (x).

Let v € V be a point.

1. v € V55(Oy(x)) if and only if (x,\) > 0 for all non-trivial 1PS X\ of G for which

limy 0 A\(¢) - v exists in V.

2. v € V3(Oy(x)) if and only if (x,\) > 0 for all non-trivial 1PS X\ of G for which

limy_0 A(¢) - v exists in V.

2.2.4 Quotients by Finite Groups

Since finite groups are reductive linear algebraic groups, one immediate consequence of
the Hilbert—Mumford criterion is that if L is an ample G-linearisation on a projective
scheme X for the action of a finite group G, then X = X*®(L), whence there exists a
projective geometric quotient X/ Gﬁ In a similar vein, an action of a finite group on a

quasi-projective scheme always yields a quasi-projective geometric quotient.

Lemma 2.2.11. Let X be a quasi-projective scheme acted on by a finite group G. Let
L be an ample G-linearisation on X. Then there exists a quasi-projective geometric
G-quotient X — X/G.

Proof. Since L is an ample linearisation, for » > 0 sufficiently large there exists a finite-
dimensional subspace W C H°(X, L")V and a locally closed immersion ¢ : X — P(W),
such that ¢*Opy)(1) = L". By averaging W over the finite group G if necessary we
can always ensure that W is a G-invariant subspace, and that ¢ is G-equivariant. By
Lemma the restriction of the geometric quotient P(WW) — P(W)/G to X yields a

quasi-projective geometric quotient X — X/G. O

2.3 GIT and Moduli Theory
2.3.1 Existence of Corepresentations

As highlighted numerous times in the seminal text [I0I], the primary raison d’étre of

GIT concerns the existence and construction of corepresentations and (coarse) moduli

5Tt is possible to give a direct proof that X = X*(L); see for instance [I18, Paragraph after Remark
2.1.1.1].
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spaces of algebro-geometric moduli functors. Here we indicate how GIT can be used to
construct corepresentations of a given moduli functor F.

Let S be a scheme. Fix a functor
F: Schgp — Set.
For any S-scheme T', let hy = Homgeny(—,T") denote the functor of points of 7.

Definition 2.3.1. A corepresentation of F is a pair (M, ®), where M is an S-scheme
and ® : F — Homgehg (—, M) is a natural transformation, such that for any S-scheme T,
any natural transformation F — Homgeng (—, T') factors uniquely through ®; if (M, @) is
a corepresentation of F, we also say that M corepresents F. A corepresentation (M, ®)
is said to be a coarse moduli space for F if for each morphism Spec C — S, the induced
map F(Spec C) — M (SpecC) is a bijection.

A universal corepresentation (resp. universal coarse moduli space) of F is a corepre-
sentation (M, ®) such that for all morphisms T — M, T corepresents (resp. is a coarse

moduli space for) the contravariant functor
]:T : T, — Homschs (T’, T) XHOHISchS (T, M) ]:(T,).

GIT can be used to construct corepresentations of moduli functors, provided that
the functor F admits an object with the so-called local universal property, admitting

appropriate symmetries by an algebraic group.

Definition 2.3.2. If T is an S-scheme and if W € F(T), we say that W has the
local universal property for F if for all S-schemes T, for all W' € F(T') and for all
points t € T, there exists an open neighbourhood U of T' and a morphism of S-schemes
f:U = T such that W'|y = f*(W) € F(U), where W'|y denotes the pullback of W’

along the open immersion U — T".

Proposition 2.3.3 (cf. [103], Proposition 2.13). Let F : Schy’ — Set be a functor.
Suppose there exists W € F(T) with the local universal property for F. Suppose in
addition that there is a linear algebraic group G acting on T (and acting trivially on S)
with the property that for any two geometric points t1,to € T lying over a common point
of S,

Wiy =Wy <= G-t1 =G - 1g, (2.3.1)

where Wy is the pullback of W along SpecC L T. Then:
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1. an S-scheme M corepresents F if and only if M is a categorical quotient of T' by
G (in the category of S-schemes); and

2. a categorical quotient M of T by G is a coarse moduli space for F if and only if the

preimages of closed points of M under the quotient T'— M are single G-orbits.

Proof. This result is likely known to experts, though we give a proof (largely following
the proof of [103, Proposition 2.13]) for lack of an appropriate reference. To prove
the first assertion, we claim that for any S-scheme M, there exists a natural one-to-
one correspondence between natural transformations ® : 7 — Homgeny(—,7") and G-
invariant morphisms of S-schemes ¢ : T" — M. Given the natural transformation ®
we set ¢ = ®&p(W). On the other hand, given the morphism ¢ we define ® as follows.
Suppose T” is an S-scheme and W' € F(T"). By the local universal property of W,
we may cover 1" by open subschemes U; such that there are morphisms v; : U; — T
with W'|y, = ¢W. The G-invariance of ¢ along with Property implies that the
morphisms ¢ o1); glue to give a morphism 7" — M which is independent of the choice of
trivialising cover U; and the morphisms ;; we set ®7/(W’') to be this morphism. This
defines a natural transformation ®, and the two correspondences are mutually inverse;
this establishes the claim.

The first assertion of Proposition[2.3.3|now follows from the observation that T — M
is a categorical quotient of T by G if and only if the corresponding natural transformation
F — Homgehy(—,T) corepresents F. Moreover, the preimages of closed points of M
under the quotient 7" — M are single G-orbits if and only if the map F(SpecC) —
M (SpecC) is a bijection, which yields the second assertion. O

2.3.2 Good Moduli Spaces and GIT

Another frequent application of GIT, closely related to the existence of corepresentations
of moduli functors, concerns the existence of good moduli spaces for certain (quotient)

algebraic stacks.

Definition 2.3.4. A morphism w: X — X from an algebraic stack to an algebraic space

is a coarse moduli space if

1. the induced map X(C)/ ~— X(C) is a bijection, where X(C)/ ~ is the set of

isomorphism classes of objects of X over C; and
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2. 7 s universal for morphisms from X to algebraic spaces.

Definition 2.3.5 (Alper, [6]). A morphism m : X — X from an algebraic stack to an

algebraic space is a good moduli space if
1. © is quasi-compact;
2. 7. : QCoh(X) — QCoh(X) is exact; and
3. the induced morphism Ox — m,Ox is an isomorphism.

If in addition the induced map X(C)/ ~— X (C) is a bijection, we say that m: X — X

1s a tame moduli space.

If #: X - X is a good moduli space, then 7 is surjective and universally closed,
and in particular X has the quotient topology inherited from X. The property of being
a good moduli space is stable under base changes X’ — X, where X’ is an algebraic
space. If X is locally Noetherian, then 7 is universal for morphisms from X to algebraic
spaces. In addition, every closed point of X’ has a reductive stabiliser (cf. Proposition
12.14 of loc. cit.). In particular, a tame moduli space whose source is locally Noetherian
is a coarse moduli space.

By the Keel-Mori theorem [73], if X is a Deligne-Mumford stack which is separated
and of finite type over an algebraic space S, then there exists a coarse moduli space
7 : X — X with the additional properties that 7,0y = Ox, that X is separated and of
finite type over S, and that any flat base change of 7 is also a coarse moduli space. In the
case where X is an algebraic stack of finite presentation, whose automorphism groups
are affine and whose diagonal is separated over a Noetherian algebraic space, a result of
Alper—Halpern-Leistner—Heinloch [7] characterises the existence of a good moduli space
of X in a manner which is intrinsic to X[ If the algebraic stack X is known to be
isomorphic to a quotient stack, GIT can also be used to prove the existence of a good

moduli space.

Proposition 2.3.6 (Alper, [0]). The following statements hold:

"Namely, X admits a good moduli space if and only if X is S-complete and O-complete/O-reductive;
the notions of S-completeness and ©-completeness are defined using valuative criteria.
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1. Let G be a linear algebraic group acting on a scheme X. If X — X |/ G is a good
(resp. geometric) quotient, then the morphism [X/G] — X /| G is a good (resp.
tame) moduli space. Conversely, if [X/G| admits a schematic good (resp. tame)
moduli space Y, then the composition X — [X/G] — Y is a good (resp. geometric)

quotient.

2. In particular, let G be a reductive linear algebraic group acting on a quasi-projective
scheme X. Let L be a linearisation for the action G O X. Then the natural
morphism [X**(L)/G] — X /J; G is a good moduli space, and the natural morphism
[X*(L)/G] — X*(L)/G is a tame moduli space.

2.4 Reductive GIT Relative to a Base

In this section, we indicate how the formation of reductive GIT quotients can be extended

to the relative situation, where one works over a quasi-compact base scheme S.

Definition 2.4.1 ([6], Definition 11.1). Let S be a quasi-compact scheme, let G be
a reductive linear algebraic group scheme over S, let p : X — S be a quasi-compact
morphism and let L be a G-linearisation on X. A point x € X is said to be relatively
semistable (with respect to L) if there exists an open neighbourhood U C S of p(z), a
positive integer n and an invariant section t € HO(p~Y(U), L™ for which t(x) # 0 and
for which the locus {y € p~(U) : t(y) # 0} is affine. The locus of points which are
relatively semistable with respect to L is denoted X**(L/S).

Remark. By Remark 11.2 of loc. cit., if S is affine and if p is quasi-projective, then

the relative semistable locus coincides with the semistable locus as defined in Definition
X*5(L/S) = X*(L).

Proposition 2.4.2 ([6], Theorem 13.6). Let S be a quasi-compact scheme, let G be
a reductive linear algebraic group scheme over S, let p : X — S be a quasi-compact

morphism and let L be a G-linearisation on X.

1. There ezists an open subschemeY C Projg @iio(p*Lk)G and a good moduli space
[X*°(L/S)/G] — Y. In other words, there exists a good quotient q : X**(L/S) —
Y =X%(L/S) ) G.
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2. If in addition X**(L/S) is quasi-compact (e.g. if X is Noetherian), there exists

an S-ample invertible sheaﬁ M on'Y such that ¢*(M) = LN\Xss(L/S) for some
N > 0.

2.4.1 Relative GIT for Projective Morphisms

Suppose p: X — S is a projective morphism of finite type to a finite type base scheme
S. Suppose in addition that X is acted on by a reductive linear algebraic group G in
such a way that the morphism p is G-invariant, so that G acts on each geometric fibre
of f. Equivalently, we may consider this action as one of the S-group scheme G x S on
the S-scheme X. Let L be a relatively ample linearisation on X (i.e. a linearisation on
X for the action G © X whose underlying invertible sheaf is relatively ample). Since
X*¥(L/S) /G is a categorical quotient, the morphism p : X*(L/S) — S factors through
X*5(L/S) ) G.

Proposition 2.4.3 ([6], Theorem 13.6). The good quotient X*°(L/S) /| G is projective

over S, and there is an equality of S-schemes
X**(L/S) | G = Projs P (p.L")°.
n>0

Proposition 2.4.4 ([124], Lemma 1.13). Let t € S be a geometric point. Then there
are equalities (X)*(L/S)); = Xt(S)S(Lt). In particular, there is an equality

(X*(L/S) | @) = X1 1, G-

2.4.2 Relative GIT for Affine Morphisms

We require in Chapter [0 versions of Propositions [2.4.3] and [2.4.4] which hold for relative

twisted affine GIT, where the morphism X — S is no-longer projective.

Proposition 2.4.5. Let S be a finite type base scheme, let p : X — S be an affine
morphism of finite type, let G be a reductive linear algebraic group (over C), and let
X be a character of G. Suppose G acts on X (and acts trivially on S) in such a way

that the morphism p is invariant. Let L = Ox(x) be the linearisation given by twisting

8Here, M can be taken to be the restriction of O(N) for some N > 0, where O(1) denotes the twisting
sheaf.
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the structure sheaf Ox by the character x, and let X**(L/S) denote the resulting rela-
tively semistable locus. Assume that for each geometric point s € S, the (non-relative)

semistable locus (Xs)*(Ls) for the induced action G O X is non-empty.
Then the good moduli space of [X**(L/S)/G] is given by

Y = Projg @(p*Lk)G = Projg @(p*OX(Xk))Gv
k=0 k=0

and for each geometric point s € S there is an equality of schemes
(X*(L/9))s = (Xs)*(Ls)- (2.4.1)

Proof. There is a map X --» Projg @Zozo(p*Lk)G arising from the inclusions of G-
invariants (p.L*)® C p,.L¥; the domain of definition of this map is the open subscheme
X*®%(L/S), and the image coincides with the good moduli space Y.

Take a geometric point s € S. We have an inclusion (X*5(L/S))s C (X5)*%(Ls). To
show that the reverse inclusion holds, without loss of generality we may assume that
S = Spec A is affine, so that X = Spec B is also affine. Let m C A be the maximal ideal
which corresponds to s € S, so Xs; = Spec B/mB. If x € (X;)*(Ls) is a point, there
exists a positive integer n and a y"-semi-invariant f € B/mB which does not vanish at .
The ring of x-semi-invariants of B/mB can be identified with a ring of G-invariants of the
graded ring (B/mB)[t] (cf. [99, Page 193]). As G is reductive then taking G-invariants of
graded rings is exact; consequently there exists a x™-semi-invariant f € B whose image
in B/mB is f. In particular, f does not vanish at z, and so = € (X*°(L/S))s; this gives
the equality .

It remains to show Y = Projg @7, (p.L*)¢. However, the restriction of the mor-
phism X**(L/S) — Projg @5, (p«L¥)¢ over a geometric point s € S coincides with

the surjective good quotient

X5 (Ls) — (Projs @(p*Lk)G> x g Spec C = Proj @ H'(X,, Ox, (x*))%,
k=0 k=0

and so X*%(L/S) — Projg @i o(p+LF)Y must be surjective. O
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2.4.3 A Miscellaneous Relative GIT Result

We require one further relative GIT result, which will also be used in Chapter [6] Let
G be a reductive linear algebraic group, let X, Y be quasi-projective schemes, and let
q: X — Y be a projective morphism. Assume X and Y admit G-actions with respect to
which the morphism ¢ is equivariant. Let N be a G-linearised relatively ample invertible
sheaf on X. Assume there exists an equivariant open immersion ¢ : Y < Y into a

projective scheme Y acted on by G with ample linearisation L. Assume further that
Y¥(L) =Y (L) =Y.

Proposition 2.4.6. Let ¢ : X — Y be as above. Then there are projective geometric

quotients X | G and Y || G of X and Y respectively, and the morphism q induces a

projective morphism §: X |G =Y [ G. If y € Y is a closed point, the fibre of ¢ over

the orbit G -y is isomorphic to X, /Stabg(y), the geometric quotient of X, by the group

Stabg(y).

Proof. In the situation of Proposition there are representations G — GL(V;),

i = 1,2, a commutative diagram

X « ud » P(V1) x P(V32)
q proy
) E— Y - U P(Vy)

whose rows are given by G-equivariant locally closed immersions, and positive integers

a and b with
N = k" (Op(v;)xp(vs)(1,0)) and Lh n*(Opvy)(1))-

Let X denote the closure of the image of X in P(V}) x P(V3). The morphism pry : X —
P(V3) factors through Y, giving a projective morphism g : X — Y making the following

diagram commute:

S P(Vi) x P(Va)

> X <
q QB pry
Y «

1 > P(Vg)
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By [68, Theorem 3.11]ﬂ for all d > 0 there are equalities of semistable loci (over
SpecC)

7 (Y (" Opay) (1))
YY)
“Hy) =X.

ySS(OIFD(Vl)xIED(Vz)(17 d)lx) = YS(OP(Vl)xIP’(Vg)(Ld)‘Y)

Il
i~y

Il
iy

Applying Theorem 3.13 of loc. cit. to G yields the result. O

2.5 Additional Reductive GIT Results

We conclude this chapter by collecting some additional results concerning reductive GIT
quotients which are required for this thesis, including the existence of the Hesselink—

Kempf-Kirwan-Ness (HKKN) instability stratification of the unstable locus.

2.5.1 Matsushima’s Criterion

An important result of Matsushima [86] states that GIT polystable points always have

reductive stabiliser groups.

Proposition 2.5.1 (Matsushima). Let X be an affine scheme acted on by a reductive
linear algebraic group G. Suppose x € X 1is polystable, i.e. has closed orbit. Then the

group Stabg(z) is reductive.

2.5.2 Existence of Etale Slices

The étale-local behaviour of a reductive GIT quotient is described via the slice theorem
of Luna [85]. Let X = Spec A be an affine scheme acted on by a reductive linear algebraic
group G, with good quotient 7 : X — X J G = Spec A®. Let x € X be a closed point,
with stabiliser H = Stabg(x) C G.

Definition 2.5.2. A slice of the G-action on X through x is an H-invariant locally

closed subscheme Y C X containing x such that:

1. the morphism G x"Y — X arising from the action map G xY — X is étale, and
its image is an open affine U C X which is m-saturated, i.e. 7 *(w(u)) C U for
all u e U;

9As indicated by Schmitt in [IT9], Hu’s result is erroneously stated and only applies in certain cir-
cumstances; the case where both the domain and target are projective is one such circumstance.
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2. there are categorical quotients U |/ G and U J) H;
3. the induced morphism (G x"?Y)/G — U )| G is étale; and

4. the induced morphism G x2Y — U Xyya U J H is an isomorphism.

Theorem 2.5.3 (Luna). Assume that © € X is polystable. Then there exists a slice of
the G-action on X through x.

2.5.3 Variation of Reductive GIT

The GIT quotient X /; G depends on the choice of linearisation; different choices of
linearisations in general yield different semistable loci and hence different GIT quotients.
Variation of GIT (VGIT) concerns the study of the dependence of X /; G on L, and
was first studied in independent work by Thaddeus [126] and Dolgachev—Hu [41]. We
give a brief overview of VGIT, with a particular emphasis on the notion of a Thaddeus
flip.

Let X is a projective scheme acted on by a reductive linear algebraic group G.
Let Pic(X) = Pic([X/G]) be the set of isomorphism classes of G-linearised invertible

sheaves on X; PicG(X ) is an abelian group under the tensor product.

Definition 2.5.4. Two linearisations Ly, Lo € Pic®(X) are said to be G-algebraically
equivalent if there exists a connected scheme S, a linearisation L on X x S (where G
acts trivially on S) and points s1,s2 € S such that L|xxs, = L; as G-linearisations, for
i=1,2.

This defines an equivalence relation on PicG(X); the set of equivalence classes is

denoted NSY(X).

The set NSY(X) also inherits an abelian group structure coming from the tensor
product. Since L and L™ (for any n > 0) define the same (semi)stable loci and the
same GIT quotient, one can pass to the space of rational linearisations NSG(X Jo =
NS%(X) ®7 Q; it is shown in [126] that the semistable locus X*°(L) (and hence the GIT
quotient X /; G) depends only on the span of [L] in NSY(X)q, and, at least when X is
a normal variety, that NSG(X )g is a finite dimensional Q-vector space.

Inside NS¢ (X)q are two cones C¢ C AC:

1. A® consists of all rational linearisation classes for which the corresponding G-

algebraic equivalence class is represented by an ample linearisation; and
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2. CY consists of those classes in A for which the semistable locus is non-empty.

An important result of VGIT states that in many cases (for instance, when X is a
projective normal variety), the cone C carries a finite wall-and-chamber decomposition,
where two linearisations in the same chamber yield the same semistable locus, and where
linearisations on adjacent sides of a wall are related through a transformation known as
a Thaddeus flip:

Definition 2.5.5. Let Y, Y_ and Yy be schemes. We say that Y and Y_ are related by
a Thaddeus flip through Yy if there exists a Noetherian scheme X over a quasi-compact

scheme S, acted on by a reductive linear algebraic group G over S, with G-linearisations
Ly, L_, Ly on X such that:

1. there are equalities Yy = X**(L4/S) J G and Yo = X**(Lo/S) /| G; and

2. there exists a diagram

where Y1 is the morphism arising from an inclusion of relative semistable loci
X*5(Ly/S) C X*%(Lo/S).

Thaddeus flips enjoy rich geometric properties, and are studied by Thaddeus in [126].
As we do not explicitly rely on these properties in this thesis, we state here only a couple

of theseﬂ referring the reader to loc. cit. for the full list.

Proposition 2.5.6 ([126], Theorem 3.3). In the situation of Definition [2.5.5, assume
X is integral. Then the morphisms ¥+ are proper and birational. If they are both
small, meaning that their exceptional loci are of codimension at least 2, then the rational
morphism g : Y_ --» Y, is a flip, in the following sense: if M1 are the invertible sheaves
on Y1 arising from the twisting sheaves on Projg @Zozo(p*Li)G, then these correspond

to Q-Cartier divisors Dy and g«(—D_) is equivalent to D .

Proposition 2.5.7 ([126], Theorem 3.5). In the situation of Definition[2.5.5, there exist
ideal sheaves Jy+ on Yy and Jy on Yy, defined by taking G-invariants of ideal sheaves

generated by sections of L+ and Ly respectively, such that:

Thaddeus works in the absolute setting S = SpecC, however the above stated results concern
properties which are affine-local over Yy = X°°(Lo/S) / G, and so carry over to the relative setting.
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1. the pullback of Jy under 1)+ is equal to J+; and

2. if X s irreducible, the blow-ups Bl7 Yy and Blyz Yy are all isomorphic to the

irreducible component of the fibre product Y, Xy, Y_ dominating Yy.

2.5.4 Actions of G,, on Algebraic Spaces

We take a slight detour to state the following result of Drinfeld [44] concerning actions of
the group G,, on algebraic spaces; this result generalises the classical Biatynicki-Birula
theorem [21].

Let X be an algebraic space of finite type over C acted on by G,,.

Theorem /Definition 2.5.8 (Drinfeld). Let G,, act on A! in the usual way. The

functors
Mor®m(—, X), Mor®m(A! x —, X)

are represented by algebraic spaces of finite type, respectively denoted X° = XCm  the
fixed point locus of X, and X, the attractor of X. Moreover:

1. The natural morphism X° — X is a closed embedding.

2. There is a natural surjective morphism p : X+ — X, which on points coincides

with the map x — limy_,gt - x, and the morphism p is affine.

3. The natural morphism X+ — X is unramified, and the fibre over any geometric
point of X° has a single point. X+ — X is a monomorphism if X is separated. If
X is proper then each geometric fibre of XT — X is reduced and has exactly one

point.

4. XT — X is an isomorphism if and only if the G,,-action on X can be extended to

an action of the monoid A, in which case the extension is unique.

5. If X is smooth, then so are X° and X, and the morphism p: Xt — X is also

smooth.
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2.5.5 The HKKN Stratification

In addition to furnishing a schematic quotient of the semistable locus, reductive GIT
also yields a finite locally closed stratification of the unstable locus by “instability type”,
known as the Hesselink—Kempf-Kirwan—Ness (HKKN) stratification or as the instability
stratification. Here we describe this stratification.

Let X be a projective scheme acted on by a reductive linear algebraic group G
with respect to a very ample linearisation L; we identify X with its image in PV =
P(H°(X,L)") under the (G-equivariant) Kodaira embedding of L. Fix a maximal torus
T C G, fix a positive definite Weyl-invariant integral bilinear form on the Lie algebra of
T, and use this to define an invariant norm on the Lie algebra of G. The norm gives an
identification of the character lattice of T" with the co-character lattice of T', as well as

an identification of the Lie algebra of T" with the dual Lie algebra.

Definition 2.5.9. Let x € X be a point.

1. If X is a non-trivial 1PS of G, the normalised Hilbert—Mumford weight of A on x
is given by MT(x,\) = u"(z,\)/||\||, where || — || is the induced norm on 1PS of
G.

2. A non-trivial 1PS X of G is said to be a Kempf 1PS or a maximally destabilising
1PS for x if M*(z,\) < ML (xz,X) for all non-trivial 1PS X' of G.

Proposition 2.5.10 (Kempf, [74]). Suppose x € X“$(L) is an unstable point.
1. The set of Kempf 1PS for x is non-empty.
2. There exists a parabolic subgroup P, of G such that for any Kempf 1PS X\ for x,
P, =P()\) := {g eG: }gr(l] A)gA(t) ™! exists in G} .
Any Py-conjugate of a Kempf 1PS for x is a Kempf 1PS for x.

3. A Kempf 1PS X of x is unique up to conjugation by P, and replacing A — A",

where n is a positive integer.

The HKKN stratification is indexed by conjugacy classes 3 of rational 1PS of G. The

semistable locus is a stratum Sy, indexed by the conjugacy class of the trivial 1PS. The
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unstable strata Sz are described as follows. Pick a representative Ag of the conjugacy
class B (if one fixes a positive Weyl chamber t; of Lie(T"), one can always choose the
representatives to come from ty), and let P3 = P(Ag) be the corresponding parabolic
subgroup of G. If Ug C Pg is the unipotent radical of Pg, given by the subgroup of
elements g € G for which lim;—0 Ag(t)gAg(t) ! is the identity, and Rg C Ps is the Levi
subgroup given by elements of the form lim;_0 Ag(t)gAs(t) ™! with g € P3, we have a
Levi decomposition Pg = Ug x Rg.

Definition 2.5.11. Let Zg be the union of the components of the fized locus X28(Gm)
on which the Hilbert—Mumford weight u’(—, \g) takes the value —||Ag||?. Let Xg be the
locally closed subscheme of X consisting of all points x € X with pg(x) := lims—0 Ag(t) -
T € Z3.

Remark. By Theorem /Definition the schemes Zg and Xg inherit canonical scheme
structures from X, making them locally closed subschemes of X. The retraction pg :

Xp — Z3 is a morphism of schemes.

The scheme X3 is invariant under the action of Pg, the scheme Zj3 is invariant under
the action of Rg and the retraction pg : Xg — Zg is equivariant with respect to the
quotient map qg : Pg — Rg. Let x_g : Rg = G,,, denote the character corresponding to
the 1PS )\gl : G — Z(Rp). Let Lg denote the Rg-linearisation on Zg given by twisting
the linearisation L by the character x_g.

Definition 2.5.12. We define the following loci:
1. Zg = 757" (Lg);
2. X3 = pgl(ng); and
3. Spi=G- X5

We may now state the results of [76] concerning the existence and properties of the
HKKN stratification.

Theorem 2.5.13 (Hesselink—Kempf-Kirwan—Ness Stratification). Let X be a projective
scheme acted on by a reductive linear algebraic group G with respect to a very ample

linearisation L.
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. There is a stratification

X:|_|S/3

BeB
of X into disjoint locally closed G-invariant subschemes, with So = X*5(L). The

indexing set (B is finite.

. The closure ?ﬁ of a stratum satisfies

Sig - Sg L I_I Sy.
[1v11>118]]

. For every B € B, there is a G-equivariant isomorphism Sg xPs G = X5

. For B € B\ {0}, a point x € X is contained in X3 if and only if Ag is a Kempf
1PS for x.
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Chapter 3

Non-Reductive Geometric
Invariant Theory

The theory of reductive GIT is a well-established toolkit for constructing and studying
quotients of schemes in algebraic geometry by reductive groups. Much more recently,
considerable progress has been made in extending this theory to cover, in certain well-
behaved cases, quotients by non-reductive groups. In addition to giving a statement
of the U-Theorem of Bérczi-Doran—Hawes—Kirwan, which will play an important role
in this thesis, we also give an overview of the non-reductive quotienting-in-stages con-
struction of Hoskins—Jackson, which concerns the formation of quotients by actions of
parabolic subgroups of SL(V'); this construction will be utilised in Chapter [7, We con-
clude this chapter by stating how non-reductive GIT (NRGIT) can be used to form
quotients of unstable HKKN strata.

3.1 Groups with a Graded Unipotent Radical

Let H be a linear algebraic group. If U is the unipotent radical of U and R is a choice of
Levi subgroup of H D we have a semi-direct product decomposition H = U x R, known

as a Levi decomposition of H. Fix such a Levi decomposition.

Definition 3.1.1. An internal grading of H is a 1PS X\ : G, — Z(R) such that A\(G,)
acts by conjugation on the Lie algebra Lie(U) with strictly positive weights; if an internal

grading exists, we also say that H has an internally graded unipotent radical. Given a

!A Levi subgroup R C H always exists and is unique up to conjugation.
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choice of internal grading X\, we denote
U=0U,:=Ux\Gp,),
and denote R := R/\(Gp,).

Remark. In this thesis, we we will be concerned with quotients by groups with an inter-
nally graded unipotent radical. However, there is the slightly more general notion of an
external grading of the unipotent radical of a linear algebraic group; the formation of

quotients by groups with an externally graded unipotent radical is considered in [19).

Remark. When forming quotients by internally graded groups, one can always replace
A by A" for a positive integer n without affecting the resulting quotients. In particular,

this allows us to work with rational internal gradings A.

Example 3.1.2. Our main examples of internally graded groups come from parabolic
subgroups of reductive groups G. Let A : G,,, — G be a (rational) 1PS, with associated

parabolic subgroup
P=P0) = {g € G+ Tim A()gA(t) ™" exists in G} — U xR.
%

This has unipotent radical U = {g € G : limy_o A(t)gA(t) "' = e} and Levi factor R =
{lim; o A(t)gA(t) ™' : g € P}. We have an inclusion A(G,,) C Z(R). That we have
limy 0 A(#)u(t)~! = e for each u € U implies that the conjugation action of A\(G,,) on
Lie(U) has strictly positive weights. In other words, A internally grades the unipotent
radical of P.

3.2 Quotients by Internally Graded Groups
3.2.1 Setup for the U-Theorem

Let X be a projective scheme acted on by a linear algebraic group H = U x R, such
that there exists a very[| ample H-linearisation L on X. Assume in addition that H
has an internally graded unipotent radical; fix an internal grading A : G,, — Z(R). Let
W .= HO(X, L)V, and view X C P(W). Let wmin = wp < w1 < -+ < Wmax be the weights

by which A\(G,,) acts on the fibres of LY over points of the connected components of the

2The distinction between working with ample and very ample H-linearisations is not crucial, since
one is free to replace an ample H-linearisation on X with any positive integer power.
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fixed locus XM€m) for the induced action of A\(G,,) on X. Without loss of generality
we assume that there are at least two distinct weights, since otherwise the unipotent
radical U acts trivially on X E| and so forming a quotient by H is equivalent to forming
a quotient by the reductive group R. Let Wi, C W be the weight space where A acts

with weight wmin.

Remark. For the purposes of simplicity of expositionﬁ we will always assume that there
exists a dense open subscheme X° C X such that for all points x € X°, A(G,,) acts
on the fibre of LY over limy_,o A(¢) - # with a common weight; this common weight is
necessarily the minimal weight wy,i,. This assumption always holds if X is irreducible,

and this assumption holds for all graded unipotent quotients considered in this thesis.
Definition 3.2.1. We introduce the following loci:

1. the A-minimal weight space Zyin = Z(X, N)min s the closed subscheme Zyin =
XN ]P)<Wmin)7'

2. the M-attracting open subscheme X°. = X(A)Y. s the open subscheme of X

min min
whose set of points is X°. = {r € X :limy g A(t) - & € Zmin};

min

3. the A-retraction is the morphism p : XO. — Zuin given on points by p(x) =

min
limy_o A(¢) - z; and
4. the (semi)stable minimal weight space is Zr(rfl)If = ZE% " and we set Xgl’i(j)s =
P20,
Remark. 1t follows from Theorem/Definition that all of the loci appearing in Defi-
nition admit canonical scheme structures, making them locally closed subschemes
of X.

Since A(Gy,) C Z(R), the A-minimal weight space Zpn;, is invariant under the action
of R, and the group A\(G,,) acts trivially on Zyi,; as such Zy, inherits a residual R-
action. The property A(G,,) C Z(R) also implies that the A-retraction p is R-equivariant,
and the property that A(G,,) acts on Lie(U) with strictly positive weights implies that
p is U-invariant. In particular, the A-attracting open subscheme Xglin is invariant under

the action of H, and p is equivariant with respect to the quotient H — H/U = R.

3For in this case X2, = Zmin and p is the identity on X;,, but p is U-invariant.
4 A priori, different irreducible components could have different minimal A\(G,,)-weights; without this
simplifying assumption, each of these minimal weights would need to be kept track of.
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Definition 3.2.2. The very ample linearisation L is said to be:
1. borderline if wpin =0 < wi < -+ < Wmax; and
2. adapted if wmin < 0 < wy < -+ < Wmax-

Given a property P of very ample H -linearisations of X, we say that property P holds for
L being a well adapted linearisation if there exists € > 0 such that if —€ < wpin < 0 < wy,

then property P applies to L.

Remark. The only properties P for which the distinction between an adapted and a well
adapted linearisation is necessary are properties of finite generation of invariants; for

forming quotients, the distinction does not matter.

3.2.2 Quotients with Borderline Linearisations

In the case where L is borderline, the formation of quotients for the induced action
H O X% can be handled using reductive GIT.

min

Proposition 3.2.3 ([66], Proposition 2.17). Let H = U x R be a linear algebraic group
with internal grading X : G, — Z(R), and let X be a projective scheme acted on by H
with a very ample borderline linearisation L. Then there is an isomorphism of graded
Tings

P HO X, LY = @ B (Zunin, L 2,,,)",

n>0 n>0
and the following actions all admit a categorical quotient given by the reductive GIT

quotient Zmin [/ R:

1. the action of R on Z%5_;

min’

2. the action of R on X %°: and

min ’

3. the action of H on X Uss

min *

Moreover, the categorical quotient X0y x0ss J H = Znin J/; R factors through the

min min
A-retraction p : X088y gss

min min *

Unfortunately, since Xgl’islf — Xgn’frf /| H factors through the A\-retraction, the cate-
0,ss
min

get identified with each other.

gorical quotient X " / H is almost never a geometric H-quotient, as too many orbits
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3.2.3 The ﬁ-Theorem

The approach taken with the U-Theorem is to instead work solely with linearisations

which are adapted, which has the effect of destabilising the locus U Zyin, so that points

r € X0, can no-longer be identified with their limits under the A-attraction. This comes
0

at the cost of having to first prove the existence of a geometric U-quotient of X . or of

0

X255 which imposes constraints on the U-stabilisers of points x € X ;.

min ’

Definition 3.2.4. We define the following stabiliser conditions concerning the action
HOX:

1. We say semistability coincides with stability for U if

dim Staby(z) = 0 for all z € Zin. [l?]o

2. We say semistability coincides with stability for U on the reductive semistable
locus if

dim Stabg(z) = 0 for all z € Z3 [U; R — ss]o

min-*
3. If U is abelian, we say that semistability coincides with Mumford stability for U
if

~

dim Stabyr(—) is constant on X2 . U]

4. If U is abelian, we say that semistability coincides with Mumford stability for U

on the reductive semistable locus if

dim Staby (=) is constant on X 5. [U; R — ss]

min
5. We say that semistability coincides with stability for R if

dim Stabg(z) = 0 for all z € Z; [R]o

min*

In the case where U is not abelian, statements (3) and (4) should be modified to
require that there exists a series of subgroups {e} = U° c U' C --- C U* = U which is
normalised by H and whose successive quotients are abelian, such that (3) (resp. (4))

holds for each subgroup U*.

We can now state the U-Theorem of Bérczi-Doran-Hawes—Kirwan [18] [19] [20].
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Theorem 3.2.5 (Bérczi-Doran-Hawes-Kirwan). Let H = U x R be a linear algebraic
group with internal grading A : G,, — Z(R), and let X be a projective scheme acted
on by H with a very ample adapted linearisation L. Assume in addition that condition

|D holds. Then the following statements hold:

1. The U-stable locus XU S.=X

min 0.\ UZmin is an open, H-invariant subscheme of

Xglm which admits a projective geometric U-quotzent

. xU- 8—>X//L(7

min

The quotient X J/; U is endowed with an ample R-linearisation L inherited from
L, for the residual action of R. Moreover, if L is well adapted, there exists a suffi-
ciently divisible positive integer ¢ with the properties that the ring of U -invariants
D..>0 HO(X, Lm)[7 is finitely generated and X//Lﬁ = Proj <®n20 HO(X, Lcn)ﬁ).

2. Let q : Xgms -» X)), H=X/),U U) /1 R be the composition of qz with the
reductive GIT quotient q5 : (X /1, U)f—ss(L) — (X /1 U) /£ R. Then q is defined
on an open subscheme dom(q) C Xgms, and q : dom(q) = X J/; H is a projective
good H -quotient. Moreover, if L is well adapted, there exists a sufficiently divisible
positive integer ¢’ such that the ring of H-invariants ,,> HO(X, L™ s finitely

generated and X J/; H = Proj (@nzo HO(X, Lc/n)H)_

The following result of Hoskins—Jackson can be used in certain cases to determine

the domain of the quotient maps appearing in Theorem [3.2.5

Theorem 3.2.6 ([66], Theorem 2.28). In the situation of Theorem denote by
XH=s.— x5\ yZs.  the H-stable locus. Then:

min min m

1. If v € X% then qp(v) € (X /g U)E=s(L).

2. Fixz a mazximal torus T of R which contains A\(G,,). Then there are open inclusions

XHos cdom(q) € () hXT*5(L) = () uX®7(L) C X055\ s .
heH uelU

If ([Ro) holds, then all of these inclusions are equalities.
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3. The restriction of q to the open subscheme anins C Xgnn yields a quasi-projective

geometric H-quotient X2—5 — q(XH %) = XH= */H with projective completion

X /., H. In particular, if - ) holds, then Xgms/H = X/, H is a projective

geometric H-quotient ofX

min *

It is possible to weaken the condition to l U; R — sslf) to still obtain a projective
good H-quotient of an open subscheme of X 0,55 \ UZ?% ; the difference here is that the

min min’

U -quotient will only be quasi-projective.
Theorem 3.2.7 (cf. [66], Theorem 2.29). Let H = U x R be a linear algebraic group with
internal grading A : G, — Z(R), and let X be a projective scheme acted on by H with

a very ample adapted linearisation L. Assume in addition that condition 1)
holds. Then the following statements hold:

1. (Bérczi-Doran—Hawes—Kirwan) There exists a quasi-projective geometric ﬁ—quotient
X0 \UZzZs% — (X X0 \UZs )/ﬁ By composing qp with a reductive GIT

qU mm min min min

quotient map for the residual R-action, there is a map

g X0\ Uz, B (x0s\ Uz ) /U - X ), H

min min

which restricts to a projective good H-quotient q : dom(q) — X //; H of the domain
of q. Moreover, if L is well adapted, there exists a sufficiently divisible positive
integer ¢ such that the ring of H-invariants ,,> HO(X, L)H s finitely generated
and such that there is an equality X J/; H = Proj (@nzo HO(X, LC”)H).

2. (Hoskins—Jackson) There is an inclusion XH—% .= X% \ y/zs

min min

. C dom(q), and

m

the restriction of ¢ to the open subscheme XH2—% X&m yields a quasi-projective

min
geometric quotient Xgms (Xgms) Xgms/H with projective completion X J/
H. If in addition ([R]o) holds, then dom(q) = XH—% and X"—5/H =X J/, H is

a projective geometric H-quotient of Xgms.

In order to prove the results of Chapter[7} we require a slightly modified version of the
U- Theorem, which is able to handle the situation where, on a non-empty open of Xmm,
points have trivial unipotent stabilisers, with the same holding for the A\(G,,)-limits for
these points, whilst allowing for the possibility of some points of Z7 . to have positive
unipotent stabiliser dimensions. The cost is that the resulting non-reductive quotients
are only guaranteed to be quasi-projective. In order to state the modified version of the

U -Theorem, we introduce the following terminology.
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Definition 3.2.8. Let H = U x R be a linear algebraic group with internal grading
A Gy — Z(R), and let X be a projective scheme acted on by H with a very ample

adapted linearisation L.

1. The U-very stable locus is the open subscheme of X whose set of points is

XU—vs — L e X0, dim Staby (p(z)) = 0}.

min
2. The H-very stable locus is the open subscheme of X whose set of points is

XHvs = {z e XU p(a) € Zoin} \ UZumin.

min min

Remark. That XU—v* is open in XU, follows from the semicontinuity of dimensions of

U-stabiliser dimensions. In turn, the same argument given in [20, Proof of Theorem
4.21, Page 21] shows that the U-sweep of {z € Zuyin : dim Staby(z) = 0} is closed in

XU=vs  whence X% is an open subscheme of X0 X U~vs is invariant under the

min min min

action of U, and Xgmvs is invariant under the action of H.

Theorem 3.2.9. Let H = U x R be a linear algebraic group with internal grading
A Gy — Z(R), and let X be a projective scheme acted on by H with a very ample

adapted linearisation L. Assume in addition that Xgmvs 18 non-empty.

1. There is a locally trivial U-quotient g : XYV — XY vSJU. Moreover, there ex-

min min

ists a positive integer m > 0 such that Xginvs

JU admits a locally closed immersion
into P((H°(X, L"™Y)V) in such a way that qu is induced by the linear projection
P(HO(X,L™)") --» P((HO(X,L™)")Y).

2. Assume further that X2="% is non-empty. Fizing m as above, let Q denote the

min

closure of XY= /U in P((HY(X,L"™)Y)V). Endow Q with the R-linearisation

min

obtained by restricting the O(1) of P((HY(X, L™)Y)Y), and let Q /| R denote the

resulting reductive GIT quotient. Then there exists a map

q: XU vs —)XU ’US/U ,,,,, L R Q//R

min min

with the following properties:

(i) Xgi;vs is contained in the domain of q, and the restriction q : Xgi;vs —

q(XH-v%) is a geometric H-quotient.
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(ii) There exists an integer M > m and a locally closed immersion of q(X1-v%)

into P((HO(X, LM)™)V) with the property that q is induced by the linear pro-
jection P(HY (X, LM)V) -—» P((H(X, LM)H)V).

Proof. 1t is possible to prove Theoremusing the results of [I10], however we provide
a simplified proof, by following the proofs of Theorems [3.2.5 and [3.2.6]

As before, set W := H°(X,L)". By [20, Proposition 4.26], there exists a locally
trivial U-quotient P(W)Y-v* — P(W)U v /U given by the restriction of the enveloping
quotient (cf. [43, Section 4]). Moreover, from the proof of [I8, Proposition 3.1.19] there
exists a positive integer m such that for all positive multiples m' of m, P(W )I[I]lm”s JU ad-
mits a locally closed immersion into P((H°(P(W), Opwy(m/))Y)Y), with the composition
P(W)5ors — BP(W)5ors /U — P((HYP(W), Opgwry(m'))Y)Y) coinciding with the mor-
phism obtained by restricting the rational map between projective spaces corresponding
to the inclusion HO(]P’(W) Opay (m')V € HYB(W), Opgyry (m')).

By Lemma this quotient restricts to a locally trivial quotient ¢y : X U—vs _,

min

XU—vs U with Xginvs /U a closed subscheme of P(W)Y-v*/U. By replacing m with a
larger multiple if necessary, so that the natural map Sym™H%(X,L) — H°(X,L™) is
onto, the closed immersion X — P(H?(P(W), Opw)(m))") factors through the projec-

tive space P(H°(X, L™)V), and in addition the composite
HO(P(W), Opyy(m))V ——=—— HO(B(W), Opy)(m)) ———— HO(X,L™)
factors through H°(X, L"™)V. It follows that the composite

XUvs jU — PW)U5v* /U — P((HO(B(W), Opaiy(m))Y)Y)

factors through P((H°(X, L™)V)V), and so q fits into a diagram

X' ——————— P(H(X,L™)")

qu HO(L™YCcHO(L™)

XU-vs )y — L P((HYU(X, L"™)V)Y)

min

whose horizontal arrows are given by locally closed immersions. This completes the

proof of the first part of the theorem.
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The proof of the second part of the theorem boils down to reductive GIT for the
residual action of R. Let Q be the closure of XY—*/U in P((H°(X,L™)V)V), and en-
dow @ with the very ample linearisation Lg obtained as the restriction of the O(1) of
P((H°(X,L™)V)V). Choosing s > 0 sufficiently large such that @, H°(Q, LSQk)R is gen-
erated in degree 1 and such that the natural morphism Sym” H%(X, L™)Y — H°(Q, Lp)

is a surjection for all » > s, by Theorem the map
qr: Q-->Q J R=ProjP H*(Q, LF)" c P(H*(Q, LH)")Y)
k

induced by the inclusion @@, H°(Q, LSQ]“)R c P, H(Q, LSQ’“) restricts to give a geometric
R-quotient of the open stable locus QR*S(LQ). Increasing s if necessary, the above
morphisms yield a surjection H°(X, L™V — H%(Q, La); taking R-invariants (which is
exact, as R is reductive) then yields a surjection (H°(X,Ls™)V)E = HO(X, L*™)H —
HO(Q, L))", This yields a closed immersion P((H(Q, L)®)Y) — P((H(X, L¥™)7)V),
such that the composite Q J R — P((H°(X, L*™)")V) fits into the following diagram:

XU—vs P(HO(X, Lsm)\/)

min
HO(Lsm)HCHO(Lsm)

Q) R————P((H(X,L™)")Y)

In light of Lemmas [2.1.4] and [2.1.5] it remains to show that the locally closed sub-
scheme qp (X 2-"%) of Q is contained in the GIT stable locus Q~*(Lg). But this is a

min

consequence of the first assertion of [66, Theorem 2.28]. O

Remark. Unlike in reductive GIT, where the resulting quotients are always projective, we
remark that in the setting of the U -Theorem, without the stabiliser conditions 1} or

|| holding one only obtains a quasi-projective good H-quotient of an invariant

open subscheme of X?°

min*

H-scheme X so that either ([U]o) or ([U; R — sslo) hold. In favourable situations, this

If one seeks projective quotients, one must first modify the

can be achieved (albeit at the cost of not having a modular completion) by blowing-up

X along a suitable H-invariant subscheme, supported along the U-sweep of the locus of
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points in Zyin whose U-stabiliser dimension is strictly larger than the generic dimension
[20, Section 4.5] [110]; this should be thought of as being analogous to the procedure of

Kirwan desingularisation [77] in reductive GIT, as well as its stacky analogue [47].

3.2.4 Application to Quotients of Unstable HKKN Strata

Let G be a reductive linear algebraic group acting on a projective scheme with respect
to a very ample linearisation L. Recall from Section the HKKN stratification of
X:

X=|]8s Ss=G-X5=Gx" Xy
BeB

As in Example Py is internally graded by the 1PS Ag. From the isomorphism
Sg = G xFs X g the existence of a categorical quotient Sz / G is equivalent to the
existence of a categorical quotient X 5° / Ps.

Let Y3 = Xj denote the closure of Xz in X. For e € Q=°, let L(14ep be the
(rational) Pg-linearisation on Y3 obtained by twisting L with respect to the character
X—(1+¢)g corresponding under the Weyl-invariant norm || — || on Lie(G) to the rational

-1
IPS A, o : G — Z(Rp).

Proposition 3.2.10 ([66], Proposition 3.5). Let 8 € B\ {0} be a non-zero index of an
HKKN stratum of X. Endow Pg with the grading 1PS \g. Then, with respect to the

linearisation L(iyep-
1. there is an equality Zg min := Z(Y3,\3) = Zg;
2. there is an equality Y3 min = YB()‘ﬁ)?nin = X3.

3. the Ag-retraction is given by the morphism pg : Xg — Zg; and

4. if € > 0 s sufficiently small, the linearisation L1 g ts well adapted for the graded

unipotent group (7)\&.

Note that in order to apply Theorems and to this situation, there is still the

requirement to check that the various stabiliser assumptions hold. For many examples

of unstable strata (see for instance [66] and [70]), the conditions ([U]) and ([U; R — ss])

can both fail, and even if these conditions hold then the condition ([R]o)) can also fail.
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For example, in the setting of moduli of unstable sheaves of a fixed Harder—Narasimhan
type of length ¢ (cf. [66] and Section [4.3.2)), there is an (¢ —1)-dimensional torus 7' C Rpg
which acts trivially on Zs (but not on Xg), meaning that unless ¢ = 2 then ([R]o)

automatically fails.

3.3 Parabolic Groups of SL(V) and the Quotienting-in-
Stages Construction

In order to rectify the issue of failing when dealing with grading 1PS with ¢ > 2
distinct weights, the approach of Hoskins—Jackson [66] (in the case of forming quotients
of parabolic subgroup P C SL(V) for some finite dimensional vector space V) is to
break the process of quotienting by P into stages, according to the row filtration of P,
and at each stage form a quotient of a group graded by a 1PS with only two distinct
weights. The condition has a better chance of holding stage-by-stage, at least over

a non-empty open subscheme of Z,,;,.

3.3.1 Notation for Parabolic Subgroups of SL(V)

Let A : G, = SL(V) be a 1PS. Fix a basis {v1,...,vx} for V diagonalising the action
of NM(Gy,), with weights r; > r9 > -+ > ry. Let £ = ¢(\) be the number of distinct
weights of A, let 81 > --- > [, be these distinct weights, and suppose the weight 5;
occurs m;-times.

Let
P=P\) = {g € SL(V): %iné A(t)gA(t) ! exists in SL(V)} =UXxR
—

be the parabolic subgroup of SL(V') associated to A\, with unipotent radical U = U())
and Levi factor R = R(\). The groups P, U and R can be explicitly described in terms

of block upper-triangular matrices (defined with respect to the basis {v1,...,vn}) as
follows:
Arg Arp o A Ay
0 Asp -+ Agy . Ay
(1) P={A= : c SL(V) . Ai,j c Cmixm;
0 0 - Apip Ay
0 0o .- 0 Agy
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(ii) R={AeP:A;;=0forall 1 <i< j</{} consists of all block diagonal matrices
in P.

(iii) The centre T'= Z(R) of R is given by

4
T= {diag(tllml, oo tely,) tti € Gy, Hti = 1} = Gf;;l.

i=1

(iv) The semisimple part of R is given by

¢
R = {diag(A11, ..., A¢e) € R:each Ay € SL(m;,C)} = [[ SL(ms, C).
=1

V) U={AeP:A;=1,, forall1 <i</}.

The 1PS X grades the unipotent radical U. Let H := U x R’ C P and H:=HxT=
U x (R x T). There are surjections R' — R/T and H — P/T, both with finite kernels.
Forming quotients by the actions of these finite kernels can always be done, by Lemma
2.2.11} As such, the problem of forming a categorical (resp. good, geometric) quotient
of an action by P is equivalent to that of forming a categorical (resp. good, geometric)
quotient by an action of H.

Following [66, Definition 4.6], we introduce the following notation.

(vi) For each 1 <i </, set ms; =3 5, myj, m<i = i, My,

> i Bim > j<i Bim;
ﬁ>i = S - and /Bgl = =l .
m>; m<;

We define 1PS A\ and Al of T'= Z(R) by setting
AO(t) = diag(t" Iny s .. 9 i 4 1), A(t) = diag(tP<i Ly, 17> 1 ).
(vii) Let U be the unipotent radical of the parabolic Pl := P(Al]) > P:
U[i]:{AeU:forallp<q,Ap7q:0ifq§é0rp>i}.

This is graded by the 1PS Al and is normal in P. For i > 2, we also set Ul—11 =
Uli-tnyl,

(viii) Let U® be the unipotent radical of the parabolic P(A?)) > P; this is graded by
the 1PS A and is normal in P.
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(ix) Let PO := U@ x RO ¢ P, where

R(l)— {AEL:Aj7j:Imjifj>i} ifi<£—1,
R ifi=4¢0-1.

We denote the successive quotients by L; := L®)/L0-D U; := U@ /U(-1) and
P; := pW)/pti=1),

(x) Let HD := U® x R') ¢ PO where
RO _ {{AeR’:Aj,j = I, if j >} ifi<l-1,
R ifi=10—1.
Let R, := R /R~ and H; := HO/H) = U; x R].
(xi) Let 7O = [],o; A9 (G) = [1;<; AV(Gr) € T, and set HO := HO % 7).

(xii) For each j <i let )\g-i] be the 1PS of length 2 given by the composition

i AL . -
)\]Gm /P /P/P(] ),

Note that Al = Al for all 4.

(xiii) As a special case of the above, set \; = )\Ei] for each 7. The associated parabolic
P(\;) has unipotent radical isomorphic to U;, and A; grades U;. Let ﬁl =
H®DJHEY = Hy 5 \(Gp) = Ui % (R X Ai(G)).

Suppose Xj; is a projective scheme acted on by ﬁl with a very ample linearisation L;.
The group fIl has a one-dimensional character group, which is generated by a character
x; dual to the 1PS \; = )\y] grading the unipotent radical U; of PAIZ Twisting L; by
some multiple €;x; of x; corresponds to shifting the \;(G,,)-weights each by ¢;. As such,
by twisting L; by €;x; for suitable ¢;, we can always ensure that L; is (well) adapted;

twisting by such a character does not alter the loci X;(\;)%. mnor Z(X;, \i)min-

3.3.2 Non-Reductive Quotienting-in-Stages

We now present the quotienting-in-stages construction of Hoskins—Jackson, concern-
ing the formation of non-reductive quotients of projective schemes X acted on by the

parabolic subgroup P C SL(V') with respect to very ample P-linearisations. We quotient
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out the groups fI, turn-by-turn by applying the U-Theorem at each stage, arriving at a
quotient of an open subscheme of X by the whole parabolic group P at the end. The pre-
sented construction closely follows [66, Construction 4.20]. However, unlike in loc. cit.,
which utilises Theorems and the version of the U-Theorem we apply at each
stage is Theorem Construction is the version of the quotienting-in-stages
construction that will be required in Chapter [7]

Construction 3.3.1 ([66], Construction 4.20). Base step: Let X = X be a projective
scheme acted on by P with respect to a very ample P-linearisation L = L;. Viewing L
as a ﬁl—linearisation, by twisting L1 by a suitable multiple €1y of x; if necessary, we
may ensure that L; is adapted.

Assuming we can apply Theorem to the action H 1 O X1, in other words assum-

H1 Vs
min

(Xl)glln vS/Hy, together with a locally closed immersion of schemes (Xl)ﬁlln vS/Hy C
P((HO(Xl,L‘fl)ﬁl)v) for some integer s; > 0, with the quotient being induced by the
projection P(H®(Xy, L{*)Y) --» IP’((HO(Xl,L‘il)ﬁl)v). We set X3 to be the closure of
(X1 )glln v$/Hy in P((H(X1, le)Hl) ), and set Ls to be the very ample linearisation for
the residual action of P/H HO = P/ H, obtained by restricting the O(1) of the projective
space P((HY(Xj, Lil)ﬁl)v).

Induction step: Suppose ¢ < £ — 1, and suppose we have constructed successive

ing that (Xl)H.lfvs is non-empty, there exists a geometric H 1-quotient ¢ : (X7) —

min

quotients g; of the form

(X)) (X)) E,
i I
| ) !
)(J e > Xj+1
P(HO (X, L}')V) ==-z-mzmmmmmmee > IP’((HO(XJ,LSJ) V)

HO(XJ,L 7) JCHO(X L J)

for each j = 1,...,4, where the top horizontal arrow is a geometric H j-quotient, where

Xj+1 is the closure of the locally closed subscheme

(X)), < P((H(X;, L) ™)Y),

min
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and where each X; is endowed with the very ample linearisation L; obtained by restrict-
ing the O(1) of P((H°(X,_1, L;ff)ﬁffl)v) to X, twisted by a suitable character.

The very ample invertible sheaf L; 1 on the projective scheme X, carries a lineari-
sation for a residual action of P/ H () and in particular for fAIZ-H. By twisting L;11 by
a character of f[i+1 of the form €;41x;+1, we can ensure that this ﬁiﬂ—linearisation is
adapted. Assuming once again that we can apply Theorem [3.2.9] we obtain, for some

integer s;4+1 > 0, a diagram of the form

ﬁi — 1 ﬁz — 75
(Xip )™ ad (Xit )i /Hir
XiJrl **************** K > Xi+2
P(H° 1L, LI e » P((HO( X4, L+ Hip1\V
( ( " ZI:; )7,317 zitl) Z+1CHO(X7,+17[(/§<11:§1)( " l+1) ) )

where the top horizontal arrow is a geometric fIiH—quotient and where X2 is the closure
of the locally closed subscheme (XHl)g;gl*vs/ﬁiH C P((H*(Xiy1, L7H)H)Y). If

i < —2, we define L; o to be the restriction of the O(1) of P((H%(X;1, Lffll)ﬁi“)v)
to X;y2. The induction step of Construction is complete. W

Assuming that Theorem [3.2.9| can always be applied at each stage, that is assuming

that (X;)7~"% £ @ foralli = 1,...,0—1, after /—1 stages Construction [3.3.1|terminates,

min

yielding a diagram of the form

qe—2 qe—1
,,,,,, KL X2 e S X s
X H1 —vs X Hg Vs (X He 1—VS
1 min 2 min £— 1 min

where for each i the restriction g; : (X;)Hi-"% — ¢,;(Xy)Hi=vs) = (X; )m;n S /H; is a

geometric E[i—quotient. Foreachi=1,...,¢—1, set
4@ == ¢qiogi—10---oqr: X1 -—» Xipq.
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We inductively define open subschemes X;) C X = X; for i = 1,...,£ — 1 by setting
Xy = (X1)H17v and setting for i > 1

min

X =X N q(_iil)((Xi)H"_m)‘

min

Then, for each 4, the morphism gy : Xy — q(;)(X@)) = X(i)/ﬁ(i) C X;11 is a well-
defined geometric ﬁ<i)—qu0tient. In particular, qu_1y @ X1y = qu—1)(X@-1)) =

Xe-1) /ﬁ[ C Xy is a quasi-projective geometric quotient for the action of the group

~

H.

Proposition 3.3.2. Assume that Theorem[3.2.9 can be carried out at each stage of Con-
struction |3.3.1. Then Construction yields a non-empty invariant open subscheme

X1y of X which admits a quasi-projective geometric quotient by P.

Proof. Recall that we have surjections R' — R/T and H — P/T, both with finite
kernels. Since Lemma [2.2.11] can be used to form quotients by the residual actions of
these finite kernels, the existence of a quasi-projective geometric quotient of X(,_y) by
the action of H implies the existence of a quasi-projective geometric quotient of X,_1)

by the action of P. O

Remark. By [60, Proposition 4.27] there exists a (rational) character x of P with the
property that, if L, is the twist of the very ample P-linearisation L by x, then L, is
adapted, and at each stage of Construction the linearisations (L,); are adapted

without further twisting.

Remark. If the so-called quotienting-in-stages assumption (Assumption 4.29 of loc. cit.)
holds, it is possible to write down an explicit invariant open subscheme X~ (cf.
Definition 4.11 of loc. cit.) of X for which non-reductive quotienting-in-stages produces
a quasi-projective geometric quotient. Without this assumption, the open subscheme
XP=ps is no-longer guaranteed to be contained in the domain of the quotient morphism

resulting from implementing Construction or Construction 4.20 of loc. cit.
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Chapter 4

Moduli Spaces of Coherent
Sheaves

In this chapter we review results relating to coherent sheaves and their moduli which
are required in this thesis. We first recall the notion of Gieseker stability for coherent
sheaves on a polarised projective scheme (X,Ox(1)), and then outline the GIT con-
struction of the projective moduli space of Gieseker semistable sheaves on (X, Ox(1)),
due to Simpson. Next, we recall the notion of Harder—Narasimhan filtrations of unstable
sheaves and of Harder—Narasimhan stratifications, and state results of Hoskins—Kirwan
and Hoskins concerning how such stratifications relate to HKKN stratifications coming
from Simpson’s construction. We also review the notion of multi-Gieseker stability, due
to Greb—Ross—Toma, in advance of Chapter [6]

A standard reference for the theory of Gieseker semistable sheaves and their moduli

is the book [69] of Huybrechts and Lehn.

4.1 Gieseker Stability for Coherent Sheaves

Let X be a projective scheme, and let Ox (1) be an ample invertible sheaf on X. For any
coherent sheaf F' on X with d = dimsupp F', the Hilbert polynomial of F' with respect

to X is of the form
d tl
P(F,t) = Po, 1)(F,t) := x(X,F(t)) = Y _ a;(F) - T
i=0 )

for integers a;(F').
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Definition 4.1.1. The reduced Hilbert polynomial of F' with respect to Ox (1) is the

polynomzial
P(F,t)

aq(F)
Let < be the total ordering on monic polynomials in Q[t] defined by f < g¢ if and

p(F,t) = pOX(l)(F>t) = € Q[t]

only if deg f > deg gE| or deg f = degg and f(m) < g(m) for all m > 0.

Definition 4.1.2. A coherent sheaf F' on X is said to be Gieseker semistable (with
respect to Ox (1)) if for all non-trivial subsheaves G C F, p(G,t) = p(F,t). F is said to
be Gieseker stable if F' is Gieseker semistable and for all proper non-trivial subsheaves
G C F, p(G,t) < p(F,t). F is said to be Gieseker polystable if F' is Gieseker semistable

and is isomorphic to a direct sum of Gieseker stable sheaves.

Remark. If F is a Gieseker semistable sheaf on X, it follows as a straightforward conse-
quence of Definition that F' is necessarily pure, i.e. for all all non-zero subsheaves
G C F, dimsupp G = dim supp F'.

Remark. Let F' be a coherent sheaf of pure dimension d. By [69, Proposition 1.2.6], in
order to check for the Gieseker (semi)stability of F', it is enough to consider saturated
subsheaves, i.e. subsheaves G C F for which the quotient F'/G is 0 or pure of dimension d.
The Gieseker (semi)stability of F' can also be characterised in terms of proper quotients
F — G — 0 with G of pure dimension d; F' is Gieseker (semi)stable if and only if for all
such quotients, one has p(F,t) < (=2) p(G,1).

Remark. The condition of being Gieseker stable (resp. semistable) is open in flat families
(cf. Proposition 2.3.1 of loc. cit.); that is, if F'is an B-flat, B-finitely presented coherent
sheaf over a projective B-scheme X endowed with a relatively ample invertible sheaf
Ox (1), then the locus of geometric points b € B such that F; is Gieseker stable (resp.

semistable) with respect to Ox, (1) is an open subscheme of B.

Example 4.1.3. Suppose F' is a locally free sheaf on a smooth projective curve C of
rank 7 and degree d. Then for any choice of ample invertible sheaf on C, one has

p(F,t) = p(F) +t, :U(F):;'

As such, F is Gieseker (semi)stable if and only if F' is (Mumford) slope (semi)stable,
that is u(G) < (<) p(F) for all proper non-trivial (locally free) subsheaves G C F'. B

!Note the change of direction in the inequality!
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Every semistable sheaf on X admits a canonical filtration; this filtration plays a role
in determining which sheaves correspond to a given point in the moduli space of all

Gieseker semistable sheaves on X.

Proposition/Definition 4.1.4 ([69], Proposition 1.5.2). Let F' be a Gieseker semistable
sheaf on X with respect to a given ample invertible sheaf Ox(1). Then there exists a
filtration

0=F'cF'c..-CF'=F

of F, known as a Jordan—Holder filtration of F, with the property that each subquotient
F; := F'/F~1 is Gieseker stable and has the same reduced Hilbert polynomial as F. Up

to isomorphism, the Jordan—Holder associated graded sheaf of F', namely the sheaf
gr’{(F) .= @Fi,
i
does not depend on the choice of Jordan—Holder filtration.

Definition 4.1.5. Let F, G be semistable coherent sheaves on X. F and G are said to
be S-equivalent if gr'f(F) = gr'H(@).

Remark. The Jordan—Holder filtration of a stable sheaf F' is the trivial filtration 0 C F;
as such, up to isomorphism the only coherent sheaf which is S-equivalent to F' is F
itself. More generally, two polystable sheaves are S-equivalent if and only if they are

isomorphic.

One further property of Gieseker stable sheaves is that they are so-called simple

coherent sheaves.

Definition 4.1.6. A coherent sheaf F' on a projective scheme X is said to be simple if
Endx(F)=C.

Remark. As with Gieseker (semi)stability, the condition of being simple is open in flat

families (cf. Proposition 2.3.1 of loc. cit.).

Proposition 4.1.7 ([69], Corollary 1.2.8). Let F' be a Gieseker stable sheaf on a pro-

jective scheme X. Then F' is simple.
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4.2 Moduli of Gieseker Semistable Sheaves on a Projective
Scheme

4.2.1 Families of Semistable Sheaves

Let f : X — B be a projective morphism (of finite type), where B is a fixed base scheme.
Let Ox (1) be a relatively ample invertible sheaf on X.

Definition 4.2.1. Let T be a B-scheme. A family of Gieseker (semi)stable sheaves
parametrised by T is a T-flat, T-finitely presented coherent sheaf F over Xp = X xgT
such that for each geometric pointt € T, the sheaf Fy € Coh(X}) is Gieseker (semi)stable
with respect to Ox,(1) = Ox(1)|x,.

Definition 4.2.2. Fiz a polynomial P(t) € Q[t] of degree d. Define moduli functors

MO = MY (Ox (1), P) : Schif — Set

by associating to a B-scheme T the set of all isomorphism classes of families of Gieseker

(semi)stable sheaves parametrised by T with Hilbert polynomial P.

The existence of moduli schemes corepresenting the functors M(®)* was first proved

by Simpson [124], making use of reductive GIT.

Theorem 4.2.3 (Simpson). Assume that the base scheme B is of finite type. The
moduli functor M*®® is universally corepresented by a scheme M?*% = M)S(S/B((’)X(l),P)
which is projective over B. There exists an open subscheme M?® = M;’(/B((’)X(l),P) of

M?®® which universally corepresents the moduli functor M?®. Moreover:

1. The points of M®® over a geometric point b € B are in bijection with the set of
S-equivalence classes of Gieseker semistable sheaves on Xy with Hilbert polynomial
P, and the points of M® over a geometric point b € B are in bijection with the set
of isomorphism classes of Gieseker stable sheaves on Xp with Hilbert polynomial
P.

2. Locally in the étale topology on M?, the fibre product X x g M?® admits a universal
sheaf.
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4.2.2 An Outline of Simpson’s Construction

Here we give an outline of how M?*® is constructed using GIT, as we will make use of
this construction both in Chapter [6] and later on in this chapter, when discussing moduli
of unstable sheaves. Proofs for the results stated in this subsection can be found in loc.
cit., as well as in Huybrechts—Lehn [69].

Let f : X — B be a projective morphism, where B is a finite type base scheme,
and fix a choice of a relatively ample invertible sheaf Ox (1) on X. Fix a polynomial
P € Q[t]. A key result required for Simpson’s construction is that the collection of all
Gieseker semistable coherent sheaves F' on X with Hilbert polynomial P, taken across
all geometric fibres X of f, forms a bounded family, in the sense that there exists a
scheme B’ of finite type over B and a coherent sheaf E over Xp/, such that each such
sheaf F' appears as a fibre of F over a geometric fibre of fg:.

For a natural number N, let Vy = CP®) and let Qn = Quoty/p(VN®@Ox(—N), P)
be the relative Grothendieck Quot scheme parametrising quotients of Vy @ Ox (—N) with
Hilbert polynomial P. Let

VN®OXQN(_N) — Uy — 0

be the universal quotient over Xg, = X xp @Qn.
The group GL(Vy) acts naturally on Qn via compositionﬂ for ¢ € GL(Vy) and
(Vv ® Ox,(—=N) % F — 0] € Qw,

gV ® Ox,(=N) % F — 0] := [Viy ® Ox, (-N) ““="Y - ).

This action factors through the quotient PGL(Vy) of GL(Vy). In addition, the structure
morphism Qn — B is GL(Vy)-invariant.

Denote by Ry the open subscheme of Q x consisting of all quotients [Vy®Ox,(—N) —
F — 0] where F is Gieseker semistable and where the map Vy — H°(X,, F(N)), ob-
tained by twisting the given morphism Vy ® Ox,(—N) — F by Ox,(N) and taking
global sections, is an isomorphism; let R}, be the open subscheme of Ry where F' is
Gieseker stable. The subschemes Ry C Ry are invariant with respect to the action
of the subgroup Gy := SL(Vy) C GL(Vy) on Qn. Let Ry denote the closure of Ry
in Qn. Fixing N, for all sufficiently large positive integers M > N, we have that

2Observe that this action factors through the quotient PGL(Vn) of Gn.
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Ly = det((fou)«Un(M))) is a relatively very ample invertible sheaf on @y (and
hence on the closed subscheme Ry ), which is naturally linearised with respect to the
G n-action on Qy (resp. Ry).

By combining the boundedness of the collection of all semistable sheaves over all
geometric fibres X} with Grothendieck’s results on cohomology and base change [57],
there exists a positive integer Ny such that for all N > Ny, for all B-schemes T and for
all T-flat, T-finitely presented coherent sheaves F' on Xp whose fibres over geometric
points t € T" are Gieseker semistable coherent sheaves with Hilbert polynomial P, the

following statements hold:
(i) for each t € T, the sheaf F; is N-regular: H*(Xy, F;(N —i)) = 0 for all i > 0;
(ii) the higher derived pushforwards Ri(f7).(F(N)) for i > 0 are all zero;

(iii) the sheaf (f7)«(F(N)) is locally free of rank P(N) and is compatible with base

change; and
(iv) the sheaf F(N) is generated by its global sections, i.e. the natural morphism
(fr)"(fr)«(F(N)) = F(N) =0
is surjective.

Taking 7' = SpecC — B to be a geometric point b € B, we have (fr).(F(N)) =
HY(Xy, F(N)); twisting the surjection (fr)*(fr)«(F(N)) — F(N) — 0 by Ox,(—N)

then yields a surjection
H°(Xy, F(N)) ® Ox,(—N) = F — 0.

By choosing an isomorphism Vy = CPV) = HO(X, F(N)), we obtain a G y-orbit of
points in Ry C Qny = Quoty,p(Vy ® Ox(—N), P) which corresponds to the sheaf
F. Two sheaves F,F’ are isomorphic if and only if they lie in the same Gp-orbit of
Rpy. Moreover, the scheme Ry, together with the restriction of the universal quotient
to the open subscheme Xg, C Xg,, has the local universal property for the functor
M?*%_ Invoking Proposition it follows that a categorical quotient of Ry by Gn

corepresents the moduli functor M55,
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Proposition 4.2.4 (cf. [69], Lemma 4.3.1). If Ry — M*® (resp. RY — M?) is a
universal categorical quotient for the action of Gy on Ry (resp. RY;) then M*® (resp.

M?) universally corepresents the moduli functor M*S (resp. M?). O
The existence of categorical quotients of Ry, C Ry is given by reductive GIT.

Theorem 4.2.5 (Simpson, [124]). Fiz a positive integer N > Ny, and in turn fix a

sufficiently large positive integer M. Then for the action of G on Ry, one has equalities
Ry(Lym/B) = Ry, Ry(Lnu/B)= Ry
Moreover:

1. The good quotient Ry //LN I Gn = Ry /| Gn universally corepresents M**, and
the open subscheme Ry /Gn C Ry //LN,M Gn given by the geometric quotient of
the (relative) GIT stable locus universally corepresents M?; in particular, M =
RN /1y, GN and M* = R /Gx.

2. The closures of the orbits of points [V ® Ox,(—N) — F — 0] and [Vy ®
Ox, (=N) = G — 0] in Ry coincide if and only if b = V' and if F', G are

S-equivalent coherent sheaves over Xp.

3. The orbit of a point [Vy @ Ox,(—N) — F — 0] is GIT polystable if and only if '
is a polystable sheaf.

4.2.3 Moduli Stacks of Semistable Sheaves

Continue to assume that the base scheme B is of finite type. Let Cohx/p be the al-
gebraic stack parametrising all flat, finitely presented families of coherent sheaves on
X/B (cf. [127, Tag 08KA]). There is an open and closed substack Cohx,p(Ox (1), P) C
Cohx,p parametrising those subsheaves which have Hilbert polynomial P with respect
to the choice of relatively ample invertible sheaf Ox(1). In turn, by the openness of
Gieseker (semi)stability in flat families there are open substacks Coh’, / 5(Ox(1),P) C
Cohig/B((’)X(l),P) C Cohx/p(Ox(1), P) parametrising those sheaves which are (fibre-
wise) Gieseker (semi)stable with respect to Ox(1).

There are natural morphisms Ry — Cohgf/B(OX(l), P)and R}, — COhi(/B(OX(l)’ P)

obtained by associating to a quotient in Ry the underlying coherent sheaf.
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Proposition 4.2.6. Let Ry and M®)* be as in the statement of Theorem .
1. There are isomorphisms of algebraic stacks

Cohy/p(Ox (1), P) = [Rn/GL(VN)],  Cohkp(Ox (1), P) = [Ry/GL(VN)]-

2. The moduli space M** is a good moduli space for the stack Cohi?/B((’)X(l), P), and
M* is a tame moduli space for Coh’,5(Ox (1), P).

Proof. By the same arguments given in the proof of [81, Théoreéme 4.6.2.1], the morphism
Ry — Cohs)p
this yields an isomorphism Coh¥, ;(Ox (1), P) = [Rn/GL(Vy)]. This isomorphism re-
stricts to give an isomorphism Coh%, 5 (Ox (1), P) = [Ry /GL(Vy)].

Since GL(Vy) acts on Ry through the quotient PGL(Vy), there are equalities of

(Ox(1), P) is a surjective smooth morphism which is a GL(Vy)-torsor;

good quotients
RN // GL(VN) = RN // GN and R?V // GL(VN) = }9\[ // GN.

As such, the second statement follows from Proposition [2.3.6] O

4.3 Harder—Narasimhan Theory for Coherent Sheaves
4.3.1 Harder—Narasimhan Filtrations and Stratifications

The natural measure of instability for coherent sheaves is recorded via the Harder—
Narasimhan filtration. This can be used to define a discrete invariant of an unstable

sheaf, the Harder—Narasimhan type.

Proposition/Definition 4.3.1. Let F' be a coherent sheaf on X. Then there exists a

unique filtration

0=F'cFlc..-.cF'=F

of F, known as the Harder—Narasimhan filtration of F', with the property that the sub-
quotients Iy := F'/F""1 are Gieseker semistable with strictly decreasing reduced Hilbert
polynomials p;(t) = p(F;,t):

p1 = p2 = - Py

The Harder—Narasimhan associated graded sheaf of F' is the sheaf

gr™N(F) = @ F;.
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Proof. That the Harder—Narasimhan filtration exists and is unique is proved in [115)],
Corollary 28]. In the case where F is of pure dimension, a proof can also be found in
[69, Section 1.3]. O

Remark. The subsheaf F' C F is also known as the mazimally destabilising subsheaf of
F.

Definition 4.3.2. Let F' be a coherent sheaf on X with Harder—Narasimhan filtration
0=F'cF'c---cF'=F.

Write P;(t) for the Hilbert polynomial of F;. The Harder—Narasimhan type 7 = mn(F)
of F' is the tuple of Hilbert polynomials

= (P,...,P) € Q[i]".
We also say that F' has Harder—Narasimhan length £.

Remark. Observe that a sheaf F' has Harder-Narasimhan length 1 if and only if F' is
Gieseker semistable.
In the case where X is projective over a base scheme B, the relative analogue of a

Harder—Narasimhan filtration is defined as follows.

Definition 4.3.3. Let f : X — B be a projective morphism, where B is a locally
Noetherian scheme, and let Ox (1) be a relatively ample invertible sheaf on X. Let F' be
an B-flat coherent sheaf on X, such that for each geometric point b € B, the sheaf Fy}
has Harder—Narasimhan type 7 = (Py, ..., Pp).

A relative Harder—Narasimhan filtration of F' is a filtration
0=F'cF'c...cF'=F (4.3.1)
by coherent subsheaves of F', such that the following properties hold:
1. For eachi=1,...,{, the subquotient F; = F'/F"~ is flat over B.

2. For each geometric point b € B, the restriction of the filtration (4.3.1) is the
Harder—Narasimhan filtration of F.
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Extending work of Shatz [123], there is the following result of Nitsure [L04] (see also

[65, Theorem 5.15]) concerning the existence of stratifications by Harder—Narasimhan

typeﬂ

Proposition 4.3.4 (Shatz, Nitsure). Let f : X — B be a projective morphism, where
B is a locally Noetherian scheme, and let Ox (1) be a relatively ample invertible sheaf
on X. Let ' be a B-flat coherent sheaf on X with Hilbert polynomial P. Let

4
HNTp := {(Pl,...,Pg):Ezl, > P=P p >p2>'~>pg} C@Q[t]e
i=1 J4

denote the set of Harder—Narasimhan types of coherent sheaves on X with Hilbert polyno-

mial P (here p; is the monic polynomial obtained by dividing P; by its leading coefficient).

1. There exists a partial ordering < on HNTp such that the map |B| — HNTp defined

by b — tan(Fp) is upper-semicontinuous. In particular, each level set
BT(F) = {b € B: THN(Fb) = 7’}
is a locally closed subset of the topological space |B).

2. There ezists a unique scheme structure on the topological space BT (F'), making
B7(F) into a locally closed subscheme of B, such that B™(F) has the following
universal property: any morphism T — B of schemes factors through B (F) if and
only if the pullback Fr admits a relative Harder—Narasimhan filtration of Harder—

Narasimhan type 7.
3. A relative Harder—Narasimhan filtration of F, if one exists, is always unique.

4. For any morphism T — B of locally Noetherian schemes, there is a Cartesian

diagram of schemes
T (Fr) —  B"(F)

-

T » B
3Nitsure only considers sheaves of pure dimensions, but with minor modifications his arguments carry
over to the case of considering sheaves which are not necessarily pure.
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Definition 4.3.5. The stratification
B= || B(F)
TEHNTp
of B into the locally closed subschemes BT(F') is known as the Harder—Narasimhan

stratification of B with respect to F'.

4.3.2 Relating HN and HKKN Stratifications

Let f: X — B be a projective morphism, where B is a finite type base scheme, and fix
a choice of a relatively ample invertible sheaf Ox (1) on X. Fix a Hilbert polynomial P.
We refer back to the notation of Subsection [£.2.2

Associated to the universal sheaf U on X, is the Harder-Narasimhan stratification

ov= || Q& Q:=Qnux).
TEHNTp
Fix a Harder—Narasimhan type 7 = (P, ..., P;) € HNTp. Inside the Harder-Narasimhan
stratum @7}, there is an open subscheme S}, parametrising all quotients Va®Ox, (—N) —
F — 0 for which the induced map Vy = H°(X,, F(N)) is an isomorphism.

Choose a basis for the vector space Vy = CP(N). For a pair of natural numbers
(N, M) € N2, denote by Bn.a(7) the (conjugacy class of) the rational 1PS of Gy =
SL(VN) = SL(P(N),C) given by

P(M)  P(M)

)\BN,M(T)(t) = diag(tﬁlidpl(N), e ,t'BZidPE(N)), ﬂz = P(N) — P(N) .

Let P, = U, x R, C Gy be the parabolic subgroup corresponding to )‘ﬁN,M(T) (t). The
1PS Agy r(r)(t) of G induces a filtration

0=VeCVyC - CVi=Vy

of Viy. Given an element [Vy ® Ox,(=N) % E — 0] of Qu, set E* = ¢(V},) C E and
E; = E'/E"~1, We then have induced quotients

(Vi /Vi ) ® Ox,(—=N) = E; — 0.

By [69, Lemma 4.3] the limit lim; 0 Agy, ,, () (t) - [V ® Ox,(—=N) % E — 0] is given by

the direct sum of quotients

l
P (Vi/ Vi) @ 0x,(~N) = E; —+0)| € Qn.
=1
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By considering the possible Hilbert polynomials of the sheaves E;, there is an isomor-

phism of schemes

Y4
A (Gm) i i—
Qu¥ T =] [[Quotks(Vi/Vi) @ Ox(~N), ).
(P],....P})eqQt]* i=1
> Pj=P

ss Mgy (m) (Gm) .
Let Z7° be the open subscheme of Q, corresponding under the above

isomorphism to the open subscheme of Hle QuotX/B((VK,/V]ffl) ®Ox(—N), P;) where
each of the coherent sheaves FE; is Gieseker semistable and where each of the induced
maps Vi /Vi ' = H°(Xy, E;(N)) is an isomorphism. The following result of Hoskins-
Kirwan [67] and Hoskins [65] relates the Harder-Narasimhan and HKKN stratifications
of Qn (see also [66, Theorem 2.8]).

Proposition 4.3.6 (Hoskins—Kirwan, Hoskins). For M > N > 0, the following state-

ments hold:

1. For any coherent sheaf F over any geometric fibre Xy, with yn(F) = 7, F is

N -reqular.

2. The G n-orbits of closed points in S}, are in bijection with isomorphism classes of

coherent sheaves F over geometric fibres Xy such that F' has Harder—Narasimhan

type T.

Moreover, when B = SpecC is a point, the following additional statements hold:

1. B = [Bnm(7)] is an HKKN index for the Gn-action on Qn = Quoty(Vn ®
Ox(—=N), P) with respect to Ly, and S§ is a closed subscheme of the corre-
sponding HKKN stratum Sg C QnN.

2. There exists a Rr-equivariant closed immersion Z7* C Z3 such that if Y7° :=

pgl(Zﬁs) C Yj is the corresponding attractor, then
ST =Gy - Y5 =Gy xTT Y,
3. The closed points of Y.2° are given by quotients Vy @ Ox(—N) — F — 0 such

that the induced map Vy = HO(X,F(N)) is an isomorphism, F has Harder—

Narasimhan type T, and the filtration

0=VoycCVhicC---CVi=Vy
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of Viw = CPWN) induced by the 1PS gy ar(r) induces the Harder—Narasimhan filtra-
tion on F'. The retraction pg : Y?* — Z2° sends a quotient VN@Ox(—N) = F — 0
to the tuple whose ith entry is the quotient (Vi /Vi 1) ®@Ox(—N) — F; — 0, where
F; = F'/F=1 is the ith subquotient appearing in the Harder—Narasimhan filtration
of F.

4. Let P be the parabolic subgroup of GL(Vy) associated to the 1PS Agyar(r)- Then

there are isomorphisms of algebraic stacks
Cohy = [S%/GL(Vi)] = [V*/ P,

where Coh’y = Coh’y(Ox (1), P) is the algebraic stack parametrising all flat, finitely
presented families of coherent sheaves on X admitting a relative Harder—Narasimhan

filtration of type T (cf. [104, Theorem 8]).

4.4 Multi-Gieseker Stability

We conclude this chapter by reviewing the notion of multi-Gieseker stability, due to
Greb-Ross-Toma [55], since we will refer to this notion in Chapter [6]

Let X be a projective scheme. Fix a stability parameter o = (L,01,...,0) on X;
here L is a tuple of ample invertible sheaves L1,..., L, and the o; are non-negative
rational numbers, not all zero. Given a coherent sheaf E on X of with d = dim supp F,

the multi- Hilbert polynomial of E with respect to o is the polynomial

k d ;

tl
P7(E,) =Y ojx(X, E® L)) = > o (E).
j=1 i=0 '

and the reduced multi-Hilbert polynomial of E is

Po(E, 1)

(Bt = Ll
P )

Definition 4.4.1. A coherent sheaf E on X is said to be multi-Gieseker (semi)stabld]]

with respect to o if for all non-zero proper subsheaves F C E,

p7(Ft) < (2) p7(E, ).

4Where no confusion is likely to arise, we also refer to this notion as o-(semi)stability.
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In the case where only one o; is non-zero, we recover the usual notion of Gieseker
(semi)stability with respect to the ample invertible sheaf L;. The notions of Harder—
Narasimhan filtrations, Jordan—Hélder filtrations and S-equivalence carry over to the
multi-Gieseker setting, and multi-Gieseker (semi)stability is an open property in flat
families (cf. [55, Section 2]). If E is o-semistable, the Jordan—Holder associated graded
sheaf is denoted gr)t(F).

Following loc. cit.ﬂ we make the following definitions.

Definition 4.4.2. The coherent sheaf E is said to be (m, L)-regular if E is m-regular
with respect to each L;, that is for each i > 0 we have H'(E ® L’j"_i) = 0. More
generally, if T : X — S is a projective morphism of schemes, if L = (L1,...,Lk) is a
tuple of m-ample sheaves and if E is an S-flat coherent sheaf on X, we say that E is
(m, L)-regular if for all j = 1,...,k and for all i > 0, one has R'm.(E ® ﬁ;’"”_i) =0.

Definition 4.4.3. Given a coherent sheaf E over X, the topological type T = Tyop(E) of
E (with respect to L) is the tuple (Py(t),..., P(t)), where P;(t) is the Hilbert polynomial
x(C, E®L§-) of I with respect to L;. In the case where X is projective over a base scheme
B and we are given relatively ample invertible sheaves L = (L1, ...,Ly) on X, we extend

the notion of topological type to B-flat sheaves on X in the obvious way.

Definition 4.4.4. Let 7 be a topological type of sheaves on X defined with respect to
ample invertible sheaves Ly, ..., L. The stability parameter o = (L;01,...,0k) is said

to be
1. positive if each o; > 0;
2. degenerate if there exists some index 1 with o; = 0; and

3. bounded (with respect to 7) if the collection of all o-semistable sheaves on X of

topological type T forms a bounded family.

Remark. If E is a B-flat, (m, £)-regular sheaf over a projective B-scheme 7 : X — B
and if B is locally Noetherian, then for all m’ > m and for all ;7 = 1,..., k the sheaves
T«(E® L';”/) are locally free; this follows from the cohomology and base change theorems

of Grothendieck [57] as well as basic properties of Castelnuovo-Mumford regularity.

5The definition of topological type stated above is in fact slightly different to the notion of topological
type in [B5] and [56]; in these papers the topological type of a coherent sheaf is defined to be the
homological Todd class Trodad(E) € B(X)g of E (though see [55] Remark 1.5).
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As with ordinary Gieseker stability, there exist projective moduli spaces of multi-
Gieseker semistable sheaves on the projective variety X. Fix a stability parameter
o= (L;o1,...,0k) and a topological type 7 defined with respect to L, and assume that

o is positive and bounded with respect to 7. Define a moduli functor
M7 : Sch®® — Set

by associating to a scheme T the set of all isomorphism classes of families of o-semistable

sheaves on X of topological type 7, parametrised by 7'

Theorem 4.4.5 (Greb—Ross-Toma, [55]). The moduli functor M, ; is universally corep-
resented by a projective scheme My . Moreover, the points of M, are in bijection with
the set of S-equivalence classes of o-semistable coherent sheaves on X of topological type

T.

The GIT construction of the moduli space M , is presented in Chapter @ together

with an extension of the construction to the relative setting.
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Chapter 5

Compactified Jacobians of
Reduced Curves

In this chapter, the final preliminary chapter of this thesis, we provide a review of the
aspects of the theory of compactified Jacobians of a reduced connected projective curve
C required for Chapters [6] and [§] Compactified Jacobians are moduli spaces of coherent
sheaves on C, closely related to the moduli spaces considered in Chapter As well
as presenting existing results concerning the existence of compactified Jacobians and
some of their basic properties, we also prove an Ext2-vanishing result (Lemma for
torsion-free sheaves on reduced curves with locally planar singularities, which is needed
for the proof of the main result of Chapter

A good survey of the theory of fine compactified Jacobians of a reduced projective

curve can be found in the paper [91] of Melo-Rapagnetta—Viviani.

5.1 Rank 1 Sheaves on Singular Curves
5.1.1 Jacobians of Singular Curves

Let C be a connected smooth projective curve. It is a standard result (see for instance
[94]) that the set of isomorphism classes of degree 0 invertible sheaves, endowed with the
tensor product, is a complete principally polarised abelian variety PicO(C’), the Picard
variety or the Jacobian of C. Moreover, C' x Pic?(C) carries a universal invertible sheaf,
also known as a Poincaré sheaf, making Pic’(C) a fine moduli space for the moduli
problem of classifying degree 0 invertible sheaves on C' up to isomorphism. For each

integer d, there is a complete fine moduli space Pic?(C) known as the degree d Picard

60



variety of C, which parametrises isomorphism classes of degree d invertible sheaves on
C; Pic?(C) is a torsor for the Jacobian Pic?(C).

If C' is an integral projective curve, no longer assumed to be smooth, the set Pic?(C)
of isomorphism classes of degree d invertible sheaves admits a natural scheme structure,
however the scheme Picd(C’) is no longer necessarily complete More generally, in the
case where C' is a reduced, connected projective curve which is reducible, the space
Picd(C) of isomorphism classes of invertible sheaves of multidegree d is a scheme, once
again not necessarily complete. The theory of compactified Jacobians concerns the
problem of compactifying Picd(C) in such a way that the compactification is itself a

moduli space of coherent sheaves on C.

5.1.2 Torsion-Free Sheaves on Curves

Compactified Jacobians are obtained by widening the class of sheaves being parametrised

to include torsion-free sheaves of uniform rank 1.

Proposition 5.1.1. Let F' be a non-zero coherent sheaf on a connected reduced projective

curve C'. Then the following are equivalent:

1. F is a torsion-free sheaf, in the sense that for each p € C, no regular element of

mey, 45 a zero divisor of Fp.

2. The sheaf F is pure of dimension 1, i.e. for all non-zero subsheaves G C F,

dimsupp G = 1.

3. F satisfies the Serre condition Sy; that is, for each closed point p € C we have
depthe,,  (Fp) =1.

Though Proposition is a standard result, we provide a short proof for lack of a

suitable reference. This proof requires the following lemma.

Lemma/Definition 5.1.2 ([122], Septieme Partie, Lemme 3). Let F' be a coherent
sheaf on a connected reduced projective curve C. Then there exists a unique subsheaf
T C F, concentrated at a finite number of points of C, such that F/T is torsion-free.
If G C F is any subsheaf with dimsupp G = 0 then G C T. T is known as the torsion
subsheaf of F'.

'For example, if C' is the nodal cubic then Pic’ (C) = Gm; this isomorphism arises from the choice of

an isomorphism of C-vector spaces Op1]o = Opi |-
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Proof of Proposition[5.1.1. (1) <= (2): By Lemma/Definition the sheaf F' is
torsion-free if and only if the torsion subsheaf T of F' is zero, if and only if F' has no
non-zero subsheaves G C F' with dimsupp G = 0, if and only if F' is pure of dimension
1.

(2) <= (3): Take a closed point p € C. Since dim O¢,, = 1, the depth of F), as an

Oc¢ p-module can either be 0 or 1. We have
depthe,, (Fp) =0 <= Homo, ,((p), Fp) #0 <= p € Ass(F).

On the other hand, F is of pure dimension 1 if and only if the only associated points of

F are of dimension 1. O

Remark. From now on, we refer to any coherent sheaf on C satisfying the equivalent

statements of Proposition [5.1.1] as being torsion-free.

Remark. Over the smooth locus of C, a torsion-free sheaf is locally free; this follows
from the fact that any finite torsion-free module over a discrete valuation ring (or more

generally a PID) is free. Conversely, a locally free sheaf on C' is torsion-free.

Definition 5.1.3. Let F' be a torsion-free sheaf on a connected reduced projective curve
C, and let C1,...,Cy denote the irreducible components of C'. Let &; be the generic point
of Ci. The multirank of F is the tuple (r1,..., 1), where r; = r;(F) = ranko,, . Fg, is
the rank of the locally free Oc ¢;-module Fe,. We say that F' has uniform rank r if the

multirank of F is (r,...,r).

Definition 5.1.4. Suppose D C C' is a (not necessarily connected) subcurve of C' and
F is a torsion-free sheaf on C. We denote by Fp the maximal torsion-free quotient of

F|D:F®OCOD-

If F is of uniform rank 1 then the sheaf Fp may be understood as the unique quotient

of F' which has support D and is torsion-free along D.

Lemma 5.1.5. Let F be a torsion-free sheaf on a connected reduced projective curve
C of uniform rank 1. Then the non-zero torsion-free quotients of F' are precisely the

sheaves Fp, for D C C a subcurve of C'.
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Proof. Let F — G — 0 be a torsion-free quotient of F', and let D be the support of
G. By restricting to D, we have a quotient F'|p — G — 0. Since G is torsion-free, this
map must factor through the quotient Fp of F|p, yielding a quotient Fp — G — 0.
At any generic point £ of D, the induced map F¢ — G¢ on stalks is an isomorphism,
since a surjection of invertible sheaves is an isomorphism. It follows that the kernel
K of Fp — G cannot be supported along a dimension 1 subscheme of D; since Fp is

torsion-free, this forces K = 0, whence the map Fp — G is an isomorphism. O
Definition 5.1.6. Let F' be a torsion-free coherent sheaf on C' of uniform rank r.

1. The degree of F is defined by deg F' := x(F) —rx(O¢).

2. More generally, if D C C is a subcurve, we define degp F := x(Fp) —rx(Op).

3. If C1,...,Cy are the irreducible components of C, the multidegree of F' is the tuple
(di,...,dy), where d; = d;(F') = deg¢, F.

We collect some more results on torsion-free sheaves on a connected reduced projec-

tive curve C that we will need later on in this thesis.

Lemma 5.1.7 ([48], Proposition 1 and Lemma 2). Let F' be a torsion-free uniform rank
1 sheaf on C.

1. F is simple if and only if there do not exist subcurves D, D’ C C such that D
and D’ share no common irreducible components, D U D' = C and such that the

canonical injection F' — Fp & Fpr is an isomorphism.

2. Suppose D, D’ are non-empty subcurves with DU D' = C, which share at least one

common irreducible component. If Fp and Fp: are both simple, then F is simple.

3. Suppose F' fits into an exact sequence

0 > F’ » » F 0,

where F' and F" are simple torsion-free sheaves, of uniform rank 1 along their
respective supports D and D' with C = D U D’'. Then F is simple if and only if

the sequence is not split.
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Lemma 5.1.8. Suppose D, D’ are subcurves of C with D, D’ sharing no common irre-
ducible components. Let F', F' be coherent sheaves supported on D, D’ respectively, with
F' torsion-free. Then Homg(F, F') = 0.

Proof. Tt suffices to show that Home,, (Fp, Fj) = 0 for all p € DN D'. Fixing p, any
homomorphism F,, — FIQ of O¢ p-modules must factor through M = F,/mp ,F,, since
mp, - Fy = 0. But mgy, - M = 0, so supp(M) C {m¢,} is O-dimensional or empty. As
F}, has depth 1 as an Oggp-module, this implies Home,, (M, F,) = 0. This proves the

lemma. O

Lemma 5.1.9. Let D, D’ be subcurves of C' such that D and D’ share no common irre-
ducible components. Let F, F' be torsion-free sheaves supported along D, D’ respectively.
Assume further that for each p € DN D', the point p € C is a locally planar singularity.
Then Ext?,(F, F") = 0.

Proof. We have HP(C,Ext},(F,F')) =0 for all p > 2 and ¢ > 0 as dimC' = 1. We also
have H'(C,Exts(F, F')) = 0; the latter cohomology group vanishes since Ext}(F, F)
is supported along the 0-dimensional scheme D N D’. Tt follows from the local-to-global

Ext spectral sequence
HP(C,Extl,(F, F')) = ExtL (F, F')
that ExtZ(F, F') = H(C, Ext%(F, F')). Tt thus suffices to show that

Ext(F, F), = Bxtd,, (Fp, Fy) =0

for all p € DND’. Since this is a local problem, without loss of generality we may assume
that D N D’ consists of a single singularity p. Let R = Ocp, M = F,, and N = F,. We
begin by working on Ext%(M, N).

Claim 1: There exists a Grothendieck spectral sequence
ES? = Exth,(Tor (M, Hompg(N, R)),w) = Ext}; (M, N).

To prove the claim, we apply [I14, Theorem 10.62] with A = M, B = Homp(N, R)
and C' = R, noting that as R is Gorenstein and N is maximal Cohen—Macaulay (the
latter is true since both the dimension and depth of IV are equal to 1 = dim R) then there
is a natural isomorphism N = Homp(B, R) (cf. [26, Theorem 3.3.10]). In order to apply
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this result, we require that for any finite projective (= free, since R is local) R-module
P, Extl(B®g P,R) = 0 for all i > 0. But B®pg P is maximal Cohen-Macaulay, so this
indeed is the case by Theorem 3.3.10 of loc. cit. As such we may apply [114, Theorem
10.62], which proves Claim 1.

Set N’ := Hompg(N, R). Each Torff(M, Homp(N, R)) is a torsion R-module, since it
is supported only at the point p, so Eg’q = 0 for all ¢ > 0. We also have F¥? = 0 for
all p > 2, since w has injective dimension equal to dim R = 1. As such, this spectral

sequence collapses, yielding an isomorphism
Ext%(M, N) = Exth(Torl(M, N'), R).

Claim 2: The R-module Torf*(M, N') is trivial.

By a result of Altman—Kleiman [78], an open neighbourhood of p € C admits a
closed immersion into an open neighbourhood of a smooth surface Y. In particular,
there exists a finite local ring homomorphism S := Oy, =+ R = O¢, from a Noetherian
regular local ring S of dimension 2. By [24, Section 2, Proposition 8] the S-modules M
and N’ are Cohen—Macaulay. It then follows from [121, Chapter V.B, Theorem 4] that

Tory (M, N') = 0. From the change-of-rings spectral sequence

Tor/(Tor; (M, R), N') = Tor}, (M, N')

pt+q

(cf. [114, Theorem 10.71]), the module Tory (M, N') surjects onto Torf(M, N'), whence
Tor{'(M, N') = 0. Consequently Ext,(M, N) = Ext},, (Fp, Fy) = 0, which finishes the

proof of the lemma. O

5.1.3 Rank 1 Torsion-Free Sheaves on Nodal Curves

The case of greatest interest in the literature is when C' is a nodal curve and when the
sheaves are torsion-free of uniform rank 1. The local structure of a torsion-free sheaf

over a node admits a simple description.

Proposition 5.1.10 ([122], Huitieéme Partie, Propositions 2 and 3). Let F' be a torsion-

free sheaf over a connected nodal curve C, and let p € C' be a node.

1. If p lies on a unique irreducible component of C, then there are unique integers
a,b such that
~ D @b

The rank of F,, along this component is equal to a + b.
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2. If p lies on two irreducible components Cv and Cy of C, then there are unique

integers a, b, c such that
~ mMPa Db e
Fy = OC,p b 001,10 @ OCz,p'
The multirank of F, along the components C1,Cs is equal to (a + b,a + c).

Let C be a connected nodal curve, and fix a subset S of the set of nodes of C. From

the pair (C, S), we obtain the following nodal curves:
(i) 55 denotes the partial normalisation of C along S, the curve obtained by normal-

ising only those nodes of C' which belong to S.

(ii) Cs denotes the partial blowu of C along S; this is the curve obtained from Cg
by inserting a copy E, of P! for each node p € S, with E, attached to the rest of
65 at the two points of Cs lying over p.
The curves C, Cs and 65 fit into the following diagram:
Cs < = Cs

/ (5.1.1)

Here vg is the partial normalisation map, tg is the evident inclusion and 7g is the exten-

sion of vg obtained by mapping each exceptional component F, onto the corresponding
node p € S.

Using the diagram , it is possible to describe torsion-free sheaves of uniform
rank 1 on C' in terms of invertible sheaves on the partial normalisations and the partial

blowups of C.

Proposition 5.1.11 (cf. [92], Proposition 1.14). Let S be a subset of the set of nodes of
C. Let TFg(C) be the set of all isomorphism classes of torsion-free sheaves F' of uniform
rank 1 on C with {p € C : F, is not free} = S. Let Pic(Cs)’ denote the subset of Pic(C)
consisting of all invertible sheaves whose restriction to each exceptional component of 65
has degree —1. The diagram induces a commutative diagram

*

Pic(Cs) s Pic(Cs)’

TFs(C)

R

2This is not a blowup in the usual sense, however the terminology is by now commonplace in the
literature.
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Moreover 1§ and (ms)« are surjective, and (vg)« is a bijection; an inverse is given by
sending F' € TFg(C) to the quotient of VEF by its torsion subsheaf. For any subcurve
D C C and any L € Pic(Cs), we have

degp(vs):L = degp L+ SN (D\ D),
where Dg = Vgl(D) c Cg is the partial normalisation of D along SND and D¢ = C'\ D.

Proof. As stated, the above consists of the first and third statements of [92] Proposition

1.14]; in turn, the first statement of loc. cit. follows from [5, Lemmas 1.5 and 1.9]. O

5.2 Stability Conditions for Torsion-Free Uniform Rank 1
Sheaves

5.2.1 Non-Separatedness of the Moduli of Torsion-Free Sheaves

Let C' be a reduced, connected, projective curve, with irreducible components C1, ..., Cj.
If the curve C is reducible, the moduli stack of all torsion-free sheaves on C of uniform

rank 1 fails to be separated.

Example 5.2.1. Let C be a curve with subcurves Dy and Dy with C' = D7 U Dy and
with D1, Do sharing no common irreducible components. Let L be an invertible sheaf
on C. Let FF = Lp, and G = ker(L — F); then F & G is a torsion-free sheaf on C' of
uniform rank 1, not isomorphic to L.

Let £ = L ®c C[t] be the invertible sheaf on C' x Al with constant fibre L, and let
£ be the coherent sheaf on C' x A! given by

E=Gae@Pt LcL
i>1
Both £ and & are flat over A!, since each of their associated points maps to the generic
point of Al and both £ and & restrict to L ®c C[t,t!] away from the origin 0 € Al
However, the fibre of £ over 0 is given by

E Got-Lot*-La---
t& 00t-GOt2-Ld---

& = ~FPaG2L =L

This exhibits non-separatedness of the moduli stack. W
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5.2.2 Polarisations on Reducible Curves

As with the case of forming schematic moduli spaces of coherent sheaves on projective
schemes, the solution to the lack of separatedness is to choose a stability condition and

restrict attention to those sheaves which satisfy the chosen stability condition.

Definition 5.2.2. A polarisation on C is a pair v = («, ¢) of ordered tuples of integers

a=(ay,...,ar) and ¢ = (¢1,...,¢), where each a; > 0.

Given a polarisation v = (a,¢) on C and a subcurve D C C, we denote ap =

>.c.cp @i and ¢p = Y o ~p ¢i. We also set vp = (ap, dp).

Definition 5.2.3. Let F' be a torsion-free sheaf on C' of uniform rank 1. Let v = (o, ¢)
be a polarisation on C. We say that F is v-stable (resp. v-semistable) if for all proper

non-empty subcurves D C C,

X(F) + ¢c < (resp. <) X(Fp) +¢p

5.2.1
pos o (5.2.1)

Remark. In Definition [5.2.3] in order to check for v-stability or v-semistability, it suf-
fices to restrict attention to subcurves D C C for which D and D¢ = C'\ D are both

connected.
Remark. Suppose C' is Gorenstein, with dualising sheaf we. By the adjunction formula
for Gorenstein curves (cf. [33] Lemma 1.12]), we have

degpwe =29p — 2+ kp = —2x(Op) + kp,

where gp is the arithmetic genus of D and where kp := |D N D€|. As such, Inequality
(5.2.1) may be rewritten as

degwc
2

deg%wc — ép — %D (5.2.2)

degp F > (>) Z—g <degF—

+ ¢c> +

Given invertible sheaves L and M on C with L ample, the pair (L, M) determines
a polarisation vy, y) by setting dege, L = ; and dege, M = ¢; for all i =1,..., k. All
polarisations v on C are of the form v = vy ) for such a pair (L, M). If v = v(p ap),
it follows from Lemma and [122 Septieme Partie, Corollaire 7] that a torsion-free
sheaf I on C' of uniform rank 1 is v = (o, ¢)-(semi)stable if and only if F'® M is Gieseker
(semi)stable with respect to the ample invertible sheaf L. In particular, if F' is v-stable

then F' is necessarily simple.
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Remark. Our definition of a polarisation on a curve C' differs to the definition commonly
used in the literature on compactified Jacobians (cf. [91, Definition 2.8]). According
to this latter definition, a polarisation on C' is an ordered tuple ¢ = (q1,...,qx) of
rational numbers, and a torsion-free rank 1 sheaf F' on C' of uniform rank 1 and of Euler
characteristic x(F) = Zle ¢i is said to be g-(semi)stable if x(Fp) > (>) ¢p for all
non-empty proper subcurves D C C. We elect to work with polarisations as defined
in Definition [5.2.3] as in Chapter [§| we study Harder—Narasimhan filtrations of unstable
torsion-free rank 1 sheaves on curves; this requires working with stability conditions for
sheaves on C for which the Euler characteristic is not assumed to take a fixed value.

Given a polarisation v = («, ¢), define ¢ = ¢, by setting

k
o
= |x+) 6| =— & (5.2.3)
j=1 D=1
for each i = 1,... k. It is easily seen that a torsion-free sheaf F' of uniform rank 1 with

X(F) = x is q,-(semi)stable if and only if F' is v-(semi)stable. Conversely, given ¢ with
S g = x, it is possible to find a polarisation v = (a, ¢) for which (5.2.3) holds (see
for instance [30, Fact 2.8]), so that ¢ = ¢,; in general the polarisation v is not uniquely

determined.

5.2.3 Multi-Gieseker Stability for Curves

As a slight digression from the theory of compactified Jacobians, we briefly discuss how
the notion of multi-Gieseker stability (cf. Section applies in the context of imposing
stability conditions on torsion-free sheaves on reduced connected projective curves C, in
advance of Chapter[6] Indeed, in this setting multi-Gieseker stability reduces to ordinary
Gieseker stability.

Fix a stability condition o = (L, 01, ...,05) for coherent sheaves on C' as in Section
and suppose F is a torsion-free coherent sheaf on C' = Cj U --- U Cj of multirank
(r1,...,7%). By [122] Septieme Partie, Corollaire 7], we have

s s s k
PP(E )= oix(X,E® L) =x(E)Y oi+tY oi|Y rjdego, Li | . (5.2.4)
7j=1 =1 =1 7j=1
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Consequently FE is o-(semi)stable if and only if for all non-zero proper subsheaves F' C E

one has
X(E)
ij Ol degcj L;

(5.2.5)

An immediate consequence of Inequality [5.2.5]is that the stability condition is unchanged
if each L; is replaced by L, where p is a positive integer. This allows us to extend the
notion of o-stability (in particular, Gieseker stability) to the case where the L; are
ample rational invertible sheaves. Moreover, o-(semi)stability coincides with Gieseker
(semi)stability with respect to the Q-ample invertible sheaf &), L7".

Secondly, since the collection of Gieseker stable sheaves on the curve C' is bounded,

the stability condition o is always bounded.

Remark. Equation implies that fixing the genus g of C and the rank r and the
degree d of a uniform rank torsion-free sheaf E on C' fixes the topological type Tiop(E)
of E with respect to any finite collection Lq,...,Ls of ample invertible sheaves on C.
Conversely, given the genus g, then the degree and rank of a torsion-free coherent sheaf

E of uniform rank can be recovered from the topological type.

When C'is Gorenstein and when E is of uniform rank 1, the condition of o-stability
may be rephrased in terms of the subcurves D of C, exactly as with Inequality (5.2.2);

the sheaf E is o-(semi)stable if and only if for all connected proper subcurves D C C,

> oidegp L

degp E > (>) S oy deg Ly

(degE— degwo> N degpwec  kp

2 2 2

5.3 Existence and Properties of Compactified Jacobians
5.3.1 Fine Compactified Jacobians

Given a choice of polarisation g on a reduced, connected, projective curve C', we now
introduce J35°°(v), the fine compactified Jacobian parametrising v-semistable torsion-
free sheaves on C of Euler characteristic x. In fact we will concern ourselves with a
slightly more general situation, where we have a family of curves over a base S.

Let f: C — S be a flat projective morphism over a locally Noetherian base scheme

S whose geometric fibres are connected, reduced curves.

Definition 5.3.1. We define jC/S to be the étale sheafification of the functor IZ‘/S :

Sch%p — Set which associates to an S-scheme T the set of equivalence classes of T-flat,
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T-finitely presented coherent sheaves F' on Cr = C xXgT whose fibres are simple torsion-
free sheaves of uniform rank 1, where F, F' are declared to be equivalent if there exists

an invertible sheaf M on T with F = F' @ f7.M.

Remark. As a consequence of [9, Corollary 5.3], the fibrewise simplicity of F' is equivalent

to the condition that for each T-scheme 7", the natural morphism
OT' — (fT/)*HomCT/ (FT’7 FT’)
is an isomorphism.

Proposition 5.3.2 ([9], Theorem 7.4 (see also [91], Fact 2.2)). J¢g is represented by an
algebraic space locally of finite type over S, also denoted jc/s. Moreover, there exists an

open sub-algebraic space Jc/s C jc/s parametrising those sheaves which are invertible.

Remark. Let Cohscif/né) TFRL 16 the open substack of the stack of coherent sheaves Coh¢/g
parametrising all flat, finitely presented families of simple torsion-free coherent sheaves

on C' of uniform rank 1. Then there is an isomorphism
jC/S & Cohsci’r/nbg,TFRl i Gm

arising from the universal property of rigidification. In particular, Jo /s 1s the coarse

moduli space of the stack Cohzi,rfg’TFRl
In many cases, including when S = Spec C, the algebraic space J /s is a schematic

fine moduli space.

Proposition 5.3.3. Assume there are sections o1,...,0, : S — C of f, each fac-
toring through the S-smooth locus of C, such that for each geometric point s € S,
each irreducible component of Cs is geometrically integral and contains o;(s) for some

1=1,...,n.

1. (Altman—Kleiman) The étale sheafification and the Zariski sheafification of j*c/s
coincide. Additionally, there exists a universal sheaf on the fibre product C’ngc/s,
which, up to isomorphism, is uniquely determined up to the pullback of an invertible

sheaf on jc/s.
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2. (Esteves) jc/s is a scheme. In particular, if S = SpecC then Jo is always a

scheme.

In general, there exists an étale surjection S’ — S such that the base change

Joys x5 8" is a scheme.
Proof. See [8, Theorem 3.4] and [48, Theorem B and Corollary 52]. O

In the case where S = Spec C, by work of Melo-Rapagnetta—Viviani [91] it is known
that if the curve C has locally planar singularities then the scheme J~ has many inter-

esting geometric properties.

Proposition 5.3.4 ([91], Theorem 2.3). Suppose C' is a connected reduced curve over

Spec C with locally planar singularities. Then:
1. Jo is a reduced scheme, with at worst lci singularities; and
2. Jc is dense in Jo, and coincides with the smooth locus of J .

We return to working with the locally Noetherian base scheme S. Since Euler char-

acteristics are constant in flat families, there is a decomposition

jC/S = |_| j>cc*/s

XEZ

of Jo /s into open and closed sub-algebraic spaces, where jé /s Darametrises those sheaves

of Euler characteristic .

Definition 5.3.5. Pick invertible sheaves L, M on C, with L relatively ample, and fix
X € Z. Let jé’/(g)s(L,M) be the open sub-algebraic space of jé/s parametrising those
sheaves F' such that FF'® M is fibrewise Gieseker (semi)stable with respect to L.

Proposition 5.3.6 ([48], Theorems A and C). The algebraic space jé’/s;(L, M) is of

finite type over S. Moreover:
1. jév’/sg(L, M) is universally closed over S, and

2. jé’;S(L, M) is separated over S. In addition, if S is excellent (e.g. if S is locally
of finite type) then jé’/ss(L, M) is locally quasi-projective over S.
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3. In particular, if S is excellent and if 7%’7;@, M) = jé’;S(L, M) then jé’/sg(l}, M)

is locally projective over S.

Remark. Esteves loc. cit. considers stability conditions on C/S defined in terms of
locally free sheaves on C; stability with respect to (L, M) can be realised as a special
case of stability with respect to an Esteves polarisation. For the purposes of this thesis,

it is enough to consider stability conditions arising from twisted Gieseker stability, as in

Definition £.3.5

Suppose S = SpecC; let v = v, ) be the corresponding polarisation on C, and
write Té’(s)s(u) = jé’/(ss);ec(c(l), M). The scheme J5*°(v) is known as a fine compactified
Jacobian. The open subscheme jé’s(y) is quasi-projective; if all v-semistable simple
sheaves on C' of Euler characteristic x are v-stable, so that J5°(v) = J5°°(v), then

jé’s(y) is a proper quasi-projective scheme, whence a projective scheme.

5.3.2 Coarse Compactified Jacobians

Let C be a reduced connected projective curve. Given a polarisation v on C, one has
the so-called coarse compactified Jacobian UXN**(v). This is a projective scheme which
corepresents the moduli functor associating to each scheme T the set of isomorphism
classes T-flat coherent sheaves on C'x T whose fibres are v-semistable torsion-free sheaves
of uniform rank 1 with Euler characteristic x; that UY**(v) corepresents this moduli
functor implies the existence of a natural morphism p : J5° (1) — UX*(v). There is
an open subscheme UN®(v) C UX"(v) parametrising those sheaves which are v-stable.

If v = v apy then UN™(v) is isomorphic (via twisting through by M) to the good
moduli space of the stack Coh (L, x) of L-Gieseker semistable, uniform rank 1 coherent
sheaves on C' of Euler characteristic x. In particular, UX"*(v) admits a construction
by GIT (cf. Section [4.2). A separate GIT construction of U™ (v) also exists, due to
Seshadri (cf. [122], Septieme Partie, Chapitre III]).

From the results of Seshadri loc. cit. and Esteves [48, Section 8], the natural mor-
phism p : 57 (v) — U (v) is surjective and is universal for morphisms from J&” (v)
to separated schemes; the fibres of p are given by S-equivalence classes of v-semistable
sheaves. The restriction of p to J5°(v) is an isomorphism J&° (v) = UY*(v); in particu-
lar, Ué’s(y) is a fine moduli space of simple torsion-free uniform rank 1 coherent sheaves
on C.
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Chapter 6

GIT Constructions of
Compactified Universal Jacobians
over Stacks of Stable Maps

6.1 Introduction

This chapter studies compactified universal Jacobians over the stack of stable maps
Mg, (X, B), along with their analogues involving semistable torsion-free sheaves of uni-
form rank r > 1, where the stability condition is defined using an ample invertible sheaf
L on the universal curve over ﬂg,n(X , ). The main result is that these stacks admit
projective good moduli spaces which are GIT quotients, and that variation of GIT ap-
plies when the sheaf £ is varied. Additionally we prove that, when the base is taken to
be mg,n with g > 4, the good moduli space of a compactified universal Jacobian has
canonical singularities.

Significant recent attention has been given to the study of compactified universal
Jacobians over the stack My, of n-pointed Deligne-Mumford stable curves of genus
g (21 H 22 28] [29] [30] [31] [46] [64] [71] [72] [87] [88] [89] [90] [93] [106] [107]).
These are compactifications of the stack of all invertible sheaves of a given degree over
smooth marked curves whose boundary objects consist of uniform rank one torsion-free
sheaves over singular marked stable curvesE] The fibres of the forgetful morphism from
a compactified universal Jacobian to Mg,n are given by moduli stacks of torsion-free

sheaves on nodal curves, including the compactified Jacobians introduced in Chapter

1Strictly speaking, the condition that the sheaves in the boundary are simple is also usually imposed,
however we do not make this requirement in this chapter.
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Compactified universal Jacobians have been successfully used to construct extensions of
the universal Abel map from M, , to M, ,, which in turn provides one way of defining
the double ramification cycle on M,,, (for more details on this connection we refer the
reader to [3] and the references therein).

In order to compactify the stack of all invertible sheaves (or more generally all slope
semistable locally free sheaves) over marked smooth curves, in practice a stability con-
dition is first chosen. One way of doing this is to fix a relatively ample invertible sheaf
L on the universal curve over M, , and then require that all torsion-free sheaves in
the boundary are Gieseker semistable with respect to £. Melo in [89] proved that if
all L£-semistable sheaves are L-stable then the resulting compactified universal Jacobian
admits a projective coarse moduli space. Melo’s argument makes use of the criterion of
Kollar [79] to prove that the coarse moduli spaces are projective, and does not address
the case where there are strictly £-semistable sheaves.

If n = 0 and if £ is the dualising sheaf of the universal family, the resulting compact-
ified universal Jacobian is also known to admit a projective good moduli space (even
though there are strictly semistable sheaves), known as the universal Picard variety; at
least two prior GIT constructions of this space are known, the first due to Caporaso [27]
and the second due to Pandharipande [108] (Pandharipande deals with the case where
the sheaves are allowed to have any uniform rank r, not just » = 1). The constructions of
Caporaso and Pandharipande rely on the GIT construction of Gieseker [54] of the coarse
moduli space Mg of the stack Mg of genus g Deligne-Mumford stable curves. In place of
Gieseker’s construction, we use Baldwin and Swinarski’s GIT construction of the coarse
moduli space M, (X, ). We also use the GIT construction of Greb, Ross and Toma [55]
[56] of moduli spaces of multi-Gieseker semistable sheaves on a projective scheme, which
allows us to deal with multiple stability conditions at the same time. As a special case
of our approach, we provide a new GIT construction of the Caporaso—Pandharipande
moduli space.

As an application of our GIT construction, we use the methods of [55] and [50]
to establish the existence of rational linear wall-chamber decompositions on positive-
dimensional spaces of stability conditions, with the property that as the stability con-
dition varies within the interior of the chamber, the resulting stack remains unchanged,

and that crossing a wall corresponds to modifying the good moduli space by a Thaddeus
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flip through a moduli space corresponding to a stability condition on that wall (cf. Def-
inition . Unlike the wall-chamber decomposition described by Kass and Pagani in
[72] (in the case where the sheaves are all of uniform rank one and where the base stack
is M), the wall-chamber decompositions described in this chapter rely on auxiliary
choices of relatively ample invertible sheaves over the universal curve over the base stack
M., (X, B), and as such the decompositions are not intrinsic to the stack Mg, (X, B).

We also extend some of the results of Casalaina-Martin—Kass—Viviani [30] [31] con-
cerning the birational geometry of the Caporaso-Pandharipande moduli space. In par-
ticular, we prove that, when working over the stack ﬂg’n of stable curves, if ¢ > 4 and
if n is any non-negative integer then the good moduli space of a compactified universal
Jacobian over M, has canonical singularities for any choice of stability condition, ex-
tending the result of Casalaina-Martin—Kass—Viviani that the Caporaso—Pandharipande

space has canonical singularities when g > 4.

Summary of Results

Let M, (X, 8) be the stack of genus g stable maps with n marked points to a projective
variety X of class /3, and let M, ,(X, 3) be the open substack where the source curves are
non-singular. Here and throughout this chapter we assume that the discrete invariants
are chosen so that the stack Mg, (X, ) is non-empty.

Given a relatively ample Q-invertible sheaf £ on the universal curve Uﬂg,n(X ,B)
over the stack M, (X, 3), define 7an7d7,,(X, B)(L) to be the Gy,-rigidification of the
stack parametrising flat and proper families of degree d, uniform rank r, torsion-free co-
herent sheaves over the underlying nodal curves C of stable maps (C, z, f) in M, (X, B)
which are fibrewise Gieseker semistable with respect to £ (cf. Section[6.3)). Fix relatively
ample Q-invertible sheaves L1, ..., Ly on the universal curve, and set ¥ := (Q=°)*\ {0}.
For each 0 = (01,...,0%) € EE| form the Q-invertible sheaf £, = @), L7", and consider
the resulting stacks over Mg (X, 3):

7(0) = 7Zin,d,'r (Xa ﬁ) ([’U)‘

We say o € X is positive if each o; > 0, and degenerate otherwise. Next, fix a finite
subset & C X. We may now state our main result, which follows from Corollary
Theorem and Proposition [6.5.7

2Since Ao defines the same stability condition as ¢ for each positive rational number X, we are free
to assume that Zai = 1 as necessary.

76



Theorem 6.1.1. There exists a quasi-projective scheme Z, = Z, & and a reductive linear
algebraic group K acting on Z,, such that for each o € &, there is a K-invariant open
subscheme Z2~%% C Z,, obtained as a (relative) GIT semistable locus for an appropriate

linearisation determined by o, which admits a good quotient ZZ~5° || K. Moreover:
1. if o is positive, then J (o) is isomorphic to the quotient stack [Z7~%°/K];

2. if o is either positive or degenerate, the stack J (o) is universally closed and admits
a good moduli space J(o) = jzfn,d,r(X) B)(Ls), which is isomorphic to the good
quotient Z2—%* | K, and admits a natural morphism to the coarse moduli space

Mgn(X,B) of Mgn(X,B); and

3. the fibre of J(o) over [(C,z, f)] € Myn(X, ) is given by the geometric quotient of
the moduli space of degree d, uniform rank r, slope-semistable locally free sheaves

on C by the action of the group of automorphisms Aut(C,z, f) of the stable map
(C.z, f).

Remark. In the case where o is degenerate, it is still possible to use Theorem to
exhibit J (o) as a quotient stack of the form [(Z.)” ~** /K'] for an appropriate subgroup
K' C K, by first omitting the invertible sheaves £; for which the corresponding entry

o; = 0, letting o’ be the vector obtained by omitting all zero entries from o; see the
remark following Corollary

As an application of the construction underlining Theorem [6.1.1] we prove, by adapt-
ing the arguments given in [56], the following result, which concerns what happens at
the level of the good moduli spaces J(o) as the stability condition o € ¥ is allowed to
vary, after the Q-invertible sheaves L1, ..., L have been fixed. This result follows from
Proposition/Definition and Theorem m

Theorem 6.1.2. The set ¥ = {0’ eX: Zle o; = 1} is cut into chambers by a finite
number of rational linear walls such that the moduli stack J (o) is unchanged as o
varies in the interior of a chamber. For any o € Y, we have that all L,-semistable
sheaves are L,-stable (and hence the corresponding stack J (o) is Deligne—Mumford) if

and only if o does not lie in any wall. Given o1, o2 € ¥/, the moduli spaces J(o;)

3We allow for the possibility that all of ¥’ is a wall; this would occur if for each of the stability
conditions o € ¥’, there exists a strictly semistable sheaf.
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(i =1,2) are related by a finite number of Thaddeus flips through good moduli spaces of
the form J(o'), o' € ¥'.

The final main result of this chapter is the following extension of [31, Theorem A]
to the situation of studying the singularities of the good moduli space of a compactified

universal Jacobian over ﬂg,n where n > 0; this result is Theorem m

Theorem 6.1.3. Suppose X = SpecC and 8 = 0, so that we are considering compact-
ified universal Jacobians over the stack Mgy,. If g > 4, then each of the good moduli

spaces J(o) has canonical singularities.

Comparison with Other Work

In the case where r = 1 the stacks 7Z7Sn7d71(X ,B)(L) are examples of compactified uni-
versal Jacobians. The paper [89] treats these stacks in the case where X is a point and
Mg,n(X ,B) is replaced with an open substack of the stack of marked reduced curves.
When this substack is taken to be My ,,, Melo considers stability conditions defined with
respect to a locally free sheaf on the universal curve over My ,,, and for explicit polar-
isations determines functoriality properties of the corresponding compactified universal
Jacobians, such as compatibility with forgetful and clutching morphisms.

Meanwhile, Kass and Pagani [72] study stability conditions defined in terms of suit-
able functions ¢ defined on the space of dual graphs of stable curves in Mg,n, generalising
the approach of Oda and Seshadri [105], and describe an explicit wall-chamber decom-
position on the space of stability conditions, which in their notation is denoted Vg‘fn,
where d is the degree of the uniform rank 1 torsion-free sheaves under consideration.
We note that Kass—Pagani and Melo study the same family of stability conditions (cf.
[72] Remark 4.6), and that each of the Kass—Pagani stability conditions can be realised
as a universal (twisted) Gieseker stability condition with respect to a relatively ample
invertible sheaf on the universal curve over Mg, (cf. Corollary 4.3 of loc. cit.), and
so, by the final remark of Section [6.3.2] are covered by the results of this chapter. Kass
and Pagani also successfully characterise for any ¢ € Vgcfn the locus of indeterminacy of
the extension M, --» jgcfn(gb) (where jgcfn(gb) denotes Kass and Pagani’s compactified

universal Jacobian) of the Abel-Jacobi map

arg: (C,z) — wak(dlxl + -+ dpzy), (C,z) € Mgp,
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and in particular describe all stability conditions ¢ for which ay 4 extends to My ,.

The main difference between the decomposition of V;ln and the decompositions de-
scribed by Theorem [6.1.2]is that the latter decompositions depend on the choice of the
Q-invertible sheaves L1, ..., Ly, whereas the decomposition of Vgcfn only depends on the
discrete invariants g, n and d. It would be interesting to determine how the wall-chamber
decompositions relate to each other (given explicit Q-invertible sheaves L1, ..., L), as
well as whether the decomposition of [72] can be extended to higher rank sheaves and
to working over M (X, 3).

It is possible to construct the good moduli space of 7;fn,d,T(X ,B)(L) via GIT in
a manner which closely follows the construction of Pandharipande [I0§], by applying
relative GIT to an appropriate Quot scheme over the parameter space considered by
Baldwin-Swinarski [I5] (in place of the parameter space considered by Gieseker [54]),
making use of the results of Simpson [124] concerning GIT constructions of relative mod-
uli spaces of Gieseker semistable sheaves (see Proposition . Indeed, it is this alter-
native construction that is considered when proving Theorem [6.1.3] We remark that the
difficult step in Pandharipande’s construction is relating GIT and moduli (semi)stability
for the fibrewise action on the relative Quot scheme; once this has been established, the
rest of Pandharipande’s construction is essentially formal relative GIT. As observed by
Pandharipande himself (cf. [L08, Page 433]), the work of Simpson can instead be used
to fully solve the fibrewise GIT problem.

The disadvantage of this approach, as compared with that used to prove Theorem
is that it is not possible to implement VGIT, since different choices of linearisations
L necessitate working with different relative Quot schemes.

For higher ranks, there are alternative compactifications of the moduli stack of slope-
semistable locally free sheaves over the moduli stack of smooth curves, which instead
involve parametrising locally free sheaves on semistable curves instead of semistable
torsion-free sheaves on stable curves. Examples of such compactifications have been
constructed and studied by Fringuelli [50], Schmitt [117] and Teixidor i Bigas [125]. We

do not consider these compactifications in this chapter.

Notation and Conventions

In addition to the conventions specified in the introduction to this thesis, in this chapter

we adopt the following notation and conventions:
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e Whenever we work with the stack ﬂg,n, we implicitly assume that 2g —2+n > 0,
so that M, ,, is non-empty and Deligne-Mumford.

e The dual graph of a connected nodal curve C' is the graph I'c whose vertex set
V(T¢) is the set of irreducible components of C, labelled by arithmetic genera,
and whose edges are given by nodes; for each node p € C' incident to components
Cy, and C,,, there is a corresponding edge e € E(I'¢) incident to v; and va (note
that we allow for the possibility that v; = vy, which corresponds to node internal

to the component C,,).

e We denote by Artc the category of Artinian local C-algebras with residue field C.
Given R € Artc, we denote by Spf R the functor

Artc — Set, A +— Homy (R, A).

o If F': Artc — Set is a functor, we define the tangent space of F' to be TF =
F(C[e]), where Cle] = C[t]/t? is the ring of dual numbers over C. The vector
space dual of TF is denoted TVEF. We employ standard deformation-theoretic
terminology (see for instance [63] and [120]). In particular, we say that R € Artc
is a miniversal deformation ring for F' if there exists a formally smooth natural
transformation Spf R — F' which is an isomorphism on tangent spaces; such a ring

R is unique up to (non-canonical) isomorphism.

e Let X be a normal variety. The singularities of X are said to be rational if for all

resolutions of singularities f : Y — X, R'f,Oy = 0 for all i > 0.

e Let X be a normal variety. Assuming that the canonical divisor Kx is Q-Cartier,
if f:Y — X is a resolution of singularities with exceptional prime divisors F;, we

may write Ky = f*Kx + ), a;E;, where the coefficients a; € Q.

The singularities of X are said to be canonical (resp. terminal) if the canonical
divisor Kx of X is Q-Cartier and if for all resolutions of singularities f : Y — X,

the coefficients a; are always non-negative (resp. positive).

Remark. Sections to (inclusive) of this chapter are taken from the preprint [37].
After this work was originally submitted to aryiv, Pagani and Tommasi [I07] proved

that, provided one first imposes the additional constraint that all semistable sheaves are
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stable, the only Deligne-Mumford compactified universal Jacobian over M in degree d
is the stack corresponding to the Caporaso—Pandharipande moduli space, i.e. when the
dualising sheaf of the universal curve over My is used to define the stability condition.

This exists as a Deligne-Mumford stack if and only if ged(2g — 2,d — g+ 1) = 1.

6.2 Prestable Curves and Stable Maps

We begin by recalling the definition of a prestable curve and of a stable map to a

projective variety X.

6.2.1 Prestable and Stable Curves

Let g,n be non-negative integers.

Definition 6.2.1. An n-marked prestable curve (C,z) = (C;z1,...,2,) of genus g
consists of a connected, reduced, projective nodal curve C' of arithmetic genus g together
with n ordered marked points x; € C, such that the markings x; are distinct and lie in
the non-singular locus of C.

A marked prestable curve (C,x) is said to be stable if any of the following equivalent

conditions hold:
1. (C,z) has no infinitesimal automorphisms.

2. The invertible sheaf we(x1 + -+ + ) is ample, where we is the dualising sheaf of
C.

3. FEach genus 1 component of C has at least one special point, and each genus 0
component of C' has at least three special points; here a special point is a marked

point or a node.
The notion of a family of prestable curves is given as follows.

Definition 6.2.2. A family of n-marked prestable curves of genus g parametrised by a
scheme S is a flat and proper morphism w : C — S of finite presentation, together with n
sections o1,...,0, of w, such that for each geometric point s € S, (Cs;01(8),...,0n(s))

1s an n-marked prestable curve of genus g.
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It is well-known (see for instance [59]) that there exists an algebraic stack 9, ., of
finite presentation and with quasi-compact and separated diagonal, whose groupoid of S-
points is the groupoid of all families of n-marked prestable curves of genus g parametrised

by the scheme S.

6.2.2 Stable Maps

Let X be a projective variety. Following [17], a curve class on X is an element of the

semigroup
Hy(X,Z)+ = {B € Homy(Pic X,Z) : B(L) > 0 for all ample L}.

If f:C — X is a morphism from a prestable curve C', the locally constant function
L +— deg f*L on Pic X is denoted as f,[C] € Ha(X,Z).
Let 5 € Ho(X,Z)4 be a fixed curve class, let g,n be non-negative integers.

Definition 6.2.3. An n-marked stable map (C,z, f) = (C;zy1,...,xn;f : C = X) of
genus g and curve class 8 consists of a prestable curve (C,x) together with a morphism
of schemes f : C — X with f.[C] = B, satisfying any of the following (equivalent)

conditions:

1. (C,z, f) has no infinitesimal automorphisms, where an automorphism of (C,z, f)

is an automorphism o of C which fixes the marked points ©; € C and satisfies

foa=f.

2. If X C P is a fizred embedding of X inside a projective space, then the invertible
sheaf wo(xy + -+ ) @ f*(Op(3)|x) is ample.

3. Fach genus 1 component of C' mapped by f to a point has at least one special point,
and each genus 0 component of C mapped by f to a point has at least three special

points; here a special point is a marked point or a node.

A family of n-marked stable maps to X of genus g and curve class B parametrised by a
scheme S consists of a family of n-marked genus g prestable curves (C — S;o1,...,05)
and a morphism of schemes f : C — X, such that for each geometric point s € S,

(Cs;01(8), ..., on(8); fs : Cs = X) is a stable map of curve class 3.
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It is a standard result (see for instance Theorem 3.14 of loc. cit.) that there exists a
proper Deligne-Mumford stack Mgm(X , ), whose groupoid of S-points is the groupoid
of all families of n-marked stable maps of genus g parametrised by the scheme S. There
is a distinguished open substack M, (X, 5) whose objects are given by stable maps
whose source curve C' is non-singular. It is also well known that M, (X, 3) admits a
projective coarse moduli space Mg,n(X, B). If X is a point then a stable map to X is the
same as a marked stable curve, that is Mg,n(pt, 0) = Mg,n- The stack ngn is smooth
and irreducible, and is of dimension 3g — 3 + n.

As explained in [16], if X is smooth then there exists a natural perfect relative

obstruction theory

B8y = B M) (FITx) = Lo gy o, o (6.2.1)

where IL* denotes the relative cotangent complex. This gives rise to a virtual fundamental

class [My (X, B)]'" of virtual dimension

vdim(My (X, B)) = /561(TX) + (dim X —3)(1 —g) +n.

Remark. 1f we fix a closed embedding i : X < P® such that i3 = d'[{], where [¢] €
Ho (P, Z) is the class of a line, then a necessary condition for non-singular stable maps

to exist is 29 — 2 +n + 3d’ > 0.

6.3 Stacks of Semistable Sheaves over Stable Maps

In this section, we introduce the stacks 7;’sn’d’T(X, B)(L) which are the main focus of

this chapter, and explore a few of their basic properties.

6.3.1 The Stack of Torsion-Free Sheaves over M, (X, )

Let X be a projective variety and let 8 € Hy(X,Z)+ be a curve class. Fix integers
g,n,d,r, with g,n > 0, » > 1 and for which the open substack M, ,(X, /) is non-
empty. Since there exists an (algebraic) stack of all uniform rank r, degree d, torsion-free
coherent sheaves over any family of prestable curves, by [32, Corollary 13] there exists
a stack M, 4, of n-marked, genus g prestable curves with uniform rank r, degree d,

torsion-free coherent sheaves.
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Le SITI;%W = My n.dr /| G, denote the G,,-rigidification with respect to the

central Gy, in the automorphism groups of the sheaves in M , 4. Let ms;’ffiﬁg be the
rig

gomador parametrising those objects whose underlying coherent sheaf

open substack of 9t

is (fibrewise) simple. Set
7g,n,d,7’ (X) ﬂ) = ﬂg,n(‘)(a ﬁ) Xmgm mzif%de

and
721;2};,7‘()(7 5) = ﬂ.(]7"1()(7 IB) Xgﬁg,n m‘zlj:],l’pd:l:g'
The stack 7g7n7d7r(X, B) is the stack associated to the category fibred in groupoids

T gm.dr (X, B)P' whose fibre over a scheme S consists of all objects
(m:C = S;01,...,0n;f:C = X, F),

where (7 : C = S;01,...,0n; f : C = X) € Myn(X,8)(S) is a family of stable maps
parametrised by S and where F' is a (S-flat, S-finitely presented) family of torsion-free
coherent sheaves over m : C — S, of relative degree d and uniform rank r; morphisms
between objects (7 : C — S;01,...,0n;f : C = X;F) and (7' : C' = S;0,...,00; -

C’" — X; F’) are given by Cartesian diagrams
c—2L ¢

]

r\ (6.3.1)

S——F S’
which are compatible with the sections o; and o}, together with an equivalence class
of isomorphisms F = §*F’ @ n*M (for some M € PicS); isomorphisms ; : F =

7F' @ m*M; and ¢y : F = §*F' @ 7* M, are equivalent if there exists an isomorphism
n: My = M, such that the diagram

g F @ 7 M,

%

Ia id®f*n

T

G F @ 7 My

4The procedure of rigidification, as described in [1], is also valid for stacks which aren’t necessarily
algebraic.
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commutes. If
7acg,n,d,r(X7 B) = ﬂg,n(Xa B) X Mgn.dr

(resp. 7%;11:11% (X, 3)) is the stack whose sections coincide with those of J g 4., (X, 5)

—=simp

(resp. J g, p.a.-(X,B)) and whose morphisms are given by diagrams together with
isomorphisms F = g*F’, then T gndr(X, B) is the G, -rigidification of Jacg 4., (X, B3).
The stack Jgna,r(X,B) admits a universal curve and a universal morphism to X, ob-
tained by pulling back the universal family over M, (X, 8). The stack 7an,n,d,r (X,05)
admits a universal sheaf over this universal curve.

The stack Jyn.d-(X,3) admits natural morphisms to the stacks M, , (X, 3) and

Dﬁ;gn 4> Obtained by forgetting respectively the sheaves and the morphisms to X.
—simp

Proposition 6.3.1. The stack J , , 4.,

(X, B) is Deligne—Mumford and the natural for-
getful morphism to Mg, (X, ) is representable and locally of finite presentation. If X

—simp

is smooth then any open Deligne—Mumford substack of J, , 4,(X,B) admits a natural

simp,rig

perfect relative obstruction theory over imgyw .

Proof. We first show that the stack imjsz’fg is algebraic and locally of finite presentation
over M, ,. Consider a morphism S — M, ,,, where S is a scheme, and let

L simp,rig
Mg = S)ﬁgm,dm Xy -

If f:C — S is the family of prestable curves associated to S — 9, , then Mg is
equivalent to the étale sheafification of the functor assigning to an S-scheme T the set
of T-flat, T-finitely presented, simple, uniform rank r, degree d, torsion-free coherent
sheaves over Cp. By [9, Theorem 7.4], Mg is an algebraic space which is locally finitely

presented over S, and so the natural morphism mzlil%’?g — My, is representable and

simp,rig . .
is algebraic.
g, 183 gebraic
imp

Base-changing to M (X, 3) shows that the natural morphism c : ﬁ’n?d’r(X, B) —
MW(X ,B) is also representable and locally of finite presentation. As ﬂgm(X ,B) is

locally of finite presentation. As 9, , is algebraic, it follows that 9T

—=simp

Deligne-Mumford, the same is therefore true for J, ,, 4.(X, 8).
In the case where X is smooth, the pullback of the perfect relative obstruction theory

(6.2.1) along ¢ defines a perfect relative obstruction theory

Elsim : iy e — *EL — Lisim f f 632
T g, (X,B8) /2P TE € My (X.8)/,n T g, (X,8) /P18 ( )
which restricts to give a perfect relative obstruction theory for any open Deligne—
Mumford substack of 7;1257T(X ,B). O
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Remark. As 7acg’n,d,T(X,ﬁ) is a Gy,-gerbe over the rigidified stack 7g7n’d,r(X, B), it

follows from Proposition that the stack 7@05;1:;% (X, B) is also algebraic.

6.3.2 Substacks Defined by Polarisations

Let my : UMy (X, 8) = Myn(X,B) be the universal family over M, ,,(X, ), and fix
a relatively ample Q-invertible sheaf £ on the universal curve UM, (X, ). For any
family of coherent sheaves F' over a family of maps (7 : C — S;o1,...,04;f : C — X)
corresponding to a morphism S — ﬂg,m by pulling back £ we obtain a relatively ample
Q-invertible sheaf Lg over C.

Definition 6.3.2. We say F' is L-(semi)stable if for each geometric point s € S, the
sheaf Fs is Gieseker (semi)stable with respect to the ample Q-invertible sheaf Ls (cf.

paragraph after Inequality .

The conditions of being stable/semistable are both open in flat families, so there are

open substacks
Tacl*, (X,8)(£) C Tacynar(X,5) and Ty (X, 8)(L) C Tgmar(X, )

parametrising objects whose sheaves are £-(semi)stable. As Gieseker stable sheaves are

always simple, we have open immersions

—=simp

7ac;,n,d,r (X7 5) (E) - 7aczi;1}()1,r (X7 /8) and 7;,n,d,r (Xv /8> (‘C) - jg,n,d,r <X7 5)

Applying Proposition the stack 7(102’”7 dir (X, B)(L) is algebraic, and the rigidified

stack 7;’n’d’T(X ,B)(L) is Deligne-Mumford and admits a perfect relative obstruction

simp,rig
gn,d,r *

If (C,z, f) is a stable map in M, ,,(X, 8) with C irreducible, Inequality [5.2.5 reduces
to the usual inequality between the Mumford slopes u(E) = deg(E)/rk(E). If C is

theory over I

additionally non-singular then all torsion-free sheaves on C' are locally free. This implies
that 7;fn7d7r(X ,B)(L) contains all slope semistable locally free sheaves over stable maps
whose source curve is non-singular. In particular, if M, (X, ) is non-empty then the
stack 7an,d,r (X, B)(L) is also non-empty.

Remark. It follows from Inequality that replacing £ with a positive integral power
of £ does not alter the stability condition. As such, we are free to assume as and when

necessary that £ is a genuine relatively (very) ample invertible sheaf.
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Remark. Proposition 1| does not address the issue as to whether J acy’, 4. (X, B)(L)
and T, gm.dr(X; B)(L) are algebraic in general. The algebraicity of these stacks will follow

as a consequence of Theorem [6.5.5

Remark. Given an invertible sheaf V' on the universal curve UM, (X, 3), one may con-
sider the stacks Jac X,B)(L,N) and jgndr(X,ﬁ)(ﬁ,/\/') parametrising (£, N)-
twisted semistable sheaves of degree d and uniform rank r over stable maps in Mg (X, 3)

(that is, in Definition we impose that for each geometric point s € S, Fs ® Ny is

gndr(

Gieseker semistable with respect to £5). This does not widen the class of stacks under

consideration, since twisting by A yields isomorphisms

7ac;fn,d,r(X7 B)(ﬁwj\/) jacgndr(Xv 5)(£7O)

and

jgndr(X ﬁ)(ﬁ N) jgndr(X ﬁ)(ﬁ O)

In particular, the compactified Jacobians considered by Kass—Pagani [72] and Melo [89]
fit into the framework considered in this chapter, since the stability conditions considered

by these authors can always be realised as twisted stability conditions.

6.3.3 Basic Properties of the Stacks

We summarise some of the basic properties of the stacks 7. g (X5 B)(L).

1. The stack 7. gmdr (X, B)(L) is algebraic and of finite presentation over C; this
follows immediately from Theorem [6.1.1]

2. The stack . gmdyr (X5 B)(L) is universally closed. This will follow once we have
established the projectivity of the good moduli space Jg n.d.r (X, B)(L) of this stack,

as good moduli space morphisms are universally closed.

3. If 7Z’n7d7r(X, B)L) = jgndr(X B)(L) then the stack is Deligne-Mumford and
the natural forgetful morphism to M, , (X, 3) is representable. If X is smooth

then the stack admits a natural relative perfect obstruction theory over the stack

MEMPHE. his follows from Proposition

gn,d,r

4. If Jgndr(X B)(L) = JgndT(X B)(L) then the stack is proper. One way to see
this is to observe that every object of T gmdr(X; B)(L) has a finite automorphism
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S8

gn.dr (X5 B)(L) is finite. Tt

then follows from [35] that the coarse moduli space morphism 7;fn,d,r(X ,B)(L) —
j;fn7d7T(X,ﬁ)(£) is proper, so the properness of the stack 7;;@7,,()(, B)(L) is a

group scheme, or in other words the inertia stack of J

consequence of the projectivity of 7;‘;76!77, (X, B8)(L).
In the case 7 = 1, we have the following additional properties:

5. If n > 1 then the universal sheaf on 7ac;fn’d71(X, B)(L) descends to the rigidifica-
tion 7an7d71(X, B)(L); this follows from either [71, Lemma 3.35] or [89, Proposition

3.5).

6. If the stack of stable maps M, (X, ) is smooth then the stack 7;fn7d71(X, B)(L)
is also smooth; for instance, the argument given in the proof of [89, Proposition
3.7] carries over. If in addition the stack Mg, (X, 3) is irreducible and if the
substack M, ,, (X, 3) is dense in My, (X, 3) then the stack 7an7d71(X, B)(L) is
irreducible and of dimension dim ﬂg,n (X, 8)+g, as in this case the open substack
parametrising invertible sheaves over stable maps in M, ,(X, ) is smooth and
dense. This applies for instance when the stack of stable maps ﬂgm(X, B) is
taken to be M, ,, or Mo, (P?,d’).

6.4 GIT Constructions of Moduli Spaces of Stable Maps
and of Multi-Gieseker Semistable Sheaves

The GIT construction of the moduli spaces appearing in the statement of Theorem
relies on two existing reductive GIT constructions, the first by Baldwin-Swinarski [15]
and the second by Greb-Ross—Toma [55] [56]. In preparation for Section[6.5, where these
constructions are combined to construct the moduli spaces 7;fn,d7r(X ,B)(L), we give a
sketch of both of these constructions, and explain how the latter construction may be
extended to the relative setting. To avoid the notation from becoming too complicated,
we present the Greb—Ross—Toma construction in a general setting, largely following the

notation used in [55] and [56].

6.4.1 The Construction of Baldwin and Swinarski

Let X be a projective variety, and fix the discrete invariants g, n and . For simplicity

assume there is at least one marked point (the construction for n = 0 marked points
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involves only minor changes in notation, primarily involving omitting any projective
space factors corresponding to marked points). Fix a closed embedding i : X < P’ such
that i,3 = d'[¢], where [(] € Hy(P?,Z) is the class of a line. Suppose (C, z, f) is a stable
map to X of class  (which we may also consider as a stable map to P’ of class d'[¢]).

For a € Z, set
¢ i= deg((we(w1 + -+ + 70) @ [*Op(3))%) = a(2g — 2+ + 3d).

For any integer a > 1OE| the invertible sheaf (wo(z1+- - - +z,) @ f*Ops (3))* is non-special
and very ample, and corresponds to a closed embedding of C inside P(H%(C, (wc(x1 +
4 20) @ [*Op(3)Y). Let

W .= Ce 9+,

Choose an isomorphism W = HO(C,(wco(xy + -+ + z,) @ ffOp(3))?)Y; this yields
a closed embedding C' — P(W). The graph of f gives in turn a closed embedding
C — P(W) x P, After appending the markings (z;, f(x;)), we have an associated point

of the scheme
H = Hilb(P(W) x P°, Py) x (P(W) x P?)*™,

where Hilb(P(W) x Pb, Py) is the Hilbert scheme parametrising curves C’ C P(W) x Pb
with Hilbert polynomial

Py(mw,mp) = X(OIP’(W) (mw) ® Ops(myp) @ Ocr) = emy + dmp — g + 1.

Let (¢ : UH — H;71,...,7,) denote the universal family over H, given by taking the
product of the universal family over Hilb(P(W) x P, Py) with n copies of the identity
map on P(W) x P’. Let H' C H denote the closed subscheme consisting of all points
(h;x1,...,2,) € H where the marked points x; lie on the curve UH; C P(W) x P,
As explained in [52, Sections 2.3 and 5.1], there exists a locally closed subscheme [ =
Ix g C H' consisting of all points (h;z1,...,z,) € H' such that the following conditions
are satisfied

(i) (UHp;x1,...,2p) is a prestable marked curve;

Pa = 10 is the smallest choice of a for which the statement of [I5, Theorem 5.21] holds for any choice

of valid discrete invariants g, n,d’; we refer the reader to the remark following loc. cit.

5The subscheme #' is what Baldwin and Swinarski denote as I and the subscheme I is what Baldwin
and Swinarski denote as J; we have elected to change the notation so as not to confuse notation with
that for the moduli spaces of the stacks 722,(“()(, B)(L).
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(ii) the projection UH; — P(W) is a closed embedding with non-degenerate image;
(iii) the projection pp, : UHy — PP factors through the inclusion i : X «— P?;
(iv) there is an equality of homology classes (py)«[UH| = 8 € Ho(X,Z)+; and

(v) there exists an isomorphism of invertible sheaves on the curve UH,,
OP(W)(I) & O]P)b(l) ® Oy, = (wm.[h (x1+--+ :rn))a ®ROp(Ba+1)® Oun,

(more formally, if S — M’ is a morphism from a scheme, then this morphism
factors through I only if the invertible sheaves Op)(1) ® Ops(1) ® Oz, and
(wurryys(T1(S) + -+ + 70(9)))* @ Ops (3a + 1) @ Oyayy, differ by the pullback of an

invertible sheaf on 5).

Let I denote the closure of I in H’, and consider the restriction of the universal family
to I, denoted as (¢y : Ul — I;71,...,7,). There is a universal morphism U1 — X given

by the composition of the closed embedding
UIT — T x P(W) x P° x (P(W) x PP)*"

with the projection onto the first P® factor. The restriction of this morphism over each
point of I defines a stable map to X of class 8. It follows that the scheme I admits
a natural forgetful morphism to M, (X, ), given by forgetting the embedding of the
stable map inside P(W) x P®.

Letting GL(W) act in the usual way on P(W) and act trivially on P?, the correspond-
ing diagonal action on P(WW) x P® gives rise to an induced action of GL(W) on H, under
which the subschemes #H’, I and I are all invariant. This action descends to an action
of PGL(W). The family (¢y : UI — I;71,...,7,) has the local universal property for
M. (X, B), and two points iy, € I correspond to isomorphic stable maps if and only
if i1 and 2 lie in the same GL(W)-orbit (cf. [15, Proposition 3.4]).

For sufficiently large positive integers myy and mg, there is a closed immersion
Hilb(P(W) x P?, Py) < P(AP(mw.me) z ),
where

me,mb = HO(P(W) X ]Pb, OIP’(W) (mw) ® Opsp (mb))
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We extend this to a closed embedding
H = Hilb(P(W) x P®, Py) x (B(W) x BY)*" s P(AP(mw:me) 7 ) x (P(W) x PP)*™

by taking the identity on (P(W) x P?)*". After choosing a positive integer mps, we have

a GL(W)-equivariant closed embedding of H inside a single projective space:

n
9mW7mbamPts H =P (APO(mW ’mb)ZmWﬂnb ® ®(Symmpts W® Symmpts Cb+1) .
=1
(6.4.1)

Pulling back the twisting sheaf O(1) along this embedding gives a very ample linearisa-
for the action of GL(W) on both H and the closed subscheme I. We

may now state the main result of Baldwin and Swinarski.

tion LmW ;b Mpts

Theorem 6.4.1 ([I5], Corollary 6.2). Suppose (mw,mpy, mpts) is a triple of positive
integers satisfying the inequalities in the statement of Theorem 6.1 of loc. cit. (such

triples always exist). Then for the induced action of SL(W) on I there are equalities

TSS(LmW7mb7mpts) = TS(LmW7mb7mpts) = 1.

Moreover, the coarse moduli space Mg, (X, 3) of Mgn(X, B) is isomorphic to the GIT

quotient T//me - SL(W). In particular M 4, (X, ) is a geometric quotient of I.

sMpts
6.4.2 Quiver Representation Stability

Next, we consider the construction of Greb-Ross-Toma [55] [56] of the moduli space of
multi-Gieseker semistable sheaves on a projective scheme.

Given k € N, consider the labelled quiver
Q= (Qo, Qu,h,t: Q1 — Qo, H : Q1 — Vect()

with vertex set Qg = {v;,w; : 4,5 =1,...,k}, arrow set Q1 = {5 :4,5 =1,...,k} and

with heads and tails given by
hagj) = vi,  tauj) = w;
(the functor H : Q1 — Vectfcd will be specified momentarily). Let H;; be the vector

space H(a;j).
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Definition 6.4.2. A representation of the labelled quiver Q consists of the data ¢ =
{ViYe_,, {(W; }j 1 {wij}ﬁjzl), where the V; and W; are finite-dimensional C-vector spaces
and where each 1;; is a linear map V; ® H;; — Wj.

Morphisms of representations of Q are defined in analogy with morphisms of ordinary
quiver representations (cf. [75]); in particular, a subrepresentation ¢’ of v is specified
by choices of subspaces V! C V; and W]’ C Wj, such that each v;; sends V/ @ H;; to W]’

The dimension vector of ¥ is the vector d = (dim Vq,dim W7, ..., dim Vi, dim Wy).

Write the dimension vector of M = @j VieW;asd= (di1,d12,-..,dg1,dg2). Given
a tuple ¢ = (01,...,0%) of non-negative rational numbers, not all of which are zero,
define the vector 0, = (011,012, ...,0k1,0k2) by setting
_ 9 __ 9%
Zi oidiy ’ Zz 0;d;o '

Then, for any representation M' = P, V] ® W}, define

9]'1 = 0]'2 =

k
= (61 dim V] + 62 dim ).
j=1

Definition 6.4.3. Let M be a Q-representation with dimension vector d. M 1is said to
be (semi)stable with respect to o if for all proper subrepresentations M’ C M, we have

0, (M') < (<) 0.

Analogously to ordinary quiver representations, every o-semistable Q-representation
admits a Jordan—Holder filtration, and hence a Jordan—Hélder associated graded ob-
ject gr)H(M). This gives a notion of S-equivalence for o-semistable representations;
two o-semistable representations M and M’ are S-equivalent if and only if grif (M) =
gy (M),

Fix a dimension vector d. Let R be the vector space

k
R = Rep(Q,d) = @ Hom(Cdi1 R Hij,(cdn)_
ij=1

Fach point of R corresponds to a representation of Q of dimension vector d. There is a

natural linear left action on R by

k
= [[(GL(d;,,C) x GL(d;2, C)),
7j=1
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where G acts by base change automorphisms. Let
A= {(t-iddn,...,t-iddm) eé:te@m}

be the kernel of the representation G — GL(R) and let G = G/A. Given an integral
vector 0 = (60;1,02,...,0k1,0k2) € Z2* let xg be the character of G given by

k
xo : g — [ [(det(gjn) %" - det(gja)%2).

j=1
Assume d and ¢ are chosen so that }.(6;1dj1 + 0j2dj2) = 0, so that we may (and do)
view Xg as a character of G. Let R’~(*) ¢ R denote the GIT (semi)stable loci for the
action of G on R with the linearisation Or(xs), the trivial bundle on R twisted by the
character g, and let p : RO~ — R ¢ G denote the resulting good quotient. In this
setting, the results of King [75] concerning moduli of representations of a quiver translate

as follows.

Proposition 6.4.4 ([55], Theorem 5.5). Suppose 0 = cf, for some o and some positive

integer ¢, where ¢ is chosen such that 6 is integral.

1. A point of R corresponding to a Q-representation M is GIT (semi)stable with
respect to 0 if and only if M is (semi)stable with respect to o.

2. If r1,r9 € R are points corresponding to representations M and Ms respec-
tively, then p(r1) = p(ra) if and only if My and My are S-equivalent as o-semistable

representations.

6.4.3 The Functorial Approach to Moduli Spaces of Sheaves

Let X be a projective scheme, and fix a stability parameter o = (L, 01, ...,0%) on X (cf.
Section. Fix a topological type 7 of coherent sheaves on X defined with respect to L,
and let P;(t) be the corresponding Hilbert polynomials. Set H;; = H°(X, L; ™ ®LT2) =

Hom X(Lj_m2, L; ™), where mg > m; > 0 are integers to be determined. Let

k
— —mi —ma2
T=@L™ L™,
=1

and consider the algebra
A=L® H C Endx(T),
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where L is generated by the projection operators onto the summands L; ™" and Lj_m2

of T" and where H = @ﬁj:l H;;. T is a left A-module and H is an L-bimodule. The
category of representations of Q is equivalent to the category of finite-dimensional, right
A-modules M; from now on we identify these two categories.

Given a coherent sheaf E on X, the vector space Homx (T, E') has a natural A-module

structure, given by the decomposition

k
Homy (T, E) = @ H(E @ L") © H(E ® L")
j=1
together with the multiplication maps H'(F® L!")® H;; — HY(E® L7*?). This defines
a functor
Homx (T, —) : Coh(X) — mod(A)

to the category of finitely generated A-modules. The functor Homx (7', —) admits a left
adjoint, denoted — ® 4 T. If 4 : H @ T — T is the left A-module structure map, then
M ®4 T is the cokernel of the map

1®/},—Oz®1:M®LH®LT—>M®LT.

If ma > my, by [65, Theorem 3.4] the functor Homx (7, —) is fully faithful on the full
subcategory of (mq, L)-regular coherent sheaves on X of topological type 7.

Now consider the case where X is a scheme which is projective over a finite type
scheme Y. Fix a projective morphism (of finite type) 7 : X — YD and replace L with L,
a tuple of m-very ample invertible sheaves L1, ..., L. Continue to fix a topological type
7 of Y-flat sheaves on X (this time defined with respect to the £;); let Pi(t),..., Py(t)
be the associated Hilbert polynomials. Replace H;; with the sheaf 7, (£, ™ ® E;”Z), SO

that A is now a sheaf of Oy-algebras, acting naturally on 7.

Definition 6.4.5. Let g: S — Y be a scheme over Y. A flat family of A-modules over
S consists of a sheaf M of right modules over the sheaf of algebras Ag = g*A, which is

locally free of finite rank as an Og-module.

If S is a Y-scheme and if F is a coherent sheaf on Xg = X xy S, set

Homx (T, E) = (ng)«(Homx4(Ts, E)) € Coh(S5).

"In Section this projective morphism will be taken to be the universal family UI — 1.
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This is naturally a coherent sheaf of right Ag-modules. The functor — ® 4 T' extends to
give a left adjoint of Homx (T, —).
Remark. In Proposition and in all of the statements that follow, mo — m; can and

should be chosen large enough such that each of the sheaves H;j = . (£, ™ ® E;-"z) are

locally free and the formation of the pushforwards all commute with base change.

Proposition 6.4.6 ([55] Propositions 5.8, 5.9, [10] Propositions 4.1, 4.2 in the relative

setting). Let my be a natural number. Then for mg > my, the following holds.

1. For any Y -scheme S, the functor Homx (T, —) is a fully faithful functor from the
full subcategory of S-flat, (mi,L)-regular coherent sheaves on Xg of topological
type T to the full subcategory of mod(Ag) consisting of flat families of A-modules

over S.

2. If B is any Y -scheme and if M is any flat family of A-modules over B of dimension
vector
d = (Pi(m1), Pr(ma), ..., Py(ma), Pi(ms2)),

then there exists a unique locally closed subscheme v : B7[-Teg] — B with the following

properties:

(i) VM @aT is a Bkeg] -flat, BBeg} -finitely presented family of (mq, L)-regular
sheaves on X of topological type T, and the unit map o* M — Homx (T, 1* M® 4

T) is an isomorphism.

(ii) If g : S — B is such that there exists an S-flat, S-finitely presented family E of
(mq, £)-reqular sheaves on X of topological type T and an isomorphism g* M =

Homx (T, E), then g factors through v : Bkeg} —Band E=Zg-Mx4T.

Proof. This follows from making minor modifications to the proofs of [55, Propositions
5.8 and 5.9], these modifications being analogous to those indicated in [I0, Section
6.5]. O

6.4.4 Comparison of Semistability - Positive Case

Given a coherent sheaf E of topological type 7 on a projective scheme X, we have
the notion of multi-Gieseker stability for the sheaf E (cf. Section 4.4 and the notion
of stability for the A-module Homx (7, FE), both with respect to a common stability
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parameter 0 = (L, 01, ...,0x). Provided o is bounded, the following result relates these

two notions.

Theorem 6.4.7 ([10] Section 5, [55] Theorem 8.1). Let m : X — Y be a projective
morphism, where Y is a scheme of finite type. Let L = (Lq,...,Ly) be a tuple of T-very
ample invertible sheaves and let T be a topological type defined with respect to L. Let
o= (L,o1,...,0%) be a stability parameter which is bounded with respect to . Then for
integers mao > mq > mg > 0, the following holds: let E be a Y -flat coherent sheaf on
X and let y €Y be a geometric point. Then:

1. The sheaf Ey is multi-Gieseker (semi)stable with respect to o if and only if E, is

pure, (mo, L,))-regular and Homx, (T, Ey) is a o-(semi)stable A-module.

2. Suppose in addition that o is positive, and suppose L, is o-semistable. Then
Homy, (T, gry" (Ey)) = gy (Homy, (Ty, By)),

where gr) denotes the o-associated graded object arising from a Jordan—Hélder
filtration of E, or of Homx, (T}, Ey,) respectively. In particular, Homx, (T}, —)

preserves S-equivalence with respect to o.

6.4.5 The GIT Construction - Positive Case

We continue to fix the projective morphism 7 : X — Y, the m-very ample invertible
sheaves L1,...,L; and the topological type 7 of Y-flat coherent sheaves on X. Choose
natural numbers mg, m; and msg such that Proposition and Theorem apply.

Set the dimension vector to be
d = (Pi(m1), Pi(ma), ..., Pr(m1), Pe(mz)).

If E and F are coherent sheaves on Y with F' locally free, let Homy (F, F') denote the
finite type affine Y-scheme representing the functor assigning to a Y-scheme g: S — Y

the set Homg(¢*E, ¢* F') (such a scheme exists and is affine over Y by, for instance, [127,
Tag 08JY]). With H;; = m.(L; ™" @ L}"*), form the Y-scheme

k
R =[] Hom, (O ® H;, 0F).
i,j=1
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Let p : R — Y denote the structure morphism. The scheme R carries a tautological
family M of A-modules. By Proposition there exists a locally closed subscheme

1 : RIrd — R

parametrising the modules which appear in the image of the Homx (T, —)-functor on
the full subcategory of all (my, £)-regular coherent sheaves of topological type 7. Then
LeM® AT is a flat, finitely presented family of (m;, £)-regular sheaves of topological type
7. Let

L: Q< Rlred)
denote the open subscheme parametrising those sheaves which are also (mg, £)-regular,
and let F = *M®4 T. Let

Q[o—ss} cQ
denote the open subscheme where the fibres of F are o-semistable. Under the natural
fibrewise (over Y') action of G on R, where G = H§:1(GL(dj17(C) X GL(dj2,C))/A, the
subschemes Q and Q75 are invariant. Endow R with the linearisation O r(Xxs), where

0 = cf, for some positive integer ¢ chosen so that 6 is integral, and let
ROSS .— RG_SS(XQ/Y)

be the corresponding relative GIT semistable locus (cf. Definition . Let Qlo—ss] be

the closure of Q=53 in R, and set
(W)a—ss — W N R°—5S.

Theorem 6.4.8 ([10] Section 6, [55] Sections 9-10). Suppose o is a positive stability
parameter which is bounded with respect to 7. Then there is an equality of schemes
(W)U—Ss = Qlo=ssINR7s5 = Qo= and there exists a good quotient q : Q735 —
Mg+ of Y -schemes for the action of G on Q755 where

My = Q=1 ), G =QI"™*] | G = Projy (EB(zo*(oR(xzz)rM))G) :

m=0
The scheme M, is projective over Y. Moreover, the closed points of My, are in 1-1

correspondence with S-equivalence classes of o-semistable sheaves over geometric fibres

ofm: X =Y.
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Proof. Suppose first Y = SpecC is a point (that is, we are working with a fixed fibre
over some geometric point y € Y). That there is an equality Qlo—ss/ N R7=% = Qlo—ssl
and that there is a good quotient M, ; of Q=551 given by

MO’,T = Proj (@ HO(Wy OR(X;Z)‘Q[U—SS])G> )
m=0

both follow from [55, Theorem 10.1]. The projectivity (over Spec C) of M, ; is Theorem
9.6 of loc. cit. (which in turn is proved in the same way as [10, Proposition 6.6], via
establishing that the valuative criterion for properness holds), and the identification of
the closed points of M, » with S-equivalence classes of semistable sheaves is [55, Theorem
9.4]. This yields the result in the fibrewise setting.

In order to pass from the fibrewise setting to working over the quasi-projective
scheme Y, we apply Proposition Since the points of the relative semistable lo-
cus R77%° = RE7%5(xy/Y) are determined by the fibrewise semistable loci, we have an
equality W N R~ = Qo—ss]. We also have the existence of a good quotient M -

of Qlo—ssl, given by the relative projective spectrum

Qo= | G = Projy (@(p*(OR(X@NM))G) ‘
m=0

The description of the closed points of M, - is immediate from the fibrewise case. That
M, - is proper, and thus projective, over Y follows from the same valuative criterion
argument used in the proof of [I0, Proposition 6.6], which carries over to the relative

case, exactly as in Section 6.5 of loc. cit.. U

6.4.6 The GIT Construction - Degenerate Case

Let m: X =Y, L1,...,L; and 7 be as in Section and fix a bounded stability
parameter o = (L, 01,...,0x). Suppose instead that o is degenerate, that is some o; = 0.
In this case, the second conclusion of Theorem [6.4.7no-longer applies; we instead proceed
as follows.

For integers mg > my > mgp > 0, the result of Proposition and the first
conclusion of Theorem still applies to Y-flat coherent sheaves on X of topological
type 7. Fix such integers m;. Relabelling indices if necessary, we may assume there exists

a positive integer k' < k with the property that o; > 0 for all j < k" and ¢; = 0 for all
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j>kK. Let L = (Ly,...,Ly) and o' = (L',01,...,01). Then o’ is a positive stability
parameter, though with respect to a proper subset of the line bundles L1, ..., L.

Form a subquiver @’ of the original quiver Q by taking the full subquiver with vertices
Q) = {vi,w; : i,j =1,...,K}. Let T",A',d', R',G' and Q' be the objects associated
with the quiver @' (with R’ and G’ considered as schemes over Y), so that if F is a
Y-flat, (mq,L’)-regular sheaf on X of topological type 7 then Homx(T',E) is a flat
family of A’-modules of dimension vector d’. After possibly increasing the m;, we may
also assume that Proposition [6.4.6] and Theorem [6.4.7] apply to the positive stability
parameter o’.

The inclusion Q' C Q gives rise to a projection
¢ R—R.

Continue to set
0j 0j

Soioidin’ > i 0idin
for all j = 1,...,k. The group G acts on R as G’ x G”, where G” corresponds to the
rows j =k +1,...,k of Q. Letting G” act on R’ trivially, the projection ¢' : R — R’ is

9]'1 = (9j2 = —

G-equivariant. Consider the subschemes
D:=Qlo=ssl ¢ R, D77*:=DnNRI™*,
where Q7% C RI" is as defined in Section as well as the subschemes
D' = (Q)l'=ssl c R, (D')" = :=D'n(R)"~*.

Proposition 6.4.9 ([56] Proposition 2.3). The projection ¢’ : R — R’ induces a G'-
equivariant, G"-invariant map D755 — (D')7'=55  and the induced map ¢' : D755

G" — (D)7 =% = (Q"' =] is a G'-equivariant isomorphism.

Proof. In the case Y = SpecC, this is [50, Proposition 2.3]. The result in the relative
setting then follows from the fibrewise setting by invoking Proposition [2.4.5] as in the

proof of Theorem [6.4.8] O

Corollary 6.4.10 ([56] Corollary 2.4). Suppose o is a degenerate bounded stability pa-
rameter. Then there exists a good quotient My, := D7~ | G = (D)7 =% J G of
Y -schemes for the action of G on D?~%°. The scheme Mg ; is projective over Y. More-
over, the closed points of My, are in 1-1 correspondence with S-equivalence classes of

o-semistable sheaves over geometric fibres of m: X — Y. 0
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6.4.7 The Master Space Construction

Instead of considering a single stability parameter, suppose we have a finite set of
bounded stability parameters &, with each ¢ € & defined with respect to the invertible
sheaves L1, ..., L. We allow for some of these stability parameters to be degenerate.
Fix positive integers mo > m1 > mg > 0 such that for each stability parameter
o € &, as well as for any positive stability parameter ¢’ obtained by truncating a
degenerate stability condition o € &, the conclusions of Proposition and Theorem
all hold; suppose further that mg, m; and mo are chosen so that the formation of
the locally free sheaves H;j = m.(L; ™ ® [,;”2) is always compatible with base change.

Form the affine Y-scheme

7 =17Zs:= | Qe+l (6.4.2)
ceS

For each 0 € G, let
Z°7% .= ZNR%,

The schemes M; ;, for o € &, are all GIT quotients of the master space Z.

Theorem 6.4.11 ([55] Theorem 10.1, [56] Theorem 4.2). For each o € &, there is an
equality 7775 = (Qlo—ss))7=s5 = Qlo—ssl 0 RZ=%5. In particular, M, , is equal to the
good quotient of Y -schemes

o0

277" | G = Projy <@(p*Oz(X?))G> » 0z(x5") == Or(X5')| z-

m=0

Proof. In the case where Y is a point, this is [55, Theorem 10.1] (when o is positive)
and [56, Theorem 4.2] (when o is degenerate). The result in the relative setting then

follows as a consequence of Proposition [2.4.5] as in the proof of Theorem O

6.4.8 Existence of Further Quotients

Assume now that X and Y both admit actions of a reductive linear algebraic group H,
with m an H-equivariant morphism. As in the hypotheses of Proposition assume
there exists an equivariant open immersion ¢ : Y < Y into a projective scheme Y acted

on by H, with an ample H-linearisation L such that (over Spec C)

Y¥(L) =Y (L) =Y.
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Assume in addition that L4, ..., Ly are H-linearised. Fix a topological type 7, and fix a
finite set of bounded stability parameters & defined with respect to the ;.
As in Section form the Y-scheme

k
R= [] Homy (0§ @ Hy, OF?),  Hy = m (L™ @ LT2),
ij=1

with the natural numbers mg, m; and mo chosen such that the formation of the locally
free sheaves H;; = . (L™ ® L7") is always compatible with base change and such
that Theorem applies for the fibrewise action of G on R, where as before G =
H?zl(GL(djl,(C) x GL(dj2,C))/A. For each 0 € &, fix a positive integer ¢ = ¢, such
that the vector cf, is integral, and let x, = xp, denote the corresponding character of
G. The actions of H on X, Y and the £; give rise to an induced action of H on the
sheaves H;; lifting the action of H on Y. This in turn gives rise to an H-action on R,
with the natural projection p : R — Y being H-equivariant; the actions of G and H on
R commute. In particular, we may consider each Ogr(x,) as a (G x H)-linearisation on
R.

Let Z = Zg be as in , and let p, : Z77°° — M, be the good quotient over Y’

given by Theorem [6.4.11} recall this is explicitly given as

[e.9]

M,, = Z°~% | G = Projy (@(p*Oz(xZ‘))G> . O0z(x)) == Or(xJ)|z.

m=0

Since each Oz (xJ') is naturally H-linearised and as the G and H-actions on R commute,
M, ; admits a residual H-action, and the relatively ample twisting sheaf Ops(1) on
M, admits an induced H-linearisation. If ¢, : M, , — Y denotes the H-equivariant
structure morphism, Proposition [2.4.0] is then applicable to ¢,; in particular there exists
a geometric quotient M, - / H of M, and a projective morphism ¢, : My J/H =Y JH
induced by ¢,. By Lemma the composition 277 — M, , — My, / H is then a
good quotient for the (G x H)-action on Z7~*%. This proves the following result.

Proposition 6.4.12. Let H be a reductive linear algebraic group. Let m : X — Y
be an equivariant projective morphism between quasi-projective schemes acted on by H.
Assume there exists an equivariant open immersion t:Y — Y into a projective scheme
Y acted on by H, with an ample linearisation L such that Y°(L) = Y (L) =Y. Fix

H-linearised, m-very ample invertible sheaves Ly, ..., Ly, fix a topological type T of flat
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sheaves on the fibres of m and fix a finite set of bounded stability parameters &, with both
7 and & defined with respect to the L;. Form the subscheme Z = Zg given by Equation
[6.4.3 Finally, fixo € &.

There then ezists a projective good quotient Z°~*° | G x H = My, | H of Z77°%, and
there exists a natural projective morphism G, : Z°%° G x H =Y JJH =Y (L)/H.
If y € Y is a closed point, the fibre of 4, over y is isomorphic to the geometric quotient
(Mg.7)y/Stabu (y). O

The good quotient Z77%% / G x H can be understood as the quotient of a relative

GIT semistable locus for a G x H-linearisation on Z.

Proposition 6.4.13. There exist positive integers a, N > 0 such that for all 0 € G,

there is an equality
277 = 29 (L) @ 07/ Y)
of open subschemes of Z.

Proof. Fix 0 € &. From the proof of Proposition for all @ > 0, each point of M, ,
is H-stable with respect to the linearisation ¢}(L%ly) ® Op(1). By Proposition [2.4.2]
some power Oyr(N,) of Op(1) pulls back along the good quotient p, to Oz(xYo)|zo—ss;
we may assume without loss of generality that N, = N is the same for each 0 € S.

Fixing a > 0 sufficiently large, we have equalities
27755 = Z973(04(x5)Y) = 297 (0 (L |y) @ Oz(x5)/Y);

the first equality follows from Z°7% = Z N R°™% = Z N RE~*5(Or(xY)/Y) and the
second equality holds since the relative G-semistable locus is determined fibrewise (cf.
Proposition [2.4.5)). From this and from the observation that G x H-semistability implies

G-semistability, it suffices to show that there is an inclusion
Z9 (p (LN ]y) © 02(x5)/Y) € 2 (0" (LN ]y) © Oz(xF)/Y)

of open subschemes of Z.

If 2 € 29755 (p* (LY |y ) @02 (xY)/Y) lies over Z € M, ;, as Z is H-stable there exists
k > 0 and a section f € H(M, ,,q:(L%N|y) ® Op(kN))H such that the non-vanishing
locus (My,r)s is affine and z € (My)s. If f' := pi(f), then f’is a G x H-invariant
section of p*(L¥|y )@ Oz (x2'*) with affine non-vanishing locus p,; }((M,.) ) containing
z. Hence z € ZG*H=3s(p* (LN |y) @ Oz(xY)/Y). O
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6.5 The GIT Construction of the Moduli Spaces
With the setup of the previous section, we are ready to begin proving Theorem

6.5.1 Setup

Fix a projective variety X and consider the stack of stable maps Mg,n(X, B). Let
Ty UMg o (X, B) = Mgy (X, B) denote the universal family over M, ,,(X, 8). Fix my-
ample Q-invertible sheaves L1, ..., Li. For each o € ¥ := (Q=°)*\ {0} let £, = ®, L,

and consider the stacks
Jac(o) = Tacgy 4, (X, B)(Le) and T (0) = T g ar (X, B)(Lo).

Since replacing each £; with £ (where m is a positive integer) does not alter the stability
condition, we assume without loss of generality that each £; is a genuine invertible sheaf

and is relatively very ample.

Lemma 6.5.1. The collection of all degree d, uniform rank r, torsion-free coherent
sheaves E over objects of the stack of stable maps Mgy, (X, ), for which there exists

some o € 3 such that E is o-semistable, forms a bounded family.

Proof. Without loss of generality it is enough to consider stability conditions in the
compact convex set Y := {a SDIE Zle = 1}. Since the stable maps in M, (X, 3)
vary in a bounded schematic family, there are only finitely many possible topological
types of nodal curves appearing in such a stable map. As such, there exists a constant
o such that if ' is a degree d, uniform rank r, torsion-free coherent sheaf lying over a
stable map (C, z, f) in Mg, (X, ) which is £;-semistable, then

Ci X(E)
po(E) =
( ) r Z;:l deng Ll

< uo;

here L; denotes the pullback of £; to C, and C1,...,C, are the irreducible components
of C.

Take o € ¥, and suppose F is a degree d, uniform rank r, torsion-free coherent sheaf
lying over a stable map (C, z, f) in M, ,,(X, 8) which is o-semistable. If E is semistable
with respect to £1 then u(E) < pg. Otherwise, let E/ C E denote the maximally
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destabilising subsheaf of E with respect to £; (as F is torsion-free, then E’ is of pure

dimension 1). For any ¢ € [0, 1], set

o(t) == (1 —t+toy,tog,... tog) €Y.
Since p~ (E") > p1(E) and p°(E") < p°(E), by continuity there must exist tg € [0, 1]
with po(t)(E") = po(t0)(E). This implies

X(El) Zz,j O'(to)ZTJ(E/) degcj Lz

S, (B doge, In (5, 75 (F) dege,, 1) (3o, o(to)s degg, L) X((E) .
6.5.1

Since each 0 < r;(E’) < r and are not all zero, since x(E) is a constant, since the curve

pe(E') =

C varies in a bounded family and since the set of stability conditions ¥/ is compact, it
follows from Equation that there exists a constant p; > po, depending only on
d,r,g,n, X, and L, such that the following holds: for any degree d, uniform rank r,
torsion-free coherent sheaf F lying over a stable map (C,z, f) in My, (X, ) which is

o-semistable for some o € Y/,
(i) either E is £i-semistable, and hence ;*'(E) < pi1; or

(ii) E is Ly-unstable, and the £i-maximally destabilising subsheaf E' C E satisfies
pE(E') < .

It follows by [69, Theorem 3.3.7] that the collection of all such sheaves E is bounded,
which proves the result. O

As in Section fix an embedding X C P%, set Ox (1) = Ops(1)|x and consider
the universal family ¢y, : U1 — I over the quasi-projective scheme I. Pulling back the
sheaves £; along the forgetful morphism I — Mgm(X , B) gives ¢y-very ample invertible
sheaves £ on UI, which are equivariant with respect to the GL(WW)-action on I. Take
7 to be the topological type of degree d, uniform rank r torsion-free sheaves over the
fibres of ¢y with respect to the £ (cf. remark in Section . By Theorem
there exists an equivariant open immersion I < I and a linearisation L = Linyy imympts

on I for the induced SL(W)-action for which
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with My, (X, 8) = I J SL(W) isomorphic to the resulting geometric GIT quotient. In

particular, the results of Propositions [6.4.12| and [6.4.13| are applicable to the universal

family ¢y : I — I and the linearised sheaves L.

Fix a finite subset & C 3. We now restrict attention to stability parameters o € &.
As the collection of sheaves in question is bounded (cf. Lemma , we may pick
natural numbers mg, m1 and ms such that Theorem [6.4.11] applies for the projective
morphism ¢ : UI — I and the sheaves L£}; from our choice of m; the formation of
the locally free sheaves H;j = (¢u)«((£7)™™ @ (L£)™?) is always compatible with base
change, and any sheaf appearing in Jgn.4,-(X, ) which is semistable with respect to
any o € & is (mg, L)-regular.

Form the I-schemes

k
Z=17s=|J Qv c R= [] Hom, (0} @ Hy, 0},
ceS 2,j=1

with the dimension vector given by
d = (di1,dr2,. .., dp1,dg2) = (Pr(ma), Pi(ma), ..., Pr(m1), Pr(m2)).

We endow R with the usual fibrewise actions of the groups G and G , where

k
G = [[(GL(d;,.C) x GL(dj»,C)), G =G/A.
j=1
As in Section m the G-action on R extends to an action of G x GL(W). The
G x GL(W)-action naturally descends to an action of G x PGL(W), since the diagonal
one-parameter subgroups of both G and GL(W) act trivially.

We now restrict attention further to sheaves of uniform rank r.

Lemma 6.5.2. Let C — S be a flat, projective family of genus g prestable curves.
Let F' be an S-flat torsion-free coherent sheaf on C, such that for each geometric point
s € 8, the sheaf Fs has Hilbert polynomial P with respect to a fized choice of an S-ample
invertible on C. Then there exists an open and closed subscheme S, C S such that, if
g:T — S is any morphism of schemes, then g factors through S, C S if and only if for

all geometric points t € T', the sheaf Fyq is of uniform rank r over the curve Cy).

Proof. This is essentially the content of [I08, Lemma 8.1.1]. O
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Fix a stability parameter 0 € &. If o is degenerate, let ¢' = ¢ : R — R' = R. be
the projection map described in Section and let ¢’ be the corresponding positive
stability parameter. By Theorem and Proposition we have equalities

go—ss _ Qlo—ss] if o is positive,
&) H(Q [0'=ss]) " if & is degenerate.
( g

Both Q5 and (Q’)[U,_SS] parametrise flat families of torsion-free sheaves on prestable

curves, so by Lemma [6.5.2] there are open and closed subschemes, respectively denoted
[c—ss]
3

and (Q;)[U/*SS], parametrising those sheaves in the tautological family F which

are of uniform rank r. Let

go—ss _ fo=ee] if o is positive,
T (@)@ )y if o is degenerate.

In both cases, the scheme Z7 %% is open and closed in Z7~%%.

6.5.2 Stacks of o-semistable Sheaves as Quotient Stacks

La—ss]

In the case where o is positive, Z7 7% = gives a smooth presentation of both

Jac(o) and J (o), exhibiting both of these as quotient stacks.

Proposition 6.5.3. Suppose o € & is positive. Then there is an isomorphism of stacks

over Hgm(X, B)

Jac(o) = Tacs, 4 (X, B)(Ly) = [297°° /G x PGL(W)].

g7n7d7T

Proof. Let [Z97%5 /G x PGL(W)JP* denote the quotient pre-stack associated to the
G x PGL(W)-action on Z7~55 = [TU_SS], so that [Z97%5/G x PGL(W)] is the stack
associated to [Z77%% /G x PGL(W)]P™. Given a morphism of schemes S — Z77% over
I, the pullback of the tautological family over QLU_SS] gives rise to a flat family of
uniform rank r, degree d, o-semistable torsion-free coherent sheaves over the family of
n-pointed genus g stable maps to X embedded in P(W) x P", obtained by pulling back
the universal family ¢y, : Ul — I to S giving an object of Jac(c)(S). This defines a
morphism ZZ %% — Jac(o) of stacks over M, (X, 3) which is invariant with respect to

the action of G x PGL(W), giving a morphism of categories fibred in groupoids

®: (2075 )G x PGL(W)]P™ = Jac(o).
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By the uniqueness of stackifications, it suffices to show that the stackification ® of P is
an equivalence of categories fibred in groupoids.

® is fully faithful: Since stackification is fully faithful, it suffices to show that @ is
fully faithful. Suppose we are given morphisms v; : S — ZZ7%¥ (i = 1,2) such that the

resulting families of semistable sheaves over stable maps

(hi: C;i = S;ot,... 0k fi : Ci = X3 Fy) € Jac(o)(S)
are isomorphic. Fix such an isomorphism; that is, fix an isomorphism of S-schemes
g : C1 — C5 which is compatible with the sections O’;- and the morphisms to X and fix
an isomorphism of coherent sheaves o : F7, — g*F5.

The isomorphism ¢ induces an isomorphism of invertible sheaves N7 = g* A5, where
Ni = weyys(01(S) + -+ +0,(9)) @ [ (0x(3)).

Choose a > 10 as in Section As the restriction of N to a geometric fibre is
non-special, the sheaves (h;).(N) are locally free of rank e — g +1 = dim W. By the

universal property of I there are invertible sheaves M; € Pic S and isomorphisms

12

Opwy(1) © Ops (1) © Oc; = (w5 (05(S) 4+ -+ +05(9)))* @ 7 (Ox (3a+1)) @ Oc, ® b M;

of invertible sheaves on Cj;. Pull back these isomorphisms along the projection py :

P(W) x P> — P(W) then push forward to S to obtain isomorphisms
(h)«(Opw) (1) @ Opyy ) = (ha)+(NF') @ M.

As each point of I corresponds (after composing with the projection py/) to a non-

degenerate curve in P(WW), the natural morphisms
HO(P(W), Opary(1)) ® Os = (hi)«(Opawy (1) @ Opyyr ()

are both isomorphisms. The sequence of isomorphisms
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yields an automorphism of S x P(W) sending the curve py (C1) to pw (Cs2), along with
a corresponding S-valued point of PGL(W), depending only on g, 71 and 7.

On the other hand, the isomorphism « : F; — ¢*F5 gives rise to an isomorphism
of A-modules Homx (T, Fy) = Homx (T, g*F>). By Proposition the A-module
Homx (T, Fy) is canonically isomorphic to the pullback of the tautological family M| ;o
along the morphism ~;, and similarly for the A-module Homx (T, g* F3), so there is an
induced isomorphism between the (free) A-modules v; (M| o-ss) and 73 (M] yo-ss). Such
an isomorphism determines an S-valued point of é, depending only on «, v; and . It
follows that & is fully faithful.

d is essentially surjective: Take an object
(h:C = S;01,...,00,f:C = X;F) € Jac(o)(S). (6.5.2)
Let N be the invertible sheaf
N = wys(@1(8) -+ 0a() @ [ (Ox(3)),
and consider the locally free sheaf h, N® From our choice of natural numbers m; the
sheaves h.(F' @ (L£})g"), h«(F ® (£})§?) (i,5 = 1,...,k) appearing in the A-module

Homx (T, F) are also all locally free Og-modules. Choose an open cover {S;} of S which

simultaneously trivialises the sheaves
N h(F@ (L)Y, i=1,....k, h(F®(L)g?), j=1,....k (6.5.3)

As Jac(o) is a stack, it suffices to show that the restriction of the object to each
S; C S lies in the essential image of ZZ~% — Jac(c). Without loss of generality, we
may therefore assume that all of the sheaves in are free Og-modules.

Pick an isomorphism WV ® Og = h, N®. Pulling back to C, we obtain a quotient

WY ® Oc =2 h*h L% — L% — 0.

This quotient embeds C' inside S x P(W) as a family of non-degenerate curves; in turn
C embeds inside S x P(W) x P? via the graph of f : C — X C P’. From the universal
property of I we obtain a morphism ' : S — I. On the other hand, by T heoremthe
free A-module Homx (T, F') is (fibrewise) o-semistable, so from the universal property
of Z77%% = Lo_ss] we obtain a morphism v : § — Z77*° which lifts the morphism
4" : S — I. This proves that ® is essentially surjective, completing the proof of the
result. O
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Corollary 6.5.4. Suppose o € G is positive. Then there is an isomorphism of stacks

over ﬂg’n(X, B)
T(0) = T gnar(X, B)(Le) = [Z77°°/G x PGL(W)).
In particular, each of the stacks J (o) is algebraic and of finite type over C.

Proof. Under the isomorphism of Proposition the diagonal one-parameter sub-
group G,, = A C G corresponds to the standard central copy of G,, in the automor-
phism groups of the sheaves appearing in Jac(o). The desired isomorphism is then
obtained by rigidifying the isomorphism of Proposition [6.5.3| with respect to these copies
of G,,. O

Remark. We only claim that Z77°° gives a smooth presentation when o is positive.
However, in the degenerate case the scheme (Q%)1' =% can be used to exhibit Jac(o)

and J (o) as quotient stacks, after replacing G and G with G/ and G/ respectively.

6.5.3 The Good Moduli Spaces are GIT Quotients

With the notation as above, we now show that the stack (o) admits a projective good

moduli space, which is a good quotient of the parameter space Z7~%°.

Theorem 6.5.5. Let 0 € & be either positive or degenerate. The stack J (o) admits a

projective good moduli space

j(0> = jgs)fn,dm (X7 ﬂ)(£0)7

which is a tame moduli space if all o-semistable sheaves appearing in J (o) are o-stable.
Moreover, J(o) is a good quotient of the scheme ZZ~5 under the action of the group
G x SL(W):

J(0) =2 Zy [y, Gx SL(W) := Z7~* | G x SL(W).

This good quotient coincides with the quotient of a relative (over I) GIT semistable locus
for the action of G x SL(W) on Z,.

Proof. First note that if all o-semistable sheaves appearing in (o) are o-stable then
J(0) is a Deligne-Mumford stack (cf. Section [6.3.2)), hence any good moduli space is

automatically a coarse/tame moduli space.
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Since TSL(W%SS(L) = TSL(W*S)(L) = I, after first replacing Z with the open and

closed subscheme Z,., the results of Propositions [6.4.12] and [6.4.13| are applicable to the

morphism Z, — I. As such, there exists a G x SL(W)-linearisation L, on Z,., an
equality ZZ7%% = ZG*SLW)=ss (T, _/T) of semistable loci, and a projective good quotient
Z77%% | G x SL(W) for the action of G x SL(W) on Z7~**.

Since the group GL(W) acts on ZZ~ %% through the quotient PGL(W), there is a

canonical identification of good quotients
Z27%¥ G x SLIW)=Z27% | G x PGL(W).

If o is positive, the isomorphism J (o) & Z, [, GxSL(W) follows by combining Corollary
[6.5-4 with Proposition [2.3.6] If instead o is degenerate, we apply Corollary [6.5.4] with
Proposition to Z7 '=ss in place of Z27% and G’ in place of G, then apply Corollary
to obtain an isomorphism of good quotients

2975 ) G x SL(W) =2 275 | &' x SL(W) = 27~ | G' x PGL(W).
This completes the proof. O

6.5.4 Closed Points of the Moduli Spaces

Continue to fix the stability condition o. Let (C,z, f) be a stable map in M, , (X, ),
and let [(C,z, f)] be the corresponding point in the coarse moduli space M, (X, 3).
Denote the pullback of J (o) along (C,z, f) : SpecC — My n(X,B) as T ¢z p)(0).

Fix a point jo € I corresponding to an embedded stable map whose underlying stable

map is (C,z, f). If (Zr);o_ss denotes the pullback of the master space Z7 %% along jo,
o
J (C.z.)(0). By Theorem and Corollary [6.4.10] the closed points of J (¢, f)(0) are

in 1-1 correspondence with S-equivalence classes of o-semistable degree d, uniform rank

the good quotient (Z,) /| G is isomorphic to the good moduli space Jc 4 py(0) of

r, torsion-free sheaves on the nodal curve C' underlying (C,z, f). The automorphism
group Aut(C, z, f) of the stable map (C, z, f) acts on the moduli space j((;@f)(a), with

the action corresponding to taking pullbacks of sheaves.

Proposition 6.5.6. The fibre of the map J(o) — My, (X,3) over the closed point
[(C,z, f)] € Myn(X, B) is isomorphic to the geometric quotient J(c 4 ry(0)/Aut(C,z, f).
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Proof. Applying the final statement of Proposition [6.4.12] it is enough to show that the
image of the stabiliser subgroup Stabgr,y)(jo) of the point jo under the SL(W) action
on I inside PGL(W) can be identified with Aut(C, z, f). But this follows by the same
argument used to prove that ® is fully faithful in the proof of Proposition taking
the base S to be SpecC. O

This yields the following description of the closed points of J(o), analogous to the
result [108, Theorem 8.2.1].

Proposition 6.5.7. Let (C,z, f) be a stable map in M, ,(X, ), and let [(C,z, f)] be
the corresponding point in the coarse moduli space Mg,n(X, B). Then the closed points
of J(o) lying over the closed point [(C,z, f)] are in 1-1 correspondence with equivalence
classes of o-semistable uniform rank r, degree d, torsion-free sheaves E over C, where
sheaves E and E' are equivalent if and only if the Jordan—Holder factors of these sheaves

differ by an automorphism of the stable map (C,z, f). O

Remark. As a consequence of Proposition m the open substack J (o) C J(0)
parametrising o-stable sheaves is saturated with respect to the good moduli space mor-

phism 7, : J (o) — J(0), in the sense that
T (0) = m5 (76(T " (0)))-

Therefore J (o) := m,(J (c)) is an open subscheme of J(c) which is a coarse/tame

moduli space for 7 (o) (cf. [6, Remark 6.2]).

6.6 Wall and Chamber Decompositions

We now turn to proving Theorem which concerns what happens as the parameter
o varies in the space of stability conditions.
6.6.1 Existence of Stability Decompositions

Here we closely follow [55, Section 4]. We keep the notation of Section Fix my-
ample Q-invertible sheaves L1,...,L; on the universal curve, and denote by ¥/ =

{0 € (Q29%\ {0} : Zle o; = 1} the resulting space of stability conditions.
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Definition 6.6.1. A chamber structure on X' is given by a collection {W; : i €
I} of walls, where each wall is either a real hypersurface in the conver space L =
{a € (RZ9k\ {0} : Zle o = 1} (the proper walls), or all of X. A subset C C X
which is maximally connected with respect to the property that for each i € I, either
CCW; orCNW; =0, is called a chamber. The chamber structure is said to be rational

linear if each proper wall W; is a rational hyperplane, and proper if all walls are proper.

Consider the collection of sheaves S consisting of all sheaves F' for which there exists
o € ¥ and a o-semistable, degree d, uniform rank r, torsion-free coherent sheaf E over
some stable map (C,z, f) in M (X, B), such that F is a saturated subsheaf of E and
such that for some o’ € ¥ (not necessarily equal to ), one has pu® (F) > u° (E).

Lemma 6.6.2 (cf. [55], Lemma 4.5). The collection S is a bounded family of sheaves.

Proof. Suppose E D F € S with E o-semistable and u” (F) > u” (E). By Lemma 2.11
of loc. cit. there exists j € {1,...,k} with % (F) > pu° (E). Since by Lemma m
E varies in a bounded family, and since the quotient E/F is torsion-free or zero, the

boundedness of S follows by applying Grothendieck’s lemma [69, Lemma 1.7.9], as in
the proof of [55, Lemma 4.5]. O

Now suppose E D F € S is a sheaf over some stable map (C,z, f) in M, (X, 3).

Suppose the underlying curve C' has irreducible components C1,...,C,. Set
k p p
Wg(Czf) =40 € 2R : Z oi | rx(F) Z dege; Li — x(E) Z rj(F)dege, Li | =0
i=1 j=1 j=1

Each Wg (¢4 ) is empty, the whole of Y or a rational hyperplane in ¥p. In the first
case the wall W, ¢, r) is discarded. As the wall Wi, ¢, ) depends only on the Euler
characteristic and the multirank of F', and as S is bounded, letting F' € S vary yields
finitely many possibilities for the proper walls which arise in this way, each of which is a
rational hyperplane. This gives rise to a finite rational linear chamber structure on the

set Y.

Lemma 6.6.3. Suppose E is a degree d torsion-free coherent sheaf of uniform rank r
over some stable map (C,z, f), such that E is semistable with respect to some o € 3.
Suppose further that F is a saturated subsheaf of E with F € S. Suppose additionally
that o', 0" € ¥' lie in a common chamber C C ¥'. Then p° (F) < (<) p’ (E) if and
only if u”" (F) < (<) p”" (E).
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Proof. This proof proceeds on similar lines to the proof of Lemma 4.6 of loc. cit. We
deal with the non-strict inequality case; the strict inequality case follows by essentially

the same argument. Swapping ¢’ and ¢ if necessary, suppose for a contradiction that

/ / ’

u (F) < (B) and " (F) > u”" (E).

Consider the linear function h : ¥ — R given by

k p
h(o) = Zo'i rx(F) Zdegcj L —x(E) ZW(F) degc, Li
i=1 j=1 j=1
By definition Wy, (¢4 5) is the zero set of h. By assumption, we have h(c’) < 0 and
h(c”) > 0. Since ¢’ and ¢” are both contained in the chamber C, it follows that
CNWg(car = 0. On the other hand there exists o’ € ¥’ on the line segment joining
o’ and o” with h(c”") = 0. As the chamber C is convex, C must contain this line segment,

which implies C N\ W (¢4 5) # 0, a contradiction. O

Proposition/Definition 6.6.4. There exists a rational linear chamber structure on %'

cut out by finitely many walls, such that if o', 0" € ¥/ belong to the same chamber, then:

1. if E is a degree d, uniform rank r torsion-free coherent sheaf over a stable map in

My n(X,B), then E is o' -semistable if and only if E is o”-semistable; and

2. if E and E' are degree d, uniform rank r torsion-free coherent sheaves over the
same stable map (C, z, f) in Mg, (X, ), which are both semistable with respect to
both o' and o”, then E and E' are S-equivalent with respect to o’ if and only if

they are S-equivalent with respect to o”.

Moreover, if o € X' does not lie in any wall then all o-semistable sheaves are o-stable.
We refer to this chamber structure on ¥ as the stability chamber decomposition (with

respect to L1, ...,Ly), and to the corresponding chambers as stability chambers.

Proof. The proof of the first two assertions proceeds along very similar lines to the proof
of Proposition 4.2 of loc. cit. Suppose o’,0” € ¥’ lie in the same chamber. Let E be
a o’-semistable, degree d, uniform rank r, torsion-free coherent sheaf over a stable map
(C,z, f) in My, (X,8), and let F C E be a saturated subsheaf. If 7" (F) < p°" (E)
then F does not destabilise F; otherwise £ D F € S and so u” (F) < p® (F) by Lemma
As such, E is also ¢”-semistable; this establishes the first assertion.
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To establish the second assertion, suppose E is strictly o’-semistable, so that there
exists a saturated subsheaf F C E with u” (F) = u° (E). By Lemma for any such
subsheaf F' we have p? (F) = p°" (E). In particular, a maximal length Jordan-Holder
filtration of F with respect to ¢’ must also be a maximal length Jordan—Holder filtration
of E with respect to " and vice versa, so grii(E) 2 grlll(E); this proves the second
assertion.

It remains to show that if ¢ € ¥’ is not contained in any wall WE (Cw,r) then all
o-semistable sheaves are o-stable. However, if F is a o-semistable degree d, uniform
rank r torsion-free coherent sheaf over the stable map (C,z, f) then for all saturated

subsheaves F' C E we must have u?(F) < p?(E), which implies that E is o-stable. [

6.6.2 Changing the Stability Condition and VGIT

As a consequence of the master space construction of Section [6.5] and the existence of a
finite stability decomposition on the space of stability conditions ¥’, the moduli spaces

J(o) are always related by finite sequences of Thaddeus flips (cf. Definition [2.5.5)).

Theorem 6.6.5. With the notation as in Section let 09,01 € X' be stability
parameters defined with respect to the relatively ample Q-invertible sheaves L1, ..., L.
Let o(t) = (1 — t)oog + toy for t € QN [0,1]. Then the good moduli spaces J(og) and

J(o1) are related by a finite number of Thaddeus flips of the form

J(o(tit1))

J(o(t:))
\ / (6.6.1)
J(o(t;))

for some t;,t: € QN [0,1]. In particular, J(oo) and J(o1) are related by a finite number
of Thaddeus flips through moduli spaces of rank r, degree d, torsion-free coherent sheaves

over stable maps in Mgy, (X, ).

Proof. The proof proceeds along similar lines to that of [56, Theorem 5.2]. If oy and o,
define the same stability condition then there is nothing to prove. Suppose instead that
oo and o7 lie in different stability chambers. As per usual, without loss of generality
we may assume that the L£; are genuine relatively very ample invertible sheaves. Let

S cXn{o(t):teQn]0,1]} be a set of representative stability conditions for each of
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the stability chambers the line segment o(t) intersects, with exactly one representative
in & for each such chamber; for the chambers containing o¢ and o1, we choose these
stability conditions as representatives. As the stability decomposition is cut out by
finitely many walls, the set & is finite.

Asin Section form the master space Z = Zg; the moduli spaces J(o;) obtained
as t € [0, 1] varies are all GIT quotients of this master space. Every time a wall W;
separating chambers C; and C;11 with respective representative stability conditions o(t;)

and o(t;41) is crossed by o(t), taking limits in the inequalities (5.2.5|) give inclusions
Za(ti)fss C ZU(t;)—SS > ZU(ti+1)_55
Id s T .

Here o(t}) is the stability condition between o (t;) and o(t;+1) lying on the wall W;. The
moduli spaces J(co(t;)) and J(o(t;11)) are then related by the Thaddeus ﬂi
through the moduli space J(o(t;)). As there are finitely many wall crossings between
oo and o1, the good moduli spaces J(og) and J(op) are related by a finite number of
Thaddeus flips. ]

6.7 Singularities of the Moduli Spaces over M,

In this final part of Chapter [f] we prove Theorem which extends [31, Theorem A]
to the case where there are n > 0 marked points. Evidently, as far as stability conditions
are concerned it is enough to work with a single relatively (very) ample invertible sheaf

L on the universal curve over ﬂg,n. As such, we will prove the following theorem.

Theorem 6.7.1. Fix a relatively very ample invertible sheaf L on the universal curve
over My ,,. Assume g > 4. Then the good moduli space j;fmd,l(Spec C,0)(L) has canon-

ical singularities.

This section closely follows the papers [30] and [31].

6.7.1 An Alternative GIT Construction of Compactified Universal Ja-
cobians

The construction presented in Section [6.5| was carried out in such a way as to be able to

relate changes in stability conditions to variation of GIT (cf. Theorem [6.1.2]). However,

8This is a Thaddeus flip in the sense of Definition[2.5.5| since the above loci are relative GIT semistable
loci, cf. Theorem W
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in order to be able to prove Theorem [6.7.1] it will be helpful to instead work with
an alternative GIT construction of the good moduli space J gm.dr (X5 B)(L), based on
Simpson’s construction (cf. Section [4.2)); this construction is similar to the construction
given by Pandharipande in [108].

Fix a relatively very ample invertible sheaf £ on the universal curve over M, (X, ).
Once again, consider the universal family (¢y : Ul — I;7,...,7,) from Section
and let Lewve = Ly my,mpes, With the triple (myy, my, mpis) as in the statement of
Theorem so that we have fSL(W)fsS(Lcurve) = fSL(W)fs(Lcurve) =1.

This time, we apply Simpson’s construction to the projective morphism ¢y : UI — 1,
along with the pullback L£; of £ to UI. For M > N > 0, this yields an open subscheme
R =Ry of Qn = Quoty (Vv @ E;N, ]5), where P is the Hilbert polynomial of degree
d, uniform rank r torsion-free sheaves over the fibres of the universal curve ¢y with
respect to L. We also obtain a fibrewise action of GL(V) = GL(Vy) (which factors
through the quotient PGL(Vy)) and a relatively ample (with respect to the structure
morphism R — I ) linearisation Lgheat = LN, 00 R’, the closure of R’ in Qy, for which
R’ ROV (Lsheaf) = R'. By Lemma there exists an open and closed subscheme
R!. C R’ parametrising those points of R’ whose underlying coherent sheaf is of uniform
rank r. The schemes R’ and R] admit actions by the product group GL(V) x GL(W);
both actions factor through the quotient PGL(V') x PGL(W).

Proposition 6.7.2. There are isomorphisms of stacks over Mg, (X, 3)
Jacy ar (X, B)(L) = [R,/GL(V) x PGL(W)]

and
T gindr(X: 8)(L) & [R]/PGL(V) x PGL(W)].

Moreover, there is a projective good quotient R., J SL(V) x SL(W) = R, ) PGL(V') x
PGL(W), and this is isomorphic to the good moduli space JgndT(X, B)(L) of both

7@ gndr(X ﬁ)( ) and jgndr(Xvﬁ)( )

Proof. After making the necessary modifications to take into account the use of Simp-
son’s construction, the argument used to prove the first assertion proceeds along the
same lines as the ones used to prove Proposition and Corollary That is,
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SS

. . . . / =
there is an equivariant morphism R, — J acy’n dr

(X, B)(L), inducing a morphism of

categories fibred in groupoids

P : [R./GL(V) x PGL(W)]P*® = Jac,?, 4.(X, B)(L).

This morphism is fully faithful, hence so is its stackification ®. The morphism ® is then
an isomorphism of algebraic stacks [R./GL(V) x PGL(W)] = 7ac§fn7d7T(X, B)(L). The
G p-rigidification of this morphism yields an isomorphism [R./PGL(V) x PGL(W)] =
75 00 (X,)(0).

That there exists a projective good quotient R}, / SL(V)x SL(W) = R, ) PGL(V) x
PGL(W) isomorphic to the good moduli space j;fn,dm(X , ) (L) now follows from Propo-
sition [2.3.6] (which asserts that if a quotient stack [Y/G] has a schematic good moduli
space M then M is a good quotient of Y by G) and the uniqueness of good moduli

spaces. ]

The existence of a projective good quotient R/, / SL(V') x SL(W') can also be proved
using relative GIT, in a way similar to Pandharipande’s construction [I08]. The exis-
tence of a relatively projective good quotient of R/, over I with respect to the fibrewise
SL(V') action is given by Theorem The formation of the quotient with respect
to the residual SL(W)-action can then be carried out using Proposition m The
resulting good quotient coincides with the quotient of a relative GIT semistable locus
E;SL(V)XSL(W)_SS@/I) for some ample SL(V) x SL(W)-linearisation L on the closure
E;, of R,, analogously to the result of Proposition . Since each point of I is
SL(W)-stable, each point of R, is (relatively) stable under the action of SL(W).

Lemma 6.7.3. Let p € R). be a point corresponding to a L-semistable sheaf F over the
stable map (C,z, f). Then the point p is SL(V') x SL(W)-polystable if and only if F is
a polystable sheaf (with respect to L).

Proof. The point p is polystable if and only if 7= (7(p)) equals the SL(V') x SL(W )-orbit
of pin R) (as opposed to the orbit closure), where 7 : R, — R, /SL(V)xSL(W) denotes
the GIT quotient. Since the SL(W)-quotient R, J/ SL(V) — (R J SL(V)) J SL(W) =
R..JSL(V)x SL(W) is a geometric quotient, and in particular an orbit space morphism,
this is true if and only if (/)1 (7'(p)) = SL(V)-p where 7’ : R, — R J/SL(V) is the GIT
quotient with respect to SL(V'), i.e. p is SL(V)-polystable. But p is SL(V)-polystable
if and only if F' is L-polystable, by Theorem 4.2.5 O

117



For the rest of this chapter, we restrict attention to the setting of considering torsion-
free uniform rank r = 1 sheaves over marked stable curves (C,z) € M,, which are
(fibrewise) semistable with respect to the choice of relatively (very) ample invertible
sheaf £. As such, for the rest of this chapter we introduce the following shorthand

notation.

Notation 6.7.4. We denote J ., := 7an,d,1(8pec C,0)(L), and denote its good moduli

space as Jgp.

6.7.2 Deformation Functors

Before we can begin proving Theorem|[6.7.1] we first need to study the deformation theory
of torsion-free rank 1 sheaves on marked stable curves. The content of this section closely
follows [30, Section 3].

Let (C,z) be a marked curve (not necessarily complete), and let F' be a coherent

sheaf on C. Let A be a local C-algebra with residue field C.

Definition 6.7.5. A deformation of (C,z, F') over A is a quintuple (Ca,z 4, Fa,1,7)

where:

1. Cy is a flat A-scheme, and x4 is a tuple of sections xp o : Spec A — Cy (for
kE=1,...,n);

2. Fy is an A-flat coherent sheaf on Ca of finite presentation;
3. 1 1s an isomorphism Cq @4 C 5 C, compatible with the sections x and z4; and
4. ji(Fy®4C) S F is an isomorphism of Oc-modules.

The trivial deformation of (C,z, F') over A is the quintuple (C @c A,z @c A, F ®c
A, ican, jean), Where ican and jean are the canonical maps.
If (C, 2y, Fy, 7, j') is a second deformation of (C,z,F) over A, then an isomor-

phism of deformations from (Ca,z 4, Fa, i, j) to (C'y, &'y, Fly, 7', 3') is a pair (n, X), where:

1. n is an isomorphism of A-schemes C4 5 C'"y, compatible with the sections x 4 and

a'y, such that i’ o (n® 1) = i; and

2. A is an isomorphism of Ocy, -modules 1.(Fa) = F'y such that ' o i, (A®@1) = j.
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A deformation of (C,z) over A is defined by omitting the data of F4 and j from the
definition of a deformation of a triple (C,z, F'); the trivial deformation of (C,z) over A
and isomorphisms of deformations of (C,z) over A are defined analogously.

A deformation of F' over A is a pair (Fa,j) such that (C ®c A,z ®&c A, Fa,ican,])
is a deformation of (C,z, F) over A. The trivial deformation of F' over A is the pair
(F ®c A, jean). If (F'y,j') is a second deformation of F over A, an isomorphism of
deformations from (F4,j) to (F',j') is an isomorphism X : Fa = F', such that j =
Jo(A®1).

Definition 6.7.6. The functor Def ¢, ) : Artc — Set is defined by setting Def ¢ 4 r)(A)
to be the set of all isomorphism classes of deformations of (C,z, F) over A. The functors

Def(c ) and Defp are defined analogously.

Recall from Section that an automorphism of the triple (C, z, F') is a pair (o, 7),
where 0 € Aut(C,z) and 7 is an isomorphism of Oc-modules o, F = F. The group

Aut(C,z, F) acts in a natural way on Def ¢, r), via
(07 T) : (CA3§A7 FA7 Z?]) — (OA7§A> FA7 00 iv TO U*(])) (671)
In a similar manner, there are actions of Aut(C,z) on Def ¢,y and Aut(F) on Defp.

Notation 6.7.7. Given a marked prestable curve (C, ), a local C-algebra A with residue
field C and a deformation (Ca,z4) of (C,z) over A, we denot&ﬂ

n
Cierzn = tyn (103 5) ).
i=1
We also denote Lo z) = L(ccze) = w(10(z + -+ - + ).

We now introduce the deformation functors arising from the parameter scheme

Q = QN — QuotUI/](VN ®£I_N,ﬁ),

where V' = Vj is a finite dimensional C-vector space. Suppose we are given a quotient

q:V® L'(_CNm) — F and a closed embedding p : (C,z) — P(W) x P(W)*" which on C

restricts to a 10-10g—can0nicaﬂ non-degenerate closed embedding C' — P(W).

9From now on we fix a = 10.
"9That is, the pullback of Op(yyy(1) to C is isomorphic to Lo,z = we (10(z1 + -+ + x0)).
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Definition 6.7.8. A deformation of the pair (p,q) over A is a septuple of the form
(Ca x4, Fa,1,7,p4,q4) such that:

1. (Ca,z4,F4,1,7) is a deformation of (C,z, F) over A;

2. pa: (Ca,zy) = Pa(W) x PA(W)*™ is a closed embedding such that Oc, (1) and

wlca/A(logA) are isomorphic and such that py ® 1 = poi; and

3 qa: VoL ) = Fa is a quotient with q =joi(qa®1).

(CA:QA
Given a second deformation (p',q') over A, an isomorphism of deformations from (p, q)
to (p',q') is given by an isomorphism (n,\) of the underlying deformations of (C,z, F)
with the additional properties that:

1. Xonu(qa) = ¢)y; and
2. pa=7pon.

A deformation of the triple (C,z, q) over A is a sextuple (Ca,z 4, Fa,i,7,q4), where
qga: Ve L )y~ F4 is a quotient such that:

(CA&A

1. (Ca,x4,F4,1,7) is a deformation of (C,z, F) over A; and
2. q=joixqa®1).

Gwen a second deformation (C'y,z'y, Fy,7',j',¢,) over A, an isomorphism of deforma-
tions from (Ca, x4, Fa,1, j,qa) to (C'y, 2’4, F'y, 7', 5, ¢y) is given by an isomorphism (n, \)
of the underlying deformations of (C,z, F') with the additional property that Aon,.(qa) =
/
dy-
We define the functor Def, ,y : Artc — Set (resp. Def(c,q) @ Artc — Set) by
assigning to A the set of all isomorphism classes of deformations of (p,q) (resp. (C,z,q))

over A.

6.7.3 Miniversal Deformation Rings

We require an explicit miniversal deformation ring for the functor Def, r). In order
to obtain such a ring, we first give an explicit description for the miniversal deformation

ring for the local model (Oy, Fp). Here we continue to follow [30, Section 3].
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Definition 6.7.9. The standard node is the complete local C-algebra Oy = Cl[x, y]]/(z,y).
Denote the normalisation of Oy by Op; as a subring of Frac(Qy), this is the ring
Oolz/(x + y)]. We additionally denote by Fy the ideal (x,y) C Og, considered as an

Og-module.

The module Fj is the unique torsion-free uniform rank 1 Op-module (cf. [45, Chapter

I11]), and admits the following descriptions:

(i) Fo = @0, considered as an Oy-module; and
(ii) the Op-module with presentation (e, f :y-e =z f = 0).

It is a standard result that a miniversal deformation space for the standard node
arises from the family of curves Spec Cl[z,y,t]]/(zy — t) — Spec C[[t]], realising C[[t]]
as a miniversal deformation ring for Defo, (see for instance [63, Example 14.0.1]). The

deformation functor Def o, ) similarly admits an explicit miniversal deformation ring.

Definition 6.7.10. Define a deformation (Og, Fs,i,j) of (O, Fy) over the ring S :=
Cllu, v, t]]/(uv — t) by setting:

1. Og = Sl[z,y]l/(xy — t);

2. Fs to be the Og-module with presentation (€, fiy-é=—u-fo-f=—v- €);

3. i:0g®gC > Oy to be the isomorphism which is the identity on x and y; and

4. ji(Fs ®g C) = Fy to be the isomorphism defined by é @1+ e and f @1 — f.

Lemma 6.7.11 ([30], Lemma 3.14). The deformation (Os, Fs,i,j) defines a morphism
Spf(S) — Def(o,,r,) which realises S = Cl[u,v,t]]/(uv —t) as a miniversal deformation

ring for Def o, ry)-

6.7.4 Deformations of Stable Curves

Before continuing, we collect a couple of standard results concerning the deformation

theory of marked stable curves.

Proposition 6.7.12. Let (C,x) be an n-marked stable curve of genus g.
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1. The tangent space to Def ¢ ) is isomorphic to Exty(Qc(z), Oc); the dimension

of this vector space is 3g — 3 + n.

2. There exists a local universal deformation of (C,x) over a smooth pointed scheme
(B,bo) whose Kodaira—Spencer map TyyB — TDef (¢ 4y = Ext&(Qco(z), Oc) is an

isomorphism.

Proof. See for instance [12, Pages 182-186]. O

6.7.5 Global-to-Local Transformations

Suppose (C, z, F) is a triple consisting of a torsion-free uniform rank 1 coherent sheaf F'
over a stable curve (C,z). Let A = A ) denote the set of nodes of C' where [ fails to
be locally free. For a node e € A, let C'; = Spec (7)\076 and let F, denote the pullback of

F to C.. We have global-to-local transformations of deformation functors:

Def(C@,F) — H Def(C’e,Fe)7 Defp — H Defpe, Def(a@ — H Def(;e.
e€A e€A ecA

Proposition 6.7.13. All of these transformations are formally smooth. Moreover, the

deformation functors [[.ca Defc, and [[.ca Def(c, r,) are both unobstructed.

Proof. The formal smoothness of Def (¢ ) — [[.ca Defc, follows from the same argu-
ment given in [39, Proposition 1.5], after first replacing Q¢ with Q¢(z) and making
use of the isomorphism TDef (¢ ,) = Ext&(Qc(2), Oc). The formal smoothness of the
middle transformation is a special case of [49, Proposition B.1]. From Proposition A.3
and Remark A.4 of loc. cit., the functors [[.ca Defc, and [[.ca Def(c, 7.y are both
unobstructed.

Using the same argument used to prove Proposition A.1 and Lemma A.2 of loc. cit.,

the canonical map

Def(aLF) — Def(cﬁ) XHeeA Def, (H Def(Ce,Fe)>
ecA

is formally smooth. As such, Def ¢, ) — [lca Def (¢, F.) is a composition of formally

smooth functors, whence formally smooth. O
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Define Def(chglf’;) = Def(A(;ILO)C := [leen Def (¢, F.), and define Def%71°¢ and Def(AC_@k)’C =

Defé_loc analogously. Set Def(Aé_;tF) to be the kernel of Def (¢, ) — Def(AC_;Of,), and
define Def?ilt and Def(ACTIIS analogously. We have a commutative diagram

fA—loc

Def21t y Def(o,g,F) —— De (Cyz,F)

(Cz,F
HAflt 11 HAfloc (672)

fA—loc

Def g~ Def(cy) ——— Def

(Ciz)

where the vertical maps correspond to forgetting the sheaves. At the level of tangent

spaces, we have the following diagram with exact rows (the exactness of the two rows is
a consequence of Proposition [6.7.13)):

0 — TDef; ) ————— TDef(g, p) ——— TDefl, 0 —— 0

(Cz,F) (Cz,F)
THAflt TII THA*]OC
0 —— TDeff; ! ——————— TDef(¢y) —— TDef 1% —— 0
(6.7.3)

Since F is invertible away from the nodes in A, the map TTI*™! is surjective. By
[30, Lemma 3.16], the kernel of TTI®~! is isomorphic to the tangent space TDef; =
H! (GA, (’)%A), where L is any invertible sheaf on the partial normalisation 5A of C' with
respect to A whose push-forward is F'. In particular, the vector space TDef(ACj;F), and
hence TDef ¢ 4 r), is finite dimensional. Exactly as in [23, Proposition 2.19] (which in
turn relies on the application of Schlessinger’s theorem given in [120, Theorem 3.3.11]),
it follows that Defc , ) admits a miniversal deformation ring.

Denote by R(cg4 r) the ring c[rv Def (¢ 5 m)]; the miniversal deformation ring of
Def (¢4 ) can be identified with the power series ring R(C’% F), obtained by completing
at the maximal ideal generated by TV Def (C,z,F)- In particular, there is a formally smooth
morphism @ : Spf (ﬁt(c& 7)) = Def(c 4 ) whose derivative T'® is an isomorphism, real-

ising ]:Z(C@ ) as the miniversal deformation ring. After choosing identifications of each

(Ce, Fe) with (Oq, Fp) and choosing a splitting of the first row of (6.7.3), by Lemma
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6.7.11] there is an isomorphism

te7umve

Rcpry = C[TY Deff 1% | @c C[TY Deffy; @

(C,z,F) CxF C[TVDefA N ]
EA

(ueve — te) (C,F)
(6.7.4)
Here the variable t. is the coordinate parametrising the smoothing of the node e.
We also introduce the ring R (¢ z) := C[T" Def ¢ 4], whose completion is the miniver-
sal deformation ring for Def ( ;); analogously to ®, we have a formally smooth morphism
® : Spf (R(C&)) — Def(¢ ) whose derivative is an isomorphism. After choosing a split-

ting of the second row of (6.7.3)) compatible with the splitting of the first row, we have

Roz) = C[TVDef, 5 @c C[TY Defy; j] = Q) Clte] wc C[TY Def 8], (6.7.5)
eeA

where as in (6.7.4]), t. is the coordinate parametrising the smoothing of the node e.
There is an evident injection of C-algebras R (¢ ;) < Rz, r)- By taking completions

followed by formal spectra, we obtain a diagram

Spf (R ) ———— Defc . p)
l u (6.7.6)
R

6.7.6 Actions of Automorphism Groups

Let (C, z, F') be a triple consisting of a torsion-free uniform rank 1 coherent sheaf F' over

a stable curve (C,z). There is an exact sequence of groups
1 — Aut(F) — Aut(C,z, F) — Stabg g (F) — 1,

where Stab ¢ ) (F) is the subgroup of Aut(C, x) consisting of automorphisms with o* ' =
F; since (C, z) is stable, this group is finite.

As given by Equation , Aut(C,z, F) acts naturally on Def (¢, i), and so acts
naturally on the tangent space T'Def(c, ), in such a way as to preserve the top row
of (6.7.3). This implies that Aut(C,z,F) acts in a natural way on the ring Rca.F),
preserving the decomposition (6.7.4]). Similarly, Aut(C,z) acts in a natural way on the
ring R(c ), preserving the decomposition (6.7.5). These actions lift to unique actions

on the miniversal deformation rings R(C,L r) and R(C@).
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Proposition 6.7.14. Let (C,z, F') consist of a triple of a torsion-free uniform rank 1

sheaf F' over a stable curve (C,x).

1. There is a unique action of Aut(Fp) on the miniversal deformation ring S =
Cllu,v,t]]/(uv — t) with the properties that the map Spf(S) — Def o, g, is equiv-
ariant, and that the subgroup 1+ (x,y)Oy C Aut(Fy) acts trivially on S.

2. There exists a unique action of Aut(C,z, F) on the miniversal deformation ring

R(c z,r) which makes the morphism ® : Spf(R(c 4 7)) — Def (¢4 ) equivariant.

3. There exists a unique action of Aut(C, z) on the miniversal deformation ring ]A%(Cﬁ)

which makes the morphism ® : Spf (R(O@) — Def(c ) equivariant.

Moreover, the actions in (2) and (3) are such that the two vertical maps in Diagram

(6.7.6) are equivariant with respect to the homomorphism Aut(C,z, F) — Aut(C, z).

Proof. The same argument as used in the proof of [30, Fact 5.4], which is based on

applying [111, Theorem on Page 225], carries over. O

Via the inclusion Aut(F) C Aut(C,z, F'), the group Aut(F) acts on the deformation
ring Rz ). Let I' := I'c(A) be the dual graph of the curve obtained from C' by
smoothing the nodes not in A. It follows from [30, Remark 5.9] that Aut(F’) is a torus,
isomorphic to Tt := HveV(F) G-

Lemma 6.7.15. Let Aut(F) act on R(c g ) via the inclusion Aut(F) C Aut(C,z, F).
Then, with respect to the decomposition (6.7.4)):

1. Aut(F) acts trivially on C[TV Def(ACT;F)].

2. Given an element A = (\y)pey(ry € Aut(F), we have

—1 -1
AU = )\t(e))\h(e)ue, AV = )\t(e))\h(e)ve, Ate = te.

Proof. By the same argument used to prove Lemma 5.3 of loc. cit., the subgroup
Aut(F) acts trivially on the deformation functor Def(AC_;tF), and hence acts trivially
on C[TV Def(ACT;,t F)]. The second statement is proved in the same way as Theorem 5.10

(ii) of loc. cit. O

We introduce the following notation.
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Definition 6.7.16. Let I' be the dual graph of a connected nodal curve.
1. The ring B(L') is the C-algebra @, .c p(r) %

2. The ring U(T) is the algebra of Tr-invariants of B(T'), for the action of Tt defined
by specifying that for A = (Ay)yev (),

A tie = M)Ay -

heyles AVe = A o An(e)les A-te = te.

Corollary 6.7.17. In the situation of Lemma we have an isomorphism

Aut(F) ~ _
R(Cf; F)) = U(I') @c C[TY Def ', .

We have the following important result of Casalaina-Martin—Kass—Viviani concerning

the singularities of the affine scheme Spec U(T").

Proposition 6.7.18 (Casalaina-Martin—-Kass—Viviani). The ring U(T") is a finitely gen-
erated integrally closed C-algebra, and the singularities of SpecU(I') are Gorenstein,

rational and terminal.

Proof. In light of [31, Theorem 6.2], this is Theorem B of loc. cit. O

6.7.7 Completed Local Rings of the Moduli Spaces

We now relate the complete local rings of the good moduli space J, 5, to completed rings

AAut(Coz, F)

of invariants of the form R 2" 7. Here we closely follow [30, Section 6].

Lemma 6.7.19 (cf. [30], Lemma 6.3). Suppose (C,z,F) is a triple consisting of a
torsion-free uniform rank 1 coherent sheaf F over a stable curve (C,x). Suppose in
addition that we are given a quotient q : V ® E(_CNm) — F and a closed embedding
p: (Cyz) — P(W)xP(W)*™ which on C is a 10-log-canonical non-degenerate closed em-
bedding. If H(C, F®£é\é£)) = 0 then the forgetful transformation Def ,, ;) — Def (¢4 r)

1s formally smooth.

Proof. Suppose we are given a surjection B — A of Artinian local C-algebras, a de-
formation (Cp,zp, Fp,ip,jp) over B and a deformation (Ca, x4, Fa,i4,54,P4,q4) Of
(p, q) over A such that the associated deformation of (C,z, F') is isomorphic to (Cp ®p
Ajzp ®p A, Fp ®p A,ip ® 1,jp ® 1). We must show there exists a deformation of

the form (Cp,zp, FB,iB,jB,pB,98) of (p,q) over B extending the given deformation
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(Cayzy, Fa,ia,j4,04,94) and inducing the deformation (Cp ®p A,z ®p A, Fp ®p
Ajip®1,jp®1).

Assume first B — A is a small extension with kernel xk = €B, ie. € € mp is
annihilated by the maximal ideal mp of B. Cs — Cpg is then a closed embedding
defined by the square-zero ideal sheaf 7*k, where m : Cp — Spec B is the structure
morphism; the flatness of Fp over B implies that there is a short exact sequence of

O¢p-modules

CAx

obtained by twisting the ideal sequence of C'4 C Cp. The vanishing of the cohomology
group H'(C, F®£( )) implies that H!(Cp, 7 /1®FB®£(CB . )) = 0, so the restriction
morphism H°(Cp, Fp ® 'C(CB . )) H(Cx, Fa ® 'C(CA - )) is surjective. Similarly,
HO(CB,wC /B(IO:I:B)) — HO(C’A,wC /A(l()gA)) is surjective.

In the case where B — A is not a small extension, by factoring the morphism
B — A as a sequence of small extensions we again obtain that the maps H°(Cp, Fg ®
E%BQB)) — HO(CA,FA@JE% - )) and HO(CB,wC /B(logB)) — HO(CA,UJCA/A(IOQA))
are both surjective.

We first attempt to lift the quotient g4. Fix a basis e1,...,ep for V, and let
51,...,50 € HO(Cy, FA®£€V )) be the images of the e; under the quotient Vo Oc, —
FA®L€\6A£ ) Pick lifts s} € HO(C'B, FB®£(C =z )) of the s;. This defines a morphism of
O¢y,-modules V& Oc, — FB@E(CB@ ) Let gg be the induced map V®£(C oy Fp;
by construction the morphism ¢p is surjective.

We next attempt to lift the embedding pa : (Ca,z4) — Pa(W) x Po(W)™. Fix a
basis eq,...,ex for WY. The given embedding C4 — P4(W) corresponds to a homo-
morphism WV @¢ A — HO(CA,wC /A(logA)) of A-modules such that, if ¢; is the image
of e; ® 1, then the ¢; generate wCA/A(l()gA), each open set (Cy4)y, is affine, and for each
i the morphism Aly1,..., 9, ..., yx] = H°((Ca)s,, O(CA)ti) sending y; — t;/t; is surjec-
tive. Pick lifts ¢ € HO(C’B,wC /3(10@)), and define a homomorphism WV ®¢ B —
HO(CB,wC /B(IOQB)) by sending e; ® 1 +— t; this defines a morphism Cp — Pg(W)
which is a 10-log-canonical closed embedding. Letting pp : (Cp,zg) — Pp(W) x
Pp(W)*™ be the induced morphism, the deformation (Cp,zg, FB,iB,j,PB,q8) of (P, q)
over B has the desired properties. This completes the proof of the lemma. ]
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We now return to working with the parameter spaces introduced in Section [6.7.1

Recall that we denote V' = Vi and Q = Qn = Quoty;/; (Vv ® EI_N, P).

Lemma 6.7.20 (cf. [30], Lemma 6.4). Suppose (C,z,F) is a triple consisting of a
torsion-free uniform rank 1 coherent sheaf F over a stable curve (C,x). Suppose in
addition that we are given a point § € Q, corresponding to a quotient q : V®L(CJL) — F
and a closed embedding p : (C,x) — P(W) x P(W)*™ which on C is a 10-log-canonical
non-degenerate closed embedding. Assume further that H'(C,F ® Eé\é@)) = 0, and
that the induced maps V. — H°(C,F ® Eé\é@) and WY — H°(C,w(10z)) are both
1somorphisms.

If Z is a slice through § for the action of G = SL(V') x PGL(W) in some invariant
affine open neighbourhood y € U C Q, then the completed local ring 62,@ 15 a miniversal

deformation ring for Def ¢ . F)-

Proof. From the universal property of (), the complete local ring 6U,g pro-represents
Def(;, 4)- Let D be the deformation functor pro-represented by @Zy We will show that
the restriction Def(;, ;) — Def(c 4 ry to D is formally smooth and an isomorphism on the

level of tangent spaces, which will establish the lemma. Since Def(, ;) — Def(c, r) is

P
formally smooth, it suffices to show the following;:

(i) D(Cle]) — Def (¢ 4 r)(Cle]) is injective, where Cle] is the ring of dual numbers; and

(ii) for any A € Artc, the map D(A) — Defc, r)(A) has the same image as
Def(p,q) (A) — Def(cﬁ,p)(A).

Let H = Stabgrv)xparw)(@). Let g (resp. h) be the deformation functor pro-
represented by the completion of the local ring of G (resp. H) at the identity. The
infinitesimal action of g on the trivial deformation of (p, ¢) defines a natural transforma-
tion g/h — Def(, ;). By choosing a local inverse of Z x* (SL(V) x PGL(W)) — U, the
existence of the slice Z implies the existence of a morphism Def(, ;) — g/h, admitting
g/b — Def(,, ;) as a section, with the property that for any A € Artc, the preimage of
0 € (g/h)(A) is D(A) C Def(,, 4)(A). Via utilising the morphism Def, ;) — g/b, the fact
that the map D(A) — Def(¢, r)(A) has the same image as Def(,, ;)(A) — Def (¢ 4 r)(A)

is deduced in exactly the same way as in the proof of [30, Lemma 6.4].

128



The image of (g/b)(Cle]) — Def(;, 4y (C[e]) is easily seen to be contained in the kernel
of Def(,, 4)(Cle]) — Def(c 4,7y (Cle]); we claim this inclusion is in fact an equality. Tak-
ing A = Cle], let (Ca,z4,FA,i,7,04,94) be a first-order deformation of (p,q), where
(Ca,xy, Fa,i,j) is the trivial first-order deformation. p4 and g4 induce morphisms of

A-modules
Vac AB HYCAL FA® LY, , ), WY ec AS H(Cawl, ,(102,))

which restrict to isomorphisms over C. Pick bases for the vector spaces HY(C, F ®
Eé\é@) and HY(C,wl?(10z)); via the identifications i and j, we obtain induced bases for
HO(Ca, FA®C%A£A)) and H°(Ca, wéOA/A(mgA)) over A. After picking compatible bases
of V and WV, we may represent p/; (resp. ¢/4) by a matrix [p4] (resp. [¢4]) which reduces
to the identity modulo €. By arguing as in the penultimate paragraph of the proof of
Lemma 6.4 of loc. cit., we obtain that the kernel of Def ,, ,(C[e]) — Def (¢, r)(Cle]) is
contained in the image of the orbit map. This proves the claim.

By exactly the same argument as in the final paragraph of the proof of Lemma 6.4 of
loc. cit., the image of the orbit map has trivial intersection with D(Cle]). This implies

that D(Cle]) — Def ¢ 5 r)(Cle]) is injective, which finishes the proof of the lemma. [

Let § € @ be as in the statement of Lemma and assume in addition that
F' is semistable with respect to the chosen (universal) stability condition £. Let H :=

Stabgr(v)x parow)(9). There is a natural homomorphism
a:H— Aut(C,z,F), h=(hy,hw)— alh) = (ai1(h),az(h)).

Here a(h) is the unique element of Aut(C,z, F) such that p o ay(h) = hy o p and
az(h) o ar(h).(q) = go hy'.

Lemma 6.7.21 (cf. [30], Lemma 6.6). The natural homomorphism « is injective, and
has image equal to the subgroup Auty(C,z, F') of automorphisms (o,7) € Aut(C,z, F)
such that the composition

HY(C,F® cgvc@) —72  HYC,0.F ® L?’C@) — T S HY(C,F® c%&))

has determinant 1.
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Proof. Taking the target X to be a point and the curve class 8 to be zero, recall from

Proposition that we have an isomorphism
Jacy ap(L) = [R/GL(V) x PGL(W)],

where R} is an open subscheme of @ = Quoty; (VN ® EI_N ,ﬁ) As F' is assumed
to be semistable then § € R}. The restriction of the induced isomorphism of groups
o : Stabarvyx parw)(9) = Aut(C,z, F) to H coincides with o, and has image equal
to Auty(C,z, F). O

We are now in a position to be able to relate the completed local rings of jg,n with

the miniversal deformation rings B¢, r)-

Proposition 6.7.22 (cf. [30], Theorem 6.1 and [31], Theorem 8.1). Suppose (C,z, F')
is a triple consisting of an L-semistable torsion-free uniform rank 1 coherent sheaf F
over a stable curve (C,x), corresponding to a closed point of the stack 79771. Suppose in

addition that F is polystable (with respect to L). Then there is an isomorphism

A ~ pAut(C.z,F)
OFpmlCap) = Bicer

where the action of Aut(C,z, F) on R(C&F) is the one arising from Proposition|6.7.1/
namely the unique action on R(C,g,F) making ® : Spf(R(C’%F)) — Def(c g, r) equivariant.

Remark. The isomorphism @?g W(Coa )] = R?C:l;(g)gm

essarily so, as R(C@ ) itself is only defined up to a non-canonical isomorphism.

is non-canonical, but this is nec-

Proof. Pick a lift g € R} C Q of (C,z, F). Since F is polystable, by Lemma the
point g is GIT polystable. In particular, we can find an invariant open affine subscheme U
of R} containing g, for which the orbit of g in U is closed. As such, we may apply the Luna
Slice Theorem (Theorem to prove the existence of a slice Z through g in U C R).
In particular, there is an isomorphism of complete local rings O =2 OgyH1a-

By Lemma (5Z,g is a miniversal deformation ring foj g[?e[;f; wF;]) Mor/feoiz}r,
the natural transformation Spf(@z7g) — Def(c 4, r) is equivariant with respect to the
natural homomorphism H = Stabgrv)xparuw)(9) — Aut(C,z, F). Consequently, by
Proposition the identification @Z,g o R(07L F) is H = Auty(C, z, F)-equivariant,

whence

~

(Onp)" = (Rigg ) 1),
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By Matsushima’s criterion (Proposition , the group Aut;(C,z, F) is reductive.
Similarly, the group Aut(C,z, F) is also reductive. Invoking [30, Lemma 6.7], which as-
serts that taking the invariants of a (linearly) reductive group action on a local ring

commutes with taking completions, we have an isomorphism (R(C’% F))Autl(CvLF )

Auty (C,z,F
(Ricy oy ™)

From the explicit description of the action on R(c . r) (cf. Lemma , the
natural action of Aut(C,z, F') factors through Aut(C, z, F')/G,,, which is the surjective
image of Auti(C,z, F'). This implies that R?&;g’g’m = ?&;(%%’F), SO R?;gg%m ]
R?;Z%£F) On the other hand, we have isomorphisms

O3, iy = Oz = (02",

with the second isomorphism arising from taking invariants of the reductive group H.

This proves the result. O

6.7.8 Singularities of M,

Next, we require some results concerning marked stable curves (C,z) for which there
exists o € Aut(C,z) which acts on the local deformation ring as a quasi—reﬂectionﬂ
or for which the quotient of the local deformation ring by (o) fails to have canonical
singularities.

Let (C,z) be an n-marked stable curve of genus g; recall that there is an isomor-
phism TDef ¢ ;) = Ext&(Qco(z), Oc) =2 C?973+" and that there exists a local universal
deformation of (C,z) over a smooth pointed scheme. Let R(c@ = Cl[t1, ..., t3g—3+4n]]

be the miniversal deformation ring for (C, z).

Proposition 6.7.23. Suppose g > 4, and suppose o € Aut(C,x) is such that o acts
as a quasi-reflection on Spec R(Cﬁ) or such that Spec R(C@/(a) fails to have canonical

singularities. Then:

1. C has an elliptic tail E (i.e. a component of arithmetic genus 1 which meets the

rest of C' at a single node p), and E contains none of the markings of C.

2. o s an elliptic tail automorphism: ‘710\7}3 = id. The restriction of o to E is an

automorphism of order o € {2,3,4,6} which fizes p.

1 An invertible 7 x n matrix g is said to be a quasi-reflection if 1 is an eigenvalue of g of geometric
multiplicity n — 1.
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3. If o =4 then E is smooth with j-invariant 1728, and if o = 3 or 6 then E is smooth

with j-invariant 0.

4. If E is a singular curve with internal node q, then o = 2, and the action on E is

given by z — —z on E P!, where the fized point oo lies above p and +1 lie above

q.

Proof. In the unpointed case, this is [61, Theorem 2]. That the result in the unpointed
case implies the result holds when n > 0 follows from the proof of [83, Theorem 2.5|; the
deformation space H°(C, 2c®wc) of the unpointed curve C' embeds into the deformation
space HY(C, Q¢ ®we(x)) of the pointed curve, and contracting any P'-components of C
(when performing stable reduction after omitting the markings) does not alter the action
of o on H*(C,Q¢ ® we). Hence the Reid—Tai-Shepherd-Barron age of o viewed as an
automorphism of (C, ) is as least as large as the age of o, viewed as an automorphism
of C. As such, by the Reid—-Tai—Shepherd-Barron criterion (cf. [97, Theorem 2.3])
and the result in the unpointed case, if o acts as a quasi-reflection on Spec R(Cﬁ) or
such that Spec R(C’@ /(o) fails to have canonical singularities then o is an elliptic tail
automorphism of C with respect to some elliptic tail F. E cannot contain any marking
x;, since the restriction of Q¢ ® we(z) to E is the same as it would be if another
component was attached at z;, contradicting the result in the unpointed case. As such,

the remaining statements follow from the unpointed case. O

Suppose g > 4, and suppose o € Aut(C, z) is such that o acts as a quasi-reflection
on Spec R(C@ or such that Spec R(C@ /(o) fails to have canonical singularities. We wish

to understand the action of o on R(C,@ in suitable coordinates.

Lemma 6.7.24 (cf. [84], Proposition 3.2.9). For each irreducible component C; C C,
let v; : @ — C be its normalisation, let D; C 62 be the divisor corresponding to the
preimages of the nodes of C' lying on C;, and let P; C C; be the divisor corresponding to
the preimages of the marked points of C lying on C;. Let © ¢ ) = Home(c(z), Oc).

Suppose in addition that C has d-many nodes. Then it is possible to choose coordi-

nates th, ... th, 3., of TDef(c ) = Exty(Qo(z), Oc) as follows:

1. For each it = 1,...,0, t; = 0 corresponds to the locus where the ith node is pre-
served, and the one-dimensional subspace {t; = 0:j # i} corresponds to the

smoothing of the ith node.
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2. For each irreducible component C; of C, there is a subset I = I, C {d+1,...,3g—
3+n} such that {t; =0:j ¢ I} corresponds to the image of Ho(éi,w%i(Di—i—Pi))v
in Hl(C’,@(C@) C Exts(Qo(z),Oc) under the isomorphism HY (C,0cy)) =
@, H(Cj,w} (D + P)))Y.

Proof. From the local-to-global Ext spectral sequence
EP? = HP(C, Extl (e (z), Oc)) = ExtE (Qc(z), Oc),
there is a short exact sequence
0= H'(C,0(cq) = Exty(Qe(z), Oc) — HY(C, Exti(Qe(z), Oc)) — 0.
The sheaf Ext}(Qc(z), Oc) is supported at the nodes of C; if s € C'is a node, then
Extt(Qo(z), Oc)s = Extp,, (s, Ocys) = Cs

parametrises the smoothing of the node s (cf. [12, Page 181]). On the other hand, if
v:C — C is the normalisation of C and if D C C (resp. P C C) is the divisor of the
preimages of the nodes (resp. markings) of C, then ©,) can be identified with the
pushforward of T=(—D — P) (cf. Page 186 of loc. cit.), whence

Hl(ca G)(C’,g)) = Hl(éa Té(_D - P)) = @Ho(éj7w%j (Dj + Pj))va
J
where the last isomorphism is given by Serre duality. O

Corollary 6.7.25. With (C,z) as above, it is possible to choose coordinates t1,
of TDef (¢ 4 = Ext&(Qc(2), Oc) such that:

o5 t3g—3+4m

1. t1 corresponds to the smoothing of the node p.

2. If E is singular, then ty corresponds to the smoothing of the node q; otherwise, to

is a coordinate for TDef g ,) = C.

3. The remaining coordinates t3,...,t34_34n correspond to nodes and components

where o is the identity.
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Proof. 1If E is smooth, we choose t5 such that {¢; = 0: 14 # 2} corresponds to the image
of the one-dimensional subspace H!(E,Tg(—p)) = H*(E,w%(p))" = H°(E, Op(p))¥ of
HY(C,0cy)) in Ext&(Qc(z), Oc). Since we have H'(E, T(—p)) = Exth(Qg(p), Or),
this subspace is the tangent space TDef (g ;). Relabelling the remaining ti-coordinates as
t3,...,13g—34+n, by Lemma these all correspond to nodes and components where
o is the identity.

If instead F is singular, the component E does not contribute to H'(C, O(c.z)), since
HOY(E,w?(p+v~Yq))) = HO(P!, Opi(—1)) = 0. As such, after choosing ¢, and 3, the
remaining coordinates once again correspond to nodes and components where o is the

identity. O
We are now ready to state the extension of [84, Proposition 4.2.5] we require.

Proposition 6.7.26. Let p = e™/3. With the coordinates ti, ... st3g—3+n of TDef(c 4
chosen as in Corollary the action of o on TDef ¢,y is given by the matriz M (o),

where

—1
1 0=2,
id
+1
-1 o=4,
id
M(o) = P ,
pt or P> o=3,
id id
p° p
ot or p? o =6.
id id

\

In particular, o is a quasi-reflection if and only if o = 2.

Proof. The component E contains none of the markings of C', and the additional coor-
dinates t3,...,t34—3+n correspond to nodes and components where o is the identity, so
that o : t; — ¢; on TDef (¢ 4). As such, the necessary analysis reduces to the unmarked

case, which is [84, Proposition 4.2.5]. O
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6.7.9 The Moduli Space has Canonical Singularities

We are now ready to prove the generalisation of [31, Theorem A] to the case when there

are n > 0 marked points.

Proof of Theorem [6.7.1. The proof closely follows that of Theorem 8.4 of loc. cit. Since
the property of having canonical singularities can be checked by passing to an analytic
neighbourhood, by Proposition it is enough to show that for any triple (C,z, F')
consisting of a polystable torsion-free uniform rank 1 coherent sheaf F' over a stable
curve (C,z), the affine scheme Spec R?(;;(%)LF) has canonical singularities. From the

exact sequence
1 — Aut(F) — Aut(C,z, F) — Stabig ) (F) — 1
and the fact that Stab(c ) (F) is a finite group, we have

Aut(C,z,F u Stab(c,g) (F) u
Spec R( U NS ) = Spec (R?Cf;}» = Spec RACE;E? / Stab(c ) (F).

By Proposition [6.7.18 the scheme Spec R?CthF ) is a normal scheme of finite type over
C. As such, by applying Theorem A.11 of loc. cit., it suffices to show that for every
0 € Stab(c ) (F), the scheme Spec R?&g})/ (o) has canonical singularities.

Pick an invertible sheaf L on the partial normalisation C'a whose push-forward is F,

so that the kernel of T2~ . T Def(AC ltF) —T Def(A 2) is isomorphic to T Def,, whence

C[T" Def{y; '] = C[T" Def(, 5] ®c C[T" Def ].

We now split into cases depending on the automorphism o.
Case 1: The automorphism o does not act as a quasi-reflection on Spec R ,) and

Spec R(¢4)/(0) has canonical singularities.
Aut(F)

The inclusion R ) < R( ) gives rise to the following diagram:
Spec R‘(Aclf;( F)) L » Spec R(cz) X Spec C[T" Def ]

IR
1R

Spec U(T) @ C[TY Deff, ] @ C[T" Defr] + Spec @, Clte] © C[T Defy; §

Here the bottom horizontal map is the map induced by the map &, Clte] — U(I') =

] ® C[T\/ DefL]

B(I')™" together with the identity on the other two factors. The vertical isomorphisms
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can be chosen in a way which is compatible with the action of (o) on the domain and
codomain of the (o)-equivariant morphism W. As such, the argument used in Case 1
of Theorem 8.4 of loc. cit. carries over, yielding that Spec R?Cug;) /{c) has canonical
singularities.

Case 2: o acts as a quasi-reflection on Spec R 4), or Spec R(c z)/ (o) does not have
canonical singularities.

In this case, by Proposition C' must have an elliptic tail (E,p), E contains
none of the markings of ', and ¢ must be an elliptic tail automorphism.

As in Case 2 of the proof of Theorem 8.4 of loc. cit., we split into two subcases:
(i) Case 2-I: F is not locally free at p.
(ii) Case 2-1I: F is locally free at p.

Letting I'p (resp. I'ge) denote the dual graph of E (resp. E€), we have as in Case 2 of

Theorem 8.4 of loc. cit. an identification
Spec U(T'ge) x Spec (U(T'g) ® Clt,] @ C[TV DeffcjglfF)]) /o) 2,

SpecU(T'ge) x Spec (U(T'g) @ C[TV Def(AC_’;F)D /(o) 2-11.

Au
Spec R(C;’FF)) (o) =

As SpecU(I'ge) has terminal singularities by Proposition [6.7.18] it suffices to show

that the remaining factor, namely Spec <U (T'g) @ Clt,) @ C[TV Def(AC_mlt F)]> /{o) and

Spec <U(FE) ® C[TV Def2; 1 )]> /(o) as appropriate, has canonical singularities.

(Cz,F
We make use of the decomposition C[TV Def4; 1 ] 2 C[TV Def(AC_;;] ®c C[TV Defy].

(Ca,F )]
Let Vg denote the vector space

(Ciz)

TU(Tg) ® T Def4; % ¢T Def, 2-I1.

{TU(F g) ® TC[ty] ® T Def3 1 @T Defy,  2-1,
E =
(Cz)

We compute the matrix R(o) for the action of o on Vg, with respect to a suitable
basis. Comparing with the situation of Proposition [6.7.26] in Case 2-1 we may take the
coordinate t1, corresponding to the smoothing of the node p, as a coordinate of T'C[t,],
and in Case 2-1I we may take ¢; as one of the coordinates of T’ Def(ACz;. If o = ord(c) > 2
(in which case E is smooth), we may take the coordinate ¢2 as one of the coordinates of
TDef(ACT;). It follows that in both 2-I1 and 2-1I, the upper left 2 x 2-block of the matrix
M (o) of Proposition will appear as a block factor of R(o).
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Denoting by Ea (resp. ECA) the partial normalisation of E (resp. E€) at the nodes
of E (resp. E°) belonging to A, as in the proof of Theorem 8.4 of loc. cit. we have a
decomposition
TDefr, =T DEthEA @T DefL|ECA .

Since o is an elliptic tail automorphism, the action of o on T' Def Ligg is trivial. Therefore,
as in the unmarked case, we obtain that in Case 2, the upper left 2 x 2-block of the matrix
M (o) of Proposition appears as a block factor of R(o), and the action on 7' Defy,
is determined by the action on TDele;?;A = TL\EA Pic(EA).

At this point, the rest of the argument for Case 2 involves analysing the action of o
on T Def L, - But E does not contain any markings of C; as such, the argument given
in the remainder of Case 2 of Theorem 8.4 of loc. cit. carries over word-for-word to
the marked setting, making use of the Reid—Shepherd-Barron—Tai criterion for quotient
singularities. This yields that Spec R?&;Sw) /{o) has canonical singularities, completing

the proof of the theorem. O
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Chapter 7

Moduli Spaces of Hyperplanar
Admissible Flags in Projective
Space

7.1 Introduction

In this chapter we construct using non-reductive GIT quasi-projective coarse moduli
spaces which parametrise certain classes of varying flags of subschemes X? c X!

- C X" of a fixed projective space P(V') up to the action of the group PGL(V) of
projective automorphisms.

One of the key motivations behind Mumford’s development of GIT was the construc-
tion of quasi-projective moduli spaces of projective schemes. Classical examples of such
GIT moduli spaces include non-singular hypersurfaces in projective space [101], stable
curves [54] [100], canonically polarised surfaces of general type [53] and canonically po-
larised varieties with canonical singularities of any dimension [I28]. The first three of
these constructions involve using the Hilbert—Mumford criterion to establish GIT sta-
bility. However, when working with higher dimensional schemes other approaches to
constructing moduli spaces, involving GIT or otherwise, are often necessary; amongst
other issues, it is not known how to directly implement the Hilbert—Mumford criterion
to test for the GIT stability of subschemes X of projective space with dim X > 3, even
when X is smooth (Viehweg’s construction relies on establishing deep positivity results
to directly produce invariant sections of the linearisations on the Hilbert scheme he

considers).
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Related to the problem of moduli of schemes is the moduli of flags of schemes, such
as pairs of schemes with a divisor. The main result of the chapter is that non-reductive
GIT yields constructions of examples of non-empty quasi-projective coarse moduli spaces
of flags of schemes, namely when the schemes are subschemes of a projective space P(V)
and the flag X : X ¢ X! c --- € X" is obtained by intersecting an n-dimensional
variety X" C P(V) with a flag of linear subspaces Z : Z° C --- C Z" = P(V) with
Z' C P(V), of codimension n — i; here the flags X and Z are allowed to vary in P(V)

and V respectively.

Summary of Results

The objects of interest to us are known as hyperplanar admissible flags of subschemes of
P(V)[T] which are flags X° € X! C --- C X" where X" is an n-dimensional subscheme
of P(V), and where each X' is an i-dimensional subscheme obtained by intersecting X"
with a linear subspace P(Z*) C P(V) of codimension i, with Z° c Z' c ... Cc Z" = V.
The degree of this flag is given by the common degree of the subschemes X C P(V),
and the Hilbert type is given by the Hilbert polynomials of the X*. Such a flag is said
to be non-degenerate if each X' C P(Z') is non-degenerate (i.e. not contained in a
hyperplane in P(Z%)), non-singular if X" is a disjoint union of reduced points and if the
remaining X* are smooth connected varieties, and stable if X" is a Chow stable length
0 subscheme of P(Z°%) (for more details, see Section . Given any non-singular
non-degenerate subvariety X" C P(V) then, provided the degree of X" is sufficiently
large, the intersection of X™ with a generic choice of a flag of linear subspaces P(Z°) C
-+ C P(Z™) = P(V) of the appropriate dimensions is a non-degenerate, non-singular
and stable hyperplanar admissible flag (see the discussion following Definition .

The main result of this chapter is that there are quasi-projective coarse moduli spaces
parametrising non-degenerate, non-singular and stable hyperplanar admissible flags of
subschemes of P(V):

Theorem 7.1.1. Let n,d be positive integers, and let V be a finite dimensional complex
vector space. Assume n + 1 < dimV and d > dimV — n, and in addition assume

d¢ {W e=1,... ,n}. Let @ = (®g, ..., P,) be a tuple of Hilbert polynomials

!The terminology here is inspired by that of [82]. The hyperplanar admissible flags of interest to us
are admissible flags in the sense of Lazarsfeld-Mustata, with the exception that we allow multiple points
in dimension 0, not just one.
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of subschemes of P(V'), where ®;(t) = 4t' + O(t'~1) for each i. Let .7-"522, be the moduli
functor parametrising (projective) equivalence classes of families of non—d;genemte, non-
singular and stable (complete) hyperplanar admissible flags of subschemes of P(V') of
length n, degree d and Hilbert type ® (cf. Definition m)

Then there exists a quasi-projective coarse moduli space Ms(d"/q)) for the moduli functor

FPV)

1@ which admits a non-reductive GIT construction.

In Section[7.5] we explain how Theorem can be extended in various ways, such as
incorporating weightings to the points of X°, or by instead considering non-degenerate
and non-singular hyperplanar admissible flags of the form X' C ... € X", where in

addition X! C P(Z1) is required to be GIT stable.

Summary of the Proof of the Main Result

The proof of Theorem proceeds as follows. In order to have a notion of a family of
hyperplanar admissible flags, as part of the objects of the moduli problem we record the
flag of linear subspaces P(Z°) C --- C P(Z"), before imposing the equivalence relation
of two flags being projectively equivalent. As such, we consider the diagonal action of

SL(V') on the product
n n
S = [[Hilb(®(V), ®:) x [ Gr;(V),
i=0 =0

where Gr; (V) is the Grassmannian of codimension n—j linear subspaces of V' (see Section
7.3.2)). There exists an SL(V)-invariant locally closed subscheme &’ C S whose closed
points correspond to non-degenerate, non-singular and stable hyperplanar admissible
flags of subschemes of P(V') of length n, together with the data of the closed embeddings
X% c P(V) and the subspaces Z° C V. The moduli space ME,(d‘,/% is given by the geometric
quotient of &' by SL(V). -

A priori this is a problem in reductive GIT. However, since each of the subvarieties
Xt C P(V) for i < n are degenerate, the Hilbert points [X? c P(V)] € Hilb(P(V), ®;)
are unstable. The subvariety X™ C P(V) is non-degenerate; however, beyond the case
of curves of degree d and genus g in P?~9 [22], in higher dimensions there is no complete
algebraic classification of when X™ C P(V) has a stable or unstable Hilbert point with
respect to either the Hilbert or Chow linearisations on Hilb(P(V'), ®,). Thirdly, the
flag of subspaces Z° C --- C Z"1 C Z" = V defines an SL(V)-unstable point of
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[[j—o Grj(V); if Lay, is the ample generator of Pic(Gri(V)) = Z (for i < n), then
for any choice of weights wy,...,wn—1 € Z>° the flag of subspaces is GIT unstable
for the diagonal SL(V)-action on H;:& Gr;(V) with respect to the ample linearisation
@?;&ng (as seen by applying [40, Theorem 11.1] with W = P(Z"~1)).

To rectify these issues, we instead pass to the case of looking at the action of the
parabolic subgroup P C SL(V) preserving a fived flag of subspaces Z° c Z! c --- C
Z"™ =V (where codim Z! = n — i), yielding a locally closed subscheme S C S’ with
S' =2 SL(V)xPS], and use NRGIT to form a geometric quotient of S} by P; this quotient
by P coincides with the geometric quotient of &' by SL(V). Rather than applying
the U-Theorem to form this quotient in one go, we instead adopt the quotienting-in-
stages procedure described in Section 3.3 We apply quotienting-in-stages directly, by
verifying directly that at each stage the U-Theorem can be applied, since this is more
straightforward than determining whether the quotienting-in-stages assumptions of [66]
hold.

There are two key features of our quotienting-in-stages approach. The first is that,
since all grading 1PS involved have only two distinct weights, it is relatively straightfor-
ward to check that the necessary weight and stabiliser conditions needed to apply the
U-Theorem at each stage hold, at least for the objects of interest. The key observation
is that the flat limit of X* C P(Z*) under any of these grading 1PS is given by X*
itself, or by the join J of X/ with a complementary linear subspace to P(Z7) c P(Z*),
where j < k (cf. Lemmas and . The geometry of these joins is what allows
us to verify that the desired conditions on unipotent stabilisers hold. Since we elect to
work with the Chow linearisations on the Hilbert schemes Hilb(P(V'), ®;), the Hilbert—
Mumford weight of J with respect to any of the grading 1PS can be explicitly computed
(cf. Lemma ; this allows us to verify the necessary minimality conditions for the
weights of the grading 1PS (cf. Lemma [7.4.4)).

Secondly, since we are working with complete flags X? C --- C X", we only ever
have to consider the (reductive) GIT stability of subschemes of P(V') of dimension 0,

which is classically understood.

Remark. If one imposes the additional constraint that the top-dimensional subvariety
X™ C P(V) is GIT stable (for either the Chow or Hilbert linearisations), the construc-
tion of the coarse moduli space of hyperplanar flags X° C --- € X™ C P(V) can be
carried out using reductive GIT, by making use of to ensure that a point of S
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is SL(V)-stable if [X™ C P(V)] € Hilb(P(V),®,,) is GIT stable. If X Cc P(V) is a
smooth hypersurface of degree d > 2, it is classically known that the corresponding
point of P(H°(P(V), Op((d))) is GIT stable. Another plentiful source of GIT sta-
ble subvarieties arises from a result of Donaldson [42], which states that if (X, L) is
a smooth polarised manifold with discrete automorphism group for which there exist
constant scalar curvature metrics in ¢;(L), then (X, L) is asymptotically Chow stable
(ie. X C P(H°(X,L*)V) is Chow stable for all k > 0). By work of Yau [129] (and
independently in the canonically polarised case by Aubin [14]), this includes canonically
polarised smooth varieties and arbitrarily-polarised smooth Calabi—Yau varieties. More
generally, Viehweg [I128] proves that any canonically polarised variety with canonical
singularities is asymptotically stable (with respect to linearisations arising as variants of
the Hodge bundle), extending prior results for curves [101] [L00] and surfaces [53]. Other
examples of Chow stable subvarieties of projective space arise from work by Morrison

[98] and Miranda [96].

Relation to Previous Work

As mentioned above, the results of this chapter rely heavily on Hoskins—Jackson’s non-
reductive quotienting-in-stages construction [66]. This work was also motivated in part
by work of Ross [I12] and Ross—Thomas [I13] on the study of the Hilbert—-Mumford
criterion for polarised projective varieties. 1PS with two distinct weights feature promi-
nently in these latter pieces of work, and are used to define notions of slope stability for
polarised varieties, in analogy with Gieseker stability for coherent sheaves on a projective
scheme (in turn, Gieseker stability is governed by 1PS with two distinct weights, as is
explained in [I12], Section 3.2]). Ross and Ross-Thomas prove that K-stable polarised
varieties are slope stable and that asymptotically Chow stable polarised varieties are
Chow-slope stable, and use slope stability to give a geometric proof of the asymptotic
Chow/K-stability of smooth curves.

The relationship between [112] [I13] and this chapter is as follows. If X C P(V)
is a non-degenerate subvariety and A a 1PS of GL(V) with two distinct weights (for
instance, the lift Al of the grading 1PS ); considered in non-reductive quotienting-in-
stages), the action of A on X C IP(V') defines a test configuration (X, £ = Opyyxa1(1)|x)
of (X, Op(y)(1)|x) whose central fibre is given by the flat limit Xo C P(V) of X under .
As explained in [I13], Page 8] as well as in [100}, Section 3 of the proof of Theorem 2.9], up
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to rescaling the A(G,,)-action the test configuration (X, L) is equivariantly dominated
by a test configuration with total space Blz(X x Al), where Z C Ox|t] is an ideal of the
formZ = Zz+(t), with Z C X given by the repulsive fixed-point locus for A\. The blowup
Blz(X x A') coincides with the total space for the deformation to the normal cone of
Z C X. The notion of slope stability (resp. Chow-slope stability) of a polarised variety
(X', L") arises from K-stability (resp. Chow stability) restricted to test configurations
arising from deformations to normal cones of subschemes Z’ C X’; when L’ is very ample
and has no higher cohomology, so that X’ C P(H°(X’, L')V), by [I13, Proposition 3.7]
the test configuration of (X', L") given by the deformation to the normal cone of Z" C X’
determines a 1PS of GL(H°(X’, L)) with two distinct weights.

In favourable circumstances (cf. proof of Lemma , the geometry of the defor-
mation to the normal cone can be used to fully determine the flat limit X, in terms
of the join of the repulsive locus Z with a complementary linear subspace. In turn, the
simple form taken by the homogeneous ideal of such a join allows for the A\(G,,)-weight
of H%(Xy, Ox,(k)) (with k >> 0) to be easily computed in terms of the degree and dimen-
sion of Z (cf. proof of Lemma7 with the computations being more straightforward
than those of Section 4 of loc. cit. (which apply for the deformation to the normal cone

in general).

Motivation

This work was motivated by an attempt to construct, using GIT, a non-empty coarse
moduli space of stable maps to a varying target subvariety X, with X allowed to vary
inside a fixed projective space P(V'), without any further conditions on the invertible
sheaf Ox (1) = Op(y)(1)|x beyond its amplitude, and with the image curve in X corre-
sponding to the intersection of X with a linear subspace L of P(V') of the appropriate
codimension (chosen so that, at least if X is smooth and non-degenerate, the intersection
of X with a generic such L is a smooth curve). This goal in turn arose as part of the
more general aim of constructing moduli spaces of varieties together with morphisms
from curves, as described in Chapter

The attempted construction involved appending to the Baldwin—Swinarski construc-
tion of the moduli space of stable maps M, (P(V), 3) (cf. Section an additional
Hilbert scheme factor, parametrising the subscheme X C P(V), followed by attempt-
ing to form a geometric GIT quotient for the diagonal action of SL(V') on the enlarged
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parameter space. The hope was that the Baldwin—Swinarski construction could be lever-
aged to show that the desired moduli space existed, without having to resort to imple-
menting (in full) the Hilbert-Mumford criterion for the SL(V')-action on Hilb(P(V)).
The existence of this desired moduli space is closely related to the existence of a coarse
moduli space parametrising partial flags X' C X™ of P(V). In the case n = 2 a coarse
moduli space can be constructed provided X! C P(Z1!) is assumed to be a non-degenerate
curve of genus g and degree d > 2(2g — 2) (see Section , however the analogous
construction for n > 3 has the problem that in the resulting NRGIT setup, the condition

([R]o) no-longer holds.

Future Directions

One natural follow-up question concerns the existence of natural modular compactifica-
tions of the coarse moduli spaces Mi(dg. At least if one wished to utilise non-reductive
GIT to construct such a compactiﬁcat?on, this does not appear to be a feasible prob-
lem; one key feature of the setup behind Theorem is that all of the flat limits
appearing in the quotienting-in-stages construction can be described in terms of joins.
It is not clear whether this result extends to all points in the closure of the locus &’
in [[iLo Hilb(P(V), ®;) x [Tj_o Grj(V) (in particular, with points in the closure corre-
sponding to flags where not all of the schemes are reduced). As such, it is not clear
whether in the closure of &’ all points satisfy the necessary weight minimality condi-
tions for the various grading 1PS involved, nor whether the appropriate conditions on
unipotent stabilisers carry over to points in the closure. Without these conditions, the
quotienting-in-stages procedure used to prove Theorem breaks down.

Another, arguably more pertinent, follow-up question is whether a version of Theo-
rem|[7.1.1|can be established for partial flags of subschemes of P(V), i.e. the existence of a
quasi-projective coarse moduli space parametrising flags of subschemes of P(V') obtained
by intersecting a varying non-degenerate smooth subvariety X" C P(V') by a partial flag
of projective subspaces of P(V). The analogous NRGIT approach requires being able
to implement the Hilbert—Mumford criterion to determine the GIT stability of smooth
non-degenerate subvarieties Y C P(Z) under the action of subgroups SL(Z') C SL(Z)
with dim Z’ > 2. Even if this is understood, another issue is that limits of points under
the grading 1PS can have positive-dimensional stabilisers for the action of the semisim-
ple part of the Levi subgroup, so that the NRGIT condition ([R]g) fails to hold; this
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prevents us from being able to ascertain the reductive GIT stability of the images of
points under taking quotients by unipotent radicals. This latter issue arises for partial

flags of the form X! ¢ X" with n > 3.

Notation and Conventions

In addition to the conventions specified in the introduction to this thesis, in this chapter

we adopt the following notation and conventions:

e Given a set of points S of a projective space P(V'), their linear span in P(V) is
denoted (S). If X C P(V) is a closed subscheme of P(V) with ideal sheaf Zx,
we define I(X) = P4 H°(P(V),Zx(d)) (we also use the notation Ipgy)(X) if
we wish to emphasise the projective space P(V') containing X'). T, X denotes the
projective tangent space to X C P(V) at a point p € X.

e A closed subscheme X of P(V) is said to be non-degenerate if X is not contained
in any hyperplane in P(V), in other words if H°(P(V),Zx (1)) = 0, and is said to

be degenerate otherwise.

Remark. Sections to (inclusive) of this chapter have been adapted from the
contents of the preprint [38].

7.2 Preliminaries
7.2.1 The Chow Linearisation on Hilbert Schemes

Let Hilb(P(V'), ®) be the Hilbert scheme parametrising subschemes of P(V') with Hilbert

polynomial ®, where
d

D(t) = it

n + O(tn_l).

Let Chow,, 4(P(V')) be the Chow scheme of Angéniol [I1] parametrising families of cycles
in P(V) of dimension n and degree d. The Chow scheme has the following properties
(cf. [I1} Sections 6-7] and [116, Paper IV, Sections 9, 16 and 17]):

(i) There is a natural proper GL(V)-equivariant morphism ¥yc : Hilb(P(V), ®) —
Chow,, 4(P(V)), known as the Hilbert-Chow morphism. The restriction of ¥yc
to the open subscheme Hilb*™}(P(V), ®) parametrising non-singular closed sub-

schemes of P(V') is an open immersion.
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(ii) Wpc is a local immersion over the locus parametrising equidimensional and reduced

subschemes.

(iii) The underlying reduced scheme Chow,, q(P(V'))req is the Chow variety, as intro-
duced by Chow and van der Waerden in [34].

(iv) Let Divy 4(P(V)) be the projective space of multidegree (d,...,d) divisors in
P(VV)*("+1) Then there is a GL(V)-equivariant map ZEcpew : Chow, 4(P(V)) —
Div,, ¢(P(V)) whose restriction to Chow,, 4(P(V'))rea is a closed immersion; the
composite Zpc = Echow o YHc assigns to a subvariety X C P(V) its Chow form Zx.
The morphism Echew is finite, and s0 Lenow, 4(B(V)) = E¢how ODiv, (V) (1) 1 an
ample linearisation for the GL(V')-action on the projective scheme Chow,, 4(P(V)),

known as the Chow linearisation.

(v) As the Chow form Zx of a subvariety X C P(V') uniquely determines X, all points

of the fibres ¢ (Ex) and E¢} (Ex) have underlying reduced scheme X.

The following diagram summarises the relationship between the Hilbert and Chow

schemes:

Hilb(P(V), D) e » Chow, q(P(V)) =Chow Div,, a(P(V))

Hilbs™(P(V), ®) Chow,, 4(P(V))rea = ChowVar,, 4(P(V))

Suppose A : G, = SL(V) is a 1PS, and X C P(V) is a subvariety fixed by the action
of \. Let R(X) = Sym*(V"Y)/I(X) = @,, R(X), be the homogeneous coordinate ring
of X. Let w([X]m,A) be the A-weight of the vector space R(X)mﬂ

Proposition 7.2.1 ([100], Proposition 2.11). For large m, w([X]m, ) is is given by a

polynomial of the form (;j’f)!m”“ + O(m™). The Hilbert—Mumford weight of Wyc(X)

s given by

L Op; 1) /—
1 Chowmd(m(v»(\PHC(X)’)\) —u Div,, q(B(V))( )(ZHC(X),)\) = ax.

qfW = P,z Wi is the weight space decomposition of a finite dimensional G,-representation W,
the weight of W is given by .4 dim W;.
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In the case where Hilb(P(V),d) is the Hilbert scheme of O-dimensional length d

subschemes of P(V'), Egc factors through the natural morphism

Enc : Hilb(P(V), d) — Sym*(P(V)) = [[P(V)/&4,
d

and this restricts to an open immersion on the open subscheme parametrising d disjoint

unordered reduced points in P(V).

Proposition 7.2.2. Fiz a splitting V=W & W', so that we may regard SL(W) as a
subgroup of SL(V') by declaring that SL(W) acts trivially on vectors in W'. Suppose Y €
Hilb(P(V'),d) corresponds to a set of distinct unordered points Epc(Y) = {p1,...,pa},
with each p; € P(W). Then Yuc(Y) € Chowgq(P(V)) is SL(W)-(semi)stable with
respect to the Chow linearisation if and only if for all proper linear subspaces Z C P(W),

#(Ydﬂ Z) < (<) dl;riljmtl'

Proof. There is an SL(W)-equivariant closed immersion of Chow schemes

(7.2.1)

Chowg 4(P(W)) < Chowg 4(P(V)),

under which the Chow linearisation on Chowg q(P(V')) pulls back to the Chow lineari-
sation on Chowg 4(P(WW)). As such, we may work instead with the SL(W)-action on
Chow 4(P(W)). The result then follows from [99, Proposition 7.27]. O

In the case where A is a 1PS of SL(V') with two distinct weights and where Y C P(V)
is a closed subvariety contained entirely within a single weight space, the Chow weight

of Y can be computed in a very straightforward manner.

Lemma 7.2.3. Suppose we are given a decomposition V.=U @ W, and let Y C P(W)
be a closed subvariety of dimension r and degree d. Let \ : G,, — SL(V) be the 1PS
defined by declaring that each uw € U has weight a and each w € W has weight b, where
adimU 4+ bdim W = 0 and where neither a nor b are zero. Then the Hilbert—Mumford
weight of the point Yyc(Y') (where Y is considered as a closed subvariety of P(V)) is
equal to bd(r + 1).

Proof. Pick bases x1,...,x, and y1,...,ym for UY and WV respectively, and let Iy =
Ipwy(Y) € Sym*W" = Cly1, ..., ym]. The homogeneous ideal of Y C P(V) is given by

Ipa)(Y) = Iy, 21, .., 2n) - RC R:=Cl21,.. ., Tn, Y1, - - - Y],
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so for all k sufficiently large we have

R Clyi,---,ym d,, —
O, Opw) (R)v) = =, = | T ke Y, Opr (R)ly) = SEHO).

All elements of Cly1, ..., ym|r/(Iy)r have weight —kb, so for all k sufficiently large

—bd(r +1)

— _ 0 e SV X 0 | r

w([Y]g, \) = =kbh™(Y, Opay (K)ly) = 1) E' 4+ O(k").

Applying Proposition completes the proof of the lemma. O

7.2.2 Joins of Varieties with Linear Subspaces

We recall the definition of the join of a subvariety Y C P(V) with a complementary
linear subspace L C P(V).

Definition 7.2.4. Let Y C P(V) be a subvariety and let L C P(V') be a linear subspace
with the property that Y NL = (). The join of Y and L is the subvariety of P(V') obtained

as the union of all lines joining points of Y with points of L:

Jv.L) = | . a)-
helL

Suppose Y is contained in a linear subspace L' = P(W) C P(V) disjoint from L
with the property that P(V) = (L,L’). The following facts are all standard (see for
instance [60, Examples 3.1 and 6.18, Proposition 11.36 and Exercise 16.14]) and/or are
straightforward to check.

(i) There is an equality Ip(yy(J(Y, L)) = Ipm)(Y) - R of ideals of R = Sym* (V).
(i) For each q € L, T,J(Y,L) = P(V).

(iii) Suppose p € J(Y, L)\ L lies on the line joining y € Y to ¢ € L. Then T,J(Y,L) =
(L,T,Y). If y € Y is a non-singular point then dim T, J (Y, L) = dim,, Y +dim L+1.

Let X C P(V) be a closed subscheme, and suppose V' = U@ W for non-zero subspaces
U W C V. Assume that X ¢ P(W). Define a 1PS X of GL(V) by declaring that all
vectors u € U have weight a and all vectors w € W have weight b, where a < b. Let
Y =X NP(W), and let X = lim;_,0 A(t) - X C P(V) be the flat limit of X under A.
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Lemma 7.2.5. In the above situation, assume in addition that the rational map PIp(p)
X --» P(U) is dominant, that Y is reduced and that the closed immersion Y — X is
reqular. Then the flat limit X is given by the join J(Y,P(U)).

Before we give the proof of Lemma we require the following lemma.

Lemma 7.2.6. Let f: Y — Z be a morphism between schemes which are flat over Al.
Let fo : Yo — Zy be the base change of f along SpecC 5 A, Then there is an equality

of schemes im(fy) = im(f)o, where im denotes the scheme-theoretic image.

Proof. We have an immersion of schemes im(fy) C im(f)o, which we claim is an iso-
morphism. Without loss of generality we may assume Y = Spec A and Z = Spec B are
affine, with f corresponding to a homomorphism of C[t]-algebras ¢ : B — A. Since
im(y)) C A contains no ¢-torsion, we have Tor(lc[t] (im(v), C[t]/t) = 0. As such, applying
— ®c[q C[t]/t to the short exact sequence 0 — kert) — B — im(z) — 0 gives the short
exact sequence

ker 1) B im(v))

— — — 0.
tkeriyp  tB  tim(v)

0—

In turn, there is a monomorphism kert/tkerty — kery) C B/tB. This induces a

surjection

B/tB B/tB im (v)) B/ ker 1

ker ¢ ” kere/tkeryp  tim(y)  t(B/kert)

It follows that there is a closed immersion im(f)o < im(fp), which by construction is

inverse to im(fp) C im(f)o. O

Proof of Lemma[7.2.5, Consider the rational map
AN X xA - P(V) x ALY ([u+w],t) = (Ju+ t2%], 1),

and let Z C Ox a1 = Ox|t] denote the ideal sheaf of the base locus of A’. Blowing up

Z, we have a diagram

B = Blz(X x Al)
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Since X x Al is flat over Al the same is true of B (cf. [51, Appendix B6.7]). By [100,
Lemma 2.13], the scheme-theoretic image im(A) C P(V) x Al is flat over A!, and the
flat limit X is given by the fibre of im(A) over 0 € Al. By Lemma this coincides
with the scheme-theoretic image of By.

Without loss of generality, we may assume that b — a = 1 (rescaling the weights of
A will not change the flat limit as a subscheme of P(V'), only the induced \(G,,)-action
on it). We have an equality

T =Ty +(t)

of ideals of Ox|[t], where Zy is the ideal sheaf of Y C X. As such, B = Blz(X x A!) =
Bly «o(X x Al) is the total space for the deformation to the normal cone of Y C X (cf.
[51, Chapter 5]). The fibre of B over 0 € A! is given by

By = Bly X Ug, x Py (Nycx @ Oy),

noting that since Y C X is a regular immersion, the normal cone Cycx = Nycx
coincides with the normal bundle, and is a (geometric) vector bundle. Here Bly X and
Py (Nycx @ Oy) intersect along the exceptional divisor Fy X and the section at infinity
respectively. Since X and Y are reduced, the scheme By is also reduced, and so X must
also be reduced (as scheme-theoretic images of reduced schemes are reduced). In other
words, the scheme structure on Xy coincides with the reduced induced scheme structure
on the underlying space | Xp|.

On the other hand, since Ag is the identity on Y C By, since Ag is equivariant with
respect to the G,,-actions on Xy and Py (Nycx @ Oy ), and since Ag coincides with the
dominant morphism prp(;;y on Bly X \ By X = X \'Y, we must have [ Xo| = [J(Y,P(U))|.
It follows that Xo = J(Y,P(U)) as subschemes of P(V'), completing the proof of the

lemma. O

We now calculate the Hilbert-Mumford weight of the Chow point of a join J(Y,P(U)),
using Proposition [7.2.1]
Lemma 7.2.7. Suppose V.= U @ W, and let Y C P(W) be a closed subvariety of
dimension r and degree d. Let J = J(Y,P(U)) be the join of Y and P(U) in P(V).

Let X : Gy, — SL(V) be the 1PS defined by declaring that each u € U has weight a

and each w € W has weight b, where a lim U+bdim W = 0 and where neither a norb are
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zero. If dimY = dimP(U), assume further that a + bd # 0. Then the Hilbert—Mumford
weight of the point Yy (J) with respect to A is equal to

a(dimP(U) + 1) if dimY < dimP(U),

bd(dimY + 1) if dimY > dimP(U),

(a+bd)(dimY +1) if dimY =dimP(U).
Proof. 1t is possible to use [I13, Theorem 4.8] to prove this result, however we elect give
a more direct, albeit similar calculation of the Hilbert—Mumford weight. As in the proof
of Lemma pick bases z1,...,x, and y1,...,ymn for UY and WV respectively. Let
Iy = Tpu)(Y) C Sym*WY = Clyi, . . ., Y], and set

Iy =TIpyy(J) =Iy - RC R:=Clr1,...,Tn, Y1, Ym)-

For all k sufficiently large, we have

Ry, Cly1,- - Yml;
HO(J, Opy(K)] ) = = Clzi, ..., Tn) Q¢ —— 27T 7.2.2
( P(V)( )|J) (Ij)k J@k [ 1 ] C (Iy)] ( )
i+j=
Elements of C[z1,...,zy]; all have weight —ia and elements of Clyi,...,ym];/(Iy); all

have weight —jb. As such, by Equation ([7.2.2) we have

w(( Tk, A) = —lzk% (w(”*j - 1) T (k= )by — i))
:—Z ( ("“ 1)+bwy(i)>,

where ¢y (i) := dimc(Clyy, . . . ,ym]l/(ly)l) For all sufficiently large k, we have
d T T—
vy (k) = B°(Y, Opw) (B)ly) = k" + O(k" ).

Therefore, for k > 0,

W[, \) = —Zk:@- <a<”+f - 1) +b (flz + 0(1"‘1))) +o(1)

i=1
k .
n+i—1 d
- _ . . bik'r+2 kr+1
;m( i > Tk TOET
k :
—bd(r+1) (n+i-1
— o )2 Ertl
o) ZZ;m< ; ) +O(k™),
where in the second line we used Zle P = ];ﬁ: + O(kP). On the other hand we
have Zle ia (”Jrf_l) = (nc_‘F”l)!k”‘H + O(k™). The lemma then follows from Proposition
(2.1 O
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7.3 Moduli of Hyperplanar Admissible Flags
7.3.1 The Moduli Functor

Fix a finite dimensional vector space V' and positive integers d,n > 0.

Definition 7.3.1. A (complete) hyperplanar admissible flag (X, Z) of subschemes of
P(V) (of length n and degree d) is a tuple X = (X%, X1,..., X™) of closed subschemes
X0 c Xt c...cxvtc X" of P(V), together with a tuple Z = (Z°,Z1,...,Z") of
linear subspaces Z0 C Z' C --- Cc Z" 7V € Z" =V such that:

(i) dim X =i for alli=0,1,...,n;

(ii) codimy Z' =n —i for each i =0,1,...,n;
(11i) deg X™ = d; and

(iv) X' = X" NP(Z") for each i = 0,1,...,nE|

The flag (X, Z) is non-degenerate if each X' is not contained in a proper linear subspace
of Z¢. The flag (X, Z) is non-singular if each of X',..., X" is a non-singular connected
projective variety, and if X° is the disjoint union of d reduced points. The flag (X, Z)
is stable if X* C P(Z°) is Chow stable, in the sense that for each proper linear subspace
Z C P(Z°), Inequality holds strictly, with W taken to be Z° and Y to be XO.

Remark. If (X, Z) is non-degenerate, the linear subspace Z¢ can be recovered from X by
taking the linear span of X* in P(V). In addition, each inclusion X’ C X**! is a regular

embedding.

Of course, length n hyperplanar admissible flags of subschemes of P(V') make sense
only when dimP(V) > n, and if n = dimP(V') then the only possibilities are complete
flags of linear subspaces, which are all projectively equivalent. As such, whenever we
discuss length n hyperplanar admissible flags of subschemes of P(V'), we assume that
n+1 < dimV. A necessary condition for there to exist non-degenerate, non-singular
and stable hyperplanar admissible flags of degree d is that d > dim Z° = dimV — n.
Indeed, if k of the points of a Chow stable configuration X° C P(Z°%) have a projective
linear span of dimension ¢ < k — 1, Inequality implies that d > Hil dim Z°.

3In particular, deg X* =d for all i = 0,...,n.
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On the other hand, if d > dim Z° then a generic configuration of points X° c P(Z?)
obtained by intersecting a non-degenerate curve X' C P(Z!) of degree d with a generic
hyperplane P(Z°) c P(Z') will be Chow stable, as such a generic intersection will satisfy
the property that any subset of X of size dimP(Z") spans a hyperplane in P(Z°%) by
the so-called general position theorem of [13, Chapter III, §1]. The non-triviality of
the moduli of non-degenerate, non-singular and stable hyperplane admissible flags for
such degrees is then implied by Bertini’s theorem (cf. [62] Theorem I1.8.18]), together
with the non-degenericity of generic hyperplane sections of irreducible non-degenerate

projective subvarieties of dimension at least 2 (cf. [60, Proposition 18.10]).

Definition 7.3.2. The Hilbert type ® = (®g,...,P,) of the flag (X,Z) is the tuple

whose entries are the Hilbert polynomials of the X' :

®;(t) = X(X", Opyy ()] x1)-

In order to have a moduli functor, we need to specify what is meant by a family of

hyperplanar admissible flags, and when two families are considered to be equivalent.

Definition 7.3.3. Let S be a scheme. A family of hyperplanar admissible flags (X, Z, L)
of subschemes of P(V') (of length n, degree d and Hilbert type ®) parametrised by S is
given by the following data:

1. an invertible sheaf L on S;

2. atuple X = (X°,..., &™) of closed subschemes X° C --- C X" C Pg(V ® L) which
are flat and finitely presented over S; and

3. a tuple Z = (Z2°,...,2") of locally free subsheaves Z2° C ---C Z" =V ® L,
such that the following properties hold:
(i) each Z' is of corank n —i; and

(ii) for each geometric point s € S, the fibre (X,2)s = (X, Z,) is a hyperplanar
admissible flag of subschemes of P(V @ Lg) = P(V) of length n, degree d and
Hilbert type @, as in Definition [7.5.1]

The family (X, Z, L) is said to be non-degenerate (resp. non-singular, stable) if for each

geometric point s € S, the flag (X, Z)s is non-degenerate (resp. non-singular, stable).
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Definition 7.3.4. Let (X, Z,L) and (X', Z', L) be families of hyperplanar admissible
flags of subschemes of P(V') over a common base scheme S. These families are said to be
(projectively) equivalent if there exists an isomorphism of invertible sheaves ¢ : L — L’

and an element g € GL(V') such that:
(i) g ¢: VLSV ®L sends Z' to (2°) for alli=0,...,n, and
(i) Ps(g® ¢) : Ps(V @ L) = Pg(V ® L') sends X to (X) for alli=0,...,n.

Given a morphism of schemes T' — S, the pullback of a family of hyperplanar
admissible flags (X, Z, L) parametrised by S is a family of hyperplanar admissible flags
parametrised by T', and projectively equivalent families over S pull back to projectively

equivalent families over T'. As such, there is a well-defined moduli functor
Fr0) : Sch®® — Set

which associates to a scheme S the set of all equivalence classes of families of non-
degenerate, non-singular and stable hyperplanar admissible flags of subschemes of P(V)

of length n, degree d and Hilbert type & parametrised by S.

Remark. Suppose (X,Z), (X', Z') are non-degenerate hyperplanar admissible flags of
subschemes of P(V') with the closed embeddings X™, (X")" C P(V) being linearly normal,
ie. HY(P(V),Zxn(1)) = H'(P(V),Zx/y»(1)) = 0, so that the restriction maps V" —
HO(X"™ Oxn(1)) and VV — HO((X")",Ox:mn(1)) are both isomorphisms. Then there
exists an isomorphism of polarised varieties (X", Op)(1)[xn) = ((X')", Opqy(1)|x7yn)
taking each X* to (X’)? if and only if (X, Z) and (X', Z’) are projectively equivalent.
Indeed, any such isomorphism (X", Op(y)(1)[xn) = ((X')", Opevy(1)|(x7y») gives rise to
an automorphism of the overlying projective space P(V'), by considering the induced

isomorphism on global sections.

7.3.2 The Local Universal Property

Let n,d be positive integers and let V' be a complex vector space of finite dimension;
assume dimV >n+1 and d > dim V — n. We now exhibit a family which has the local

universal property for the moduli functor F = fg) (dV(;
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Let H; = Hilb(P(V'), ®;) be the Hilbert scheme parametrising closed subschemes of
P(V) with Hilbert polynomial ®;, and let Gr; = Gr;(V') be the Grassmannian parametris-

ing subspaces of V' of codimension n —1i. Let

S = ﬁ’HZ X ﬁGrj.
i=0 =0

We endow S with the diagonal action of GL(V') induced by the natural GL(V')-actions
on the H; and GrjE| Over H are the following universal objects:

(i) S-flat, S-finitely presented closed subschemes V! C P(V) x S for each i = 0,...,n,
with ) given by the pullback of the universal family over H,.

(ii) Corank n — j locally free subsheaves W/ C V ® Og for each j = 0,...,n, with W/
given by the pullback of the universal subbundle over Gr;.

Lemma 7.3.5. There exists a locally closed, GL(V)-invariant subscheme S’ C S with
the following universal property: suppose S is a scheme and S — S is a morphism,
corresponding to the closed subschemes yg C P(V) x S and the locally free subsheaves
Wg CV®0Og. Then S — S factors through S’ if and only if for each geometric point
seS:

1. Y0 C ..o C V" as subschemes of P(V), and W2 C --- C W =V as subspaces of
V;

2. Vi=Y"NPWY) for alli=0,...,n;
3. dimY! =i for alli=0,...,n;
4. degVi=d for alli=0,...,n;

5. Vi C POWY) is a non-degenerate, non-singular, connected projective subvariety for

eachi=1,...,n; and

6. YO c POWY) is non-degenerate, YO is the disjoint union of d reduced points and
VY is Chow stable.
“Note that the action of GL(V) factors through the quotient PGL(V).
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Proof. The first two conditions are incidence correspondences; these conditions cut out
a closed subscheme of §. After first imposing the first two conditions, the remaining
conditions are all open in flat families, so define an open subscheme S’ of this closed

subscheme. O

Let (), W) be the restriction of (Y, W) to S’ C S. Note that (J', W', Og/) is a family
of non-degenerate, non-singular and stable hyperplanar admissible flags of subschemes

of P(V) of length n, degree d and Hilbert type @ over S'.

Lemma 7.3.6. The family (Y', W', Oy) has the local universal property for the moduli

_ P(V)
functor F = ]:n,d,g

Proof. Given a family (X, Z,L) over a scheme S and a point s € S, by passing to
an open neighbourhood U C S of s where L is trivial we may assume without loss of
generality that L = Og. The result then follows from Lemma together with the

universal properties of the schemes H; and Gr;. O

Corollary 7.3.7. The moduli functor F is corepresentable if and only if there exists a
categorical quotient q : 8" — 8" f SL(V') of 8’ by SL(V), and that a coarse moduli space

of F exists if and only if q is an orbit space morphism.

Proof. If sg, s1 are points of S and if (Y, W), (¥;,W;) are the restrictions of the
universal family (), W) to so and s1 respectively, the flags (), W) and (Y, W;) are
equivalent if and only if sy and s; lie in the same SL(V)-orbit in &’. The result then
follows by Proposition [2.3.3] O

7.4 Proof of the Main Result

Let n, d be positive integers and let V' be a complex vector space of dimension n + 1 <
dim V. Assume in addition that d > dim V' —n and that d ¢ {% i=1,... ,n}.
Let & = (®g,...,P,) be a tuple of Hilbert polynomials of subschemes of P(V'), where
D,(t) = %ti + Ot~ for each i = 0,1,...,n. We will construct a categorical quotient

for the action of the group G'= SL(V) on the subscheme &’ C [[[_H; x [[}—, Gr;.
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7.4.1 Reduction to a Parabolic Action

Fix a decomposition
V=W&Cv & & Cu,

where W C V is a subspace of codimension n. For each i = 0,1,...,n set Z! =
W @& @,<; Cvj. Let py be the point of [[;_, Gr; corresponding to (Z°,...,2Z"), and let
P = Stabg(po) be the parabolic subgroup of G preserving the flag Z° C --- ¢ Z". With
respect to a basis of V' compatible with the flag Z° C --- C Z™ we have

A1,1 A1,2 T Al,n Al,n+1 A Cdim W xdim W
0 agp -+ agn  azpt 11, € ’
pP— : : : : €SL(V): Ay; e C™Wofor j =2 ... n+1,
0 0 - Gnn  Gnptl a;; € Cfori,j>1
0 0 s 0 Gp+1,n+1

In particular, in the notation of Section [3.3{ we have P = P()), where X is any 1PS of G
with decreasing weights 51 > 2 > - -+ > (3,11 whose multiplicities are (dim W, 1,...,1).
Let 8 C &’ be the preimage of py. Then &' = G - S|, so by Lemma we have

S' =G x" ).

It follows that a categorical quotient of &’ by G exists (and is an orbit space morphism)
if and only if a categorical quotient of S) by P exists (and is an orbit space morphism).
Indeed, if a categorical P-quotient S) / P exists, then the action morphism G x §j — S’

induces an isomorphism of categorical quotients S’ ) G = S J/ P.

7.4.2 Linearising the Parabolic Action

From now on, we regard Sj as a locally closed P-invariant subscheme of H =[]}, H;

in the obvious way. For each ¢ =0,...,n, let
U, : Hilb(P(V'), ®;) — Ch; := Chow, 4(P(V))
be the corresponding Hilbert—Chow morphism. Let

n n
U=]]w:H—Ch:=]]Ch
i=0 i=0
be the product of the ¥;. Given a tuple of positive integers a = (ao, - . ., an), let L¢;, ==

&?:Oﬁ‘ghi, where Lcy, is the Chow linearisation on the Chow scheme Ch;.
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In the notation of Section we have R] = R'() = SL(W) and R'®) = {e} for all
i > 1. We choose a to be of the form a = (ajm,m,...,m) for some sufficiently large
integers m > 0 and af, > 0, where m is chosen such that each L, 1s very ample, and

ag is chosen according to the following result (where the reductive group K is taken to
be M = SL(W)):

Lemma 7.4.1. Let K be a reductive linear algebraic group acting on a product of pro-
jective schemes []i_,Yi, where each Y; is endowed with a very ample K -linearisation
L;. Then there exists a positive integer a’ > 0 such that for all af, > da', for every point
p=(po,...,pn) € [[1-oYi, if po is K-stable with respect to the linearisation Lo then p
1s K -stable with respect to the linearisation LSE’ XLiX---XL,.

Proof. By using each L; to embed Y; inside a projective space, we may assume each Y;

is a projective space P(W;). The lemma now follows from [I18, Proposition 1.7.3.1].

7.4.3 Upstairs Stabilisers and Weights

Fix integers 81 > 0 > B2 > --+ > By41 with S dim W + 2?221 Bi = 0 Define a 1PS
A Gy, = SL(V) by setting

1y ifveWw,
At) v = ’
®) {tﬁiﬂv if v =w;.

P is the parabolic subgroup of SL(V') associated to A, and A grades the unipotent radical
of the parabolic P. We will freely make use of the notation of Section as it applies
to the parabolic group P. In particular, by averaging the weights of A we obtain length
two 1PS A, ..., A", We also obtain unipotent groups U Al by considering the
row filtration of the unipotent radical of P, with Ul graded by Ald. The 1PS A has
weight space decomposition V = Z=1 @ Vi~! where VI = ®k>j Cuy,; vectors in Z~1
have Al-weight B<i and vectors in V=1 have Miweight Bs;.

Fix a point p of S} corresponding to a hyperplanar admissible flag (X%, X1,... X™)
with X? = X? NP(Z%) and (X)) = P(Z') = P<W@@j§z‘ Cvj) for all 7. For all
1<i<j<m,let Vi = {C:i Cuy; we also set pld(z) := limy_o A (¢) - = for a point
rzeH.

S5For the purposes of this chapter, the specific choices of the 3;’s doesn’t matter; what matters is that
they satisfy the given constraints.
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Lemma 7.4.2. The following statements hold:
1. For eachi=1,...,n, the point pl! (p) € H is given by the flag

Pl(p) = (X0, ., XL J(XTL PV, (XL P(VETL), L J (XL P(VEMY).

2. For all j <1 we have pVl(pll(p)) = plil(p).

Proof. A fixes pointwise the subschemes X©,..., X*~1. On the other hand, for each
k > i the projection X* ——» P(V¥¥) is dominant, since X* C P(Z¥) is non-degenerate.
The first assertion now follows from Lemma For the second assertion, note that
Zi=1nVhk =0 for all k > i, so

JXTL PV NP(ZI7) = X nPp(zi7Y) = XL
The second assertion then follows from a second application of Lemma O
Lemma 7.4.3. For alli=1,...,n, we have Staby (pl (p)) = {e}.

Proof. If k > i, then any projective automorphism of P(V') arising from the unipotent
group Ul which preserves J(X*~1, P(V**)) must preserve P(V*¥), as seen by considering
dimensions of projective tangent spaces; points of IP’(V“g ) have projective tangent space
equal to all of P(V), whereas points of J(X'~1,P(V¥¥)) off P(V¥*) have projective

tangent spaces of dimension (i — 1) + (k —i) +1 =k < dimP(V).

n+1
p,g=1

of P(V%), ... ,P(V®"), which implies that if p # ¢ then A,, = 0 whenever p < i and
g > i. On the other hand v € U, so for p # ¢ we have Apg = 0if ¢ <idorif p > .

It follows that any element u = (Ap,) € Staby (p(p)) must preserve each
Consequently u = e must be the identity matrix. O

Lemma 7.4.4. For each i = 1,...,n, the Hilbert-Mumford weight y/“cn (T (p), A s
the same for all points p € Sj).

Proof. First of all, since d > dimV —n = dim W, since f9,...,8,+1 < 0 and since

d€{%:z':l,...,n}thenforeachz':1,...,nwehave
i+ df<i = - d (Bigr+ -+ Bngr) #0
SIS T \nt 11— dimW4i-1) T

Therefore Lemma, is applicable.
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Choose a basis W" and let z; € V' be dual to v;. For a point p € S}, up to a positive
scalar multiple the Hilbert—Mumford weight of ¥(p) is given by

uen (W (p), AT) = afyuem (o(X0), AW)
i—1 n
D (W), ) 4 3 (0 (0 BVE)), ),
j=1 g=i
The contribution uLChj(\I/j(Xj ), \l) coming from X7 (where j < i) is equal to
B<id(j + 1) by Lemma [7.2.3] For the contribution of the join J; := J(X'~1, P(VJ))
(where j > i), we have that the homogeneous ideal of J; C P(V') is given by

Ipv)(J5) = (Ip(z,) (J5)s Tj1s - - -5 Tn),s

so the homogeneous coordinate ring of J; C P(V) is the same as that for J; C P(Z7).
Applying Lemma, then gives

Bsi(j—i+1) ifj>2i—1,
pE (05( ), M) = § Bidi if j < 20— 1,
i(Bsi + dBi) 1§ = 20— 1.
It is now clear that the resulting expression for pfcn (U (p), Al) is the same for all

points p € 8. O]

7.4.4 The Quotienting-in-Stages Procedure

We now construct a quotient of S in stages, by implementing Construction After
n stages, we will obtain a quotient for the action of P, the parabolic group in Section
(41l

For the base step of the quotienting-in-stages procedure, as ¥ restricts to an isomor-
phism S = W(S)), we can regard S) C Ch. Let Q; be the projective scheme obtained
by taking the closure of S} in Ch. For some sy > 0, the GL(V)-linearisation L’g)f is
very ample; let L1 be the restriction of this linearisation to Qp, twisted by a suitable
character €;x1 (to ensure that the corresponding H,-linearisation is adapted). As per
Construction we need to consider the action Hy = Uy x (SL(W) x A1(Gyn)) O Q).

Fix a point p of S} corresponding to a hyperplanar admissible flag (X° X1, ... X")
with X7 = X" (P(Z%) and (X7) = P(Z}) = P (W ©®,. «:vj) for all 4. Let z = U(p) €

Q1. We introduce the following notation:
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1. Set Q) = (Q1)f1-vs.
2. Foralli=1,...,n, set Q[li] = Q1 (A1) iy and set Zlm = Z(Q1, A\ in.
3. Denote pli! the A@-retraction pl : Q[li] — Z{i].
Lemma 7.4.5. The following statements hold:
1. the point x lies in Qy), and for all i > 1 we have x € Q[li] ;
2. for all i > 1, we have pli(zx) € Qs and
3. for all i > 1, we have pli(x) € Z{i].
In particular, for the action fll O Qq linearised by Ly, Theorem 1s applicable.

Proof. We begin by considering the third statement. From Lemma the Hilbert—
Mumford weight of pl’l (z) with respect to the linearisation L; and the 1PS A7 is constant
across the dense open subscheme S = U(S() C Q;. This common weight must be the
minimal weight, and so pl!(z) € ZF] as claimed.

Let us now show that the points z, pl?(z), ..., pl"(x) are in Quy = (Ql)gil;”; this

involves establishing the following for all elements y € {x, pl2/(z),..., pl"(z)}:
(i) y € Q[lu = Q1 (A i, that is pl(y) has minimal Al!-weight.

(ii) pll(y) has trivial UM-stabiliser and is stable under the action of R} = R'() =
SL(W) on z.
]

(iii) y is not contained in the UM-sweep of ZP .
However, by Lemma we have for all such points y that
P () = pll (@) = WX, J(XO, PV, .., J(XOB(VEY).

We have already shown that this point has minimal AV-weight, so each such point y
is in Q[ll]. By Lemma the Chow stability of X C P(Z") together with Proposition
implies that the point pll(z) is SL(W)-stable with respect to Li. Lemma
implies that Staby;) (ppj()) is trivial. Finally, points in uhl Zlm are fixed by the retrac-
tion pl!), whereas no point y € {z, pld(x),...,pl"(x)} is fixed by pl!), as the dimension 1
component of a flag corresponding to such a point 3 (namely, X') does not coincide with
that of pl!l(y). Consequently each such point y cannot lie in U[I]ZP. This completes

the proof of the Lemma. O
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We now consider the induction step of Construction Suppose 1 < i< f—1=n,

and suppose we have constructed successive quotients ¢; of the form

H;— qj Hi—vs ;55
(Q)min : P (Qi)mdn /Hi
[ [
¢ . 4
J
Qj T > Q1
P(HO(Qj, L)) === o S B((HO(Qy, L) ™))
HO(Q;,L;7) i cHO(Q;,L,7)
for each j = 1,...,4, where the top horizontal arrow is a geometric H j-quotient, where

Qj41 is the closure of the locally closed subscheme
(Q)aia "/ H; € P((HY(Q;, L) 1)Y),

and where each Q; is endowed with the very ample linearisation L; obtained by re-
stricting the O(1) of P((H°(Q,_1, ij_fll)ﬁjfl)v) to Q; and then twisting by a suitable
character €;x; of H; to ensure adaptedness.

The very ample invertible sheaf L; 1 on the projective scheme Q;;1 carries a lineari-
sation for a residual action of P/ H () and in particular for I;QH. By twisting L;11 by
a character of fAIiH of the form €;11x;11 if necessary, we may assume that this fIZ-H—
linearisation is adapted.

For the induction step, we need to show that Theorem [3.2.9| can be applied to this

linearised action of I;QH. In order to establish this, we introduce the following notation:
1. For j=1,...,1, set
qj)=qj°qj—1°---0oq : Q1 --» Qji1.

2. We inductively define open subschemes Q;) C Q for j = 1,...,i + 1 by setting
Qu = (Ql)giln_vs (as before) and setting for j > 1
-1 Ifljf'us
Qi) = -1 N4G-1)(L)min )
so that for each j, the morphism q() Q(j) — q(j)(Q(j)) = Q(j)/ﬁ(j) CQjtrisa

well-defined geometric H (9)_quotient.

162



3. Forallk=1,...i+1landforallk <j<t=mn+1, let Q' = Qu(A) i, let
Z,Lj] = Z(Qk,)\gg])min, and let pg] : Qgcj] — Z,[j] be the retraction under )\Eg]. As
a special case of the above, we continue to denote plil = p[lj] for the )\[lj] = \UI

retraction on Q;.
4. Set Q(O) = Q7 and q(0) = ido, .
Lemma 7.4.6. For each j =0,1,...,1, the following statements hold:
1. € Q1. and for all k > j + 1 we have q(;(z) € QI ;
2. for all j+1 < k < n, we have plFl(z) = p[lk] (z) € Q(j41); and

3. forallj+1<k<mn, q(j)(p[k] () € Zyﬂl.

Proof. We argue by induction on j, noting that the base case is Lemma Assume
that the assertions of Lemma holds for each j = 0,...,r — 1, where r < . We

first show that for each k > r + 1, the point q(r)(p[k} () = pyﬂl(q(r) (x)) is contained
in Zyﬂl. For each k& > r + 1, the induction hypothesis implies that q(r_l)(p[k] (z)) =

p (a1 (x)) € Z¥ A (QT)E{H_”S. In particular, we have Z N (Qr)gfn_vs # (). From

Construction the map ¢, : Q, --+ Q,41 is given by the projection corresponding
to the inclusion B := H°(Q,, Ls")Ir ¢ A = H°(Q,,L5"), and the twist of L,;; by the
character —e,4+1x,r4+1 pulls back under ¢, to give L{". As such, the arguments given in
the proof of [66, Lemma 5.4] carry over to the map ¢, : Q, --+» Q,41. Namely, that
zM (QT)Z{D_ Y8 #£ () implies that the maximal weights for )\Lk}(([}m) acting on both A

and B coincide, so we may choose a basis B4 for A of the form

BA - {am O‘:mﬂ/mﬂllj}?

where the «,, o, are a basis for B and the o, 5, are a basis for the maximal weight space
for /\,[nk} (G,) in A. With respect to this basis, the morphism ¢, corresponds to projecting

onto the «,, o/ -coordinates, and the retraction p[rk} on Q, corresponds to projecting

onto the «,, B,-coordinates. Setting z := q(r_l)(p[k] (x)), since z € Z¥ then all al, Bl-
coordinates of z vanish, and since z € (Q,)X7""¢ then at least one a,-coordinate of z

does not vanish. Applying ¢, to z (that is, projecting onto the a,-coordinates), we obtain
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that the point ¢.(2) = q() (p*(z)) € Q,41 is fixed by )‘7[5]#1 and has all coordinates in the

maximal weight space, whence z € Zgﬂl. Consequently, we find that for all kK > r + 1,

P a6 () = 4y (0 () = go gy P (2)) € 2.

In turn this implies that g, (x) € Qyil forall k > r+1.
Let us now show that the points z, p"*2(z),..., pl*(z) lie in Q(r+1), that is their

Hyqi1—vs

images under q,) lie in (Qy4+1) i1 . Note that the semisimple part R, of the Levi

subgroup R,y1 of ﬁr-{—l is trivial, so Rj_ ;-stability is vacuous. As such, it suffices to
establish the following for any point y € {q¢)(z), q() (pr+2(x)), ... 2 d(r) (pl™ (z))}:
. +1 +1
Q) pry) e 275",
(ii) p[::f] (y) has trivial U, -stabiliser.
(iii) y is not contained in the U,41-sweep of Zr[r_:rll].

By Lemma we have for all such points y
i W) = 0 i @) = a6y (07 (@),
which is represented by the H_orbit of the configuration
pr(p) = (XO, . X7 J(XT PV ), J(XT PV,

of subschemes of P(V'). We have already established that q(,) (prt(z)) is in Z 1],

r+1
Combining Lemma with [66, Lemma 5.12], the triviality of Staby.y(pl"t1(p))
implies that g, (pl"+1(x)) has trivial U, ;-stabiliser. Any point in 40y (Qry)NUr 41 Zr[fll]

[r+1]

is fixed under the retraction p,;". However none of the points y are fixed by p[TH]

r+1 »
as they are all represented by configurations whose dimension (r + 1) component is the
non-singular variety X" ™! whereas p[fjll] (y) is represented in dimension (r + 1) by the
singular variety J(X",P(V7 L)),

Consequently none of these points y can lie in UTHZ,[,TIH. It follows that each

y € {a0) (@), 4y (00 (@)), .-, gy (P ()} Ties in (Qp1)pyi ™. This concludes the
induction step and in turn concludes the proof of the lemma. ]
Corollary 7.4.7. For the action I/'-\Ti—&—l O Qiy1 linearised by Liy1, Theorem is

applicable.
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Proof. This immediately follows from Lemma [7.4.6] O

Arguing by induction on 4, it follows that Construction [3.3.1] can be carried out in

full, yielding a diagram of the form

Qp -~ s » Qg —------ B Yoo s > Qp - Lo > Qnt1
| | 1
N q1 ° q2 ° dn
] ) ;
(Q)ahn (Q2)in ** o (Qn)min ™

where for each i the restriction g; : (@)% — ¢;((Qi)Hi~vs) = (Ql)gir:”s/ﬁz is a

geometric ﬁi—quotient. With

An) = qn O Gn-10---0q1: Q1 --» Qni1

and
Q(n) = Q(n—l) N Q(_nlfl)((Qn)ginn_vs)’

the morphism g,y : Q) = q(n)(Ln)) C Lny1 is a well-defined geometric H®™_quotient
of Q. If z is a point of Sy = ¥(Sp), by iterating Lemma one has z € Q.

7.4.5 Completing the Proof

By tying everything together, we complete the proof of Theorem [7.1.1

Proof of Theorem |[7.1.1] By Corollary [7.3.7, the moduli functor ]-"E (qu)> admits a coarse
moduli space if and only if the scheme S’ admits a categorical quotient for the action
of SL(V) which is an orbit space morphism. From Section this is equivalent to

S} = U(S])) admitting a categorical quotient for the action of P which is an orbit space

morphism.

From Section the scheme Q,,) admits a quasi-projective geometric H (")_quotient.
Invoking Proposition @, it follows that Q(,) admits a quasi-projective geometric P-
quotient. There is an inclusion ¥(S)) C Q(n) of open subschemes of Q). A geo-
metric P-quotient of &) can then be obtained by restricting the geometric P-quotient
A © L) — 4y (L)) C @nr1, by applying Lemma to the U;-quotients (which
are all Zariski-locally trivial) and Lemma to the quotients by the X\;(G,,) and by
R} = SL(W) (which all have the property of being geometric quotients). In particular,
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S, = U(S)) admits a categorical quotient for the action of P which is an orbit space

morphism. This completes the proof of Theorem [7.1.1 O

7.5 Extending the Main Result

To conclude this chapter, we consider a couple of ways in which Theorem can be

extended.

7.5.1 Weighting the Points

The construction presented above treats X? as an unordered collection of points in the
linear subspace Z° C P(V). It is possible to consider a modified setup, where we instead
consider X" to be an ordered collection of d points in Z°, by replacing the Hilbert
scheme Hilb(P(V),d) of O-dimensional length d subschemes of P(V) with the d-fold

product P(V)*?. In place of the Chow linearisation Lcy,, one may take the linearisation
Opy(w) := @?ZIOP(V)(W), w = (wy,...,wq) € (Z>O)d.

With respect to the induced action of SL(W) arising from a given decomposition V' =
W e W', it follows from [40, Theorem 11.1] that if p = (p1,...,pq) € P(W)*™ C P(V)*™
then p is SL(W)-(semi)stable with respect to the linearisation Op(y)(w) if and only if
for all proper linear subspaces Z C P(W),

Zp;ezwi < (< din‘12+1
S wi dim W

1=

(7.5.1)

Applying the same quotienting-in-stages construction used to prove Theorem with
this modified setup, one obtains (for each w € (Z=%)%) a coarse moduli space parametris-
ing all non-degenerate, non-singular and stable hyperplanar admissible flags (X, Z) to-
gether with a labelling of the points of X°, where the appropriate notion of stability is
given by requiring that the labelled points in X° C P(Z") satisfy Inequalitystrictly.

7.5.2 Omitting the Points

Another variant of Theorem can be obtained in which the flags being parametrised

are of the form

ch...cX”_ch”’ ZIC'“CZn_lCZn:V (7.5.2)
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where X! C P(Z!) is a smooth, non-degenerate connected projective curve which is now
required to be GIT stable with respect to the Chow linearisation on Hilb(P(Z1), @)
(and all other subvarieties X? C P(Z') are non-degenerate, smooth and connected).
As above, the construction proceeds along very similar lines to the quotienting-in-stages
construction used to prove Theorem the locus &’ being quotiented is taken to be the
analogously-defined locally closed subscheme of []?" | H; X H?:l Grj, and the group P is
taken to be the parabolic subgroup of SL(V') preserving the flag Z! ¢ --- Cc Z" =V. In
the base step of the quotienting-in-stages procedure (cf. Lemma, the GIT stability
of X' ¢ P(Z') is used to argue that the points pH(y), v € {z,p@(z),...,pl"H(z)}
are all stable with respect to the reductive linear algebraic group Rj; otherwise the
quotienting-in-stages construction proceeds as in Section [7.4.4]

From the results of [22], it is known that if g > 2 and if d > 2(2¢ — 2) then smooth
non-degenerate connected projective curves in P9 of degree d and genus g are Chow
stable; in particular, the Chow stable locus of the corresponding Hilbert scheme of curves
is non-empty. Imposing the requirement that the degree and genus of X! satisfy these
constraints imposes constraints on the higher-dimensional X* fitting into a flag of the
form (7.5.2). Indeed, fixing k € {2,...,n}, it follows from the Hirzebruch-Riemann—
Roch theorem (as applied in [51, Example 18.3.5]) that if H C X* is the hyperplane

class then
1- g = X(XlaOXl)

k—1
= /Xk (H(l —exp(—H)) ﬂTd(Xk)>

i=1
:/ (Hk‘l. (_KX’“> — k_lHk>
_ k=1 Exe- XD
N 2 2 '

Here Td(X*) =1— LKy« + - is the Todd class of X*. The inequality d > 2(2g — 2)
implies that if g > 2 then

Kyr - X' < —(2k —3)(29 — 2) <0.

In particular, each canonical divisor K y+ cannot be nef or numerically trivial.
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For similar reasons to when k = 1, it is also possible to obtain a variant of Theorem

7.1.1] concerning flags of the form
XkC.HCanchn’ ZkC”.CanICZn:V

where X* C P(Z¥) is a smooth, non-degenerate, Chow stable subvariety of P(Z*).
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Chapter 8

Moduli Spaces of Unstable Rank
1 Torsion-Free Sheaves on
Reducible Curves

8.1 Introduction

In this chapter, we study the moduli of Gieseker unstable rank 1 torsion-free sheaves on
reducible curves. The main result that we prove is the existence of quasi-projective fine
moduli spaces of simple unstable torsion-free uniform rank 1 sheaves on certain reduced,
connected, projective, reducible curves C'; in many cases these fine moduli spaces are
projective. In particular, this gives the first examples of projective moduli spaces of
unstable sheaves on projective schemes which admit fully modular descriptions, without
any restriction on the Harder—Narasimhan length.

As explained in Chapter 4] GIT gives a method to construct projective moduli spaces
of semistable sheaves on a projective scheme X. Conversely, no such general approach
is known to exist for the analogous problem of constructing moduli spaces of unstable
sheaves on X of a given Harder—Narasimhan type. Even though this is a problem in
non-reductive GIT (cf. Section , the U-Theorem of Bérczi-Doran-Hawes-Kirwan
can only be applied in certain cases. The most well-behaved case concerns the moduli
of unstable sheaves F' of Harder—Narasimhan length 2 on a projective scheme X whose
Harder—Narasimhan filtration is non-split, whose Harder—Narasimhan subquotients are
Gieseker stable and with fixed dim Endy (F); the U-Theorem can be used to construct a
quasi-projective coarse moduli space parametrising all such sheaves, as shown by Jackson
[70].
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For Harder—Narasimhan lengths ¢ > 2, there are two current NRGIT approaches to
constructing moduli spaces of unstable sheaves F' of Harder—Narasimhan length ¢, whose
Harder—Narasimhan filtration is non-split and whose Harder—Narasimhan subquotients
are stable. The first approach is the non-reductive quotienting-in-stages procedure of
Hoskins and Jackson [66] (cf. Section [3.3)); this involves fixing, in addition to fixing the

Harder—Narasimhan type, the quantities
dim Homx (F/F*, F?), dimHomx (F/F’, F'™1),

for all i, where 0 = FO ¢ F! ¢ ... ¢ F* = F is the Harder Narasimhan filtration

of F. The second approach of Qiao [I10] involves choosing a sequence sy, ..., sy of
non-increasing functions {1,...,¢} — {0,...,¢ — 1}, and fixing the dimensions of the
spaces

Endx (F)s, = {¢ € Endx (F) : ¢(F') c 5O for all i = 1,... ,z}, k=1,...,N.

With either approach, the resulting moduli spaces parametrise sheaves of a fixed re-
fined Harder-Narasimhan type (though the respective notions of refinements are differ-
ent); for either approach to work, there must exist an unstable sheaf F' whose Harder—
Narasimhan associated graded has the same refined Harder—Narasimhan type as F.
Hoskins—Jackson can only provide examples of such sheaves whose Harder—Narasimhan
length is 2 (and this case is covered by Jackson’s Harder—Narasimhan length 2 result),
whereas Qiao is able to use his approach to construct quasi-projective coarse moduli
spaces of unstable locally free sheaves on a smooth projective curve of genus g which,
in addition to having fixed dim Endx (F'),, for all k = 0,..., N (for a chosen sequence
80, ---,8N), are required to satisfy p; — piy2 > 2g — 2 for all 4, where py > -+ > py are
the slopes of the Harder—Narasimhan subquotients.

A separate non-GIT construction exists of the moduli space of unstable vector bun-
dles F' on X of fixed Harder—Narasimhan type 7 of length 2 whose Harder—Narasimhan
filtration is non-split, whose Harder—Narasimhan subquotients are stable and with fixed
dim Endx (F'); this construction is due to Brambila-Paz and Rios Sierra [25]. If 7 =
((r1,d1), (re,d2)) is the Harder—Narasimhan type, the moduli space is constructed from
the fine moduli spaces M; = M%(r;,d;) (i = 1,2) of stable locally free sheaves on X
of ranks r; and degrees d; by passing to an appropriate union of strata of a flattening

stratification of M; x My for a relative Ext'-sheaf defined using the universal bundles
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on the M;, and then taking the projective bundle associated to this sheaf over the union
of the strata.

As is shown in this chapter, an adaptation of the construction of Brambila-Paz—Rios
Sierra can be used to prove the existence of quasi-projective schematic fine moduli spaces
of simple unstable torsion-free coherent sheaves of uniform rank 1 on certain reducible
curves C, building on from the existence of fine moduli spaces of simple semistable rank
1 torsion-free sheaves supported along given subcurves D C C, i.e. the fine compactified
Jacobians of the subcurves D. This is a setting where all unstable sheaves F' have
the property that both F' and the Harder—Narasimhan associated graded of F' have
the same Hoskins—Jackson refined Harder—Narasimhan type (cf. remark after Definition
, and so an alternative proof of the quasi-projectivity of the open subscheme where
the Harder—Narasimhan subquotients are stable can be given using non-reductive GIT.
However, non-reductive GIT reveals much less about the geometry of the fine moduli

spaces of unstable sheaves on C' compared to the approach taken in this chapter.

Summary of Results

Let C be a reduced connected projective curve. Fix a polarisation v = («, ¢) on C.
Let 7 = (Hi,vi)le be a Harder—Narasimhan type for simple torsion-free sheaves on C
of Euler characteristic x and uniform rank 1, defined with respect to v (cf. Definition
. Let jg C jé be the fine schematic moduli space parametrising those sheaves F
on C' of Harder—Narasimhan type 7; the existence of such a subscheme is a consequence
of Proposition The space jTC decomposes as a disjoint union of open and closed
subschemes of the form J7, where 7 = (0:,vi, D;)5_, is a (support-) refined Harder—
Narasimhan type refining 7; jg) parametrises those sheaves F' € 76 such that, if 0 =
FO c Fl c ... ¢ F' = F is the v-Harder Narasimhan filtration of F, then supp(F;) is
equal to the subcurve D; C C'. In turn, there is an open subscheme 729_81) of 729 which

parametrises those sheaves F' € jg) which are 71y-simple, meaning that:
(i) each sheaf F; is simple (viewed as a sheaf on D;); and
(ii) each inclusion F* C F**! is non-split.

In order to ensure that 729_829 is non-empty, we assume that the subcurves D; are
all connected and that D;ND;;1 # @ foralli=1,...,¢/—1. Let J; = jﬁ’ss(ul)i) be the
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fine compactified Jacobian parametrising simple vp,-semistable sheaves on D; of Euler

characteristic x; = 0; — ¢p,. There is a map

¢
gr: 729 --3 Hji
i=1
which associates to an unstable sheaf F' its Harder—Narasimhan subquotients F; =
T0—5P

F'/F*=1. This restricts to a well-defined morphism gr : J — Hle J;. We may

now state the main result of this chapter.

Theorem 8.1.1. Assume that for all i # j, any point p € D; N D; is a locally planar

singularity of C'. Then there exists a diagram

~

—T0—SP ~ y)
Jeo P

h I
P2
I
¢ =
P = Hi:l Ji

where each m; : P* — P~ is a Zariski-locally trivial projective bundle.

The projective bundles m; : P® — P! are constructed from universal spaces of
extensions, as described in the following subsection.
By combining Theorem with the properties of fine compactified Jacobians given

in Section [5.3] we have the following immediate corollary.

jZ?‘Sp N Hle Ji is projective (in particular

Corollary 8.1.2. The morphism gr :
proper), surjective and smooth. In particular, if C has locally planar singularities then
the scheme jg)iSp 1s reduced, has lci singularities, and the smooth locus coincides with
the locus in Jg " where all subquotients F; are invertible.

*c JG" parametrising those sheaves F €

Moreover, the open subscheme 729_
jg’isp whose Harder-Narasimhan subquotients F; = F'/Fi=! are all stable is a quasi-
projective scheme. In particular, if jﬁ,’ss(ypi) = jﬁ’s(ypi) foralli=1,...,¢, then the

fine moduli space 729‘37’ is a projective scheme. 0
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In addition to presenting the proof of Theorem |8.1.1} we also compute in this chapter
the relative dimension of the associated graded morphism gr : 72"57’ — Hle J; in terms
of the Harder—Narasimhan length ¢ and the subcurves D; of C' in the case where each
point p € D; N Dj is a node of C (cf. Corollary |8.4.3). We conclude by indicating how

Theorem [8.1.1| can be generalised to the relative setting.

Summary of the Proof of the Main Result

The proof proceeds along similar lines to the construction of Brambila-Paz—Rios Sierra
[25]. Suppose F € 729‘81’ is an unstable sheaf of refined Harder—Narasimhan type 7,
with Harder-Narasimhan filtration 0 = FO ¢ F' ¢ --- ¢ F! = F and subquotients
F, = F'/F~! € J;. We may reconstruct F' from the subquotients F; by taking a

successive sequence of non-split extensions

00— Fi-1 F? F; 0.

The space of such extensions, up to equivalence of extensions and up to scalar multi-
plication, is given by the projective space P(Exts(F;, F©~1)). Recalling that we have
universal sheaves U; on D; x J; C C x J;, this suggests that the moduli space 729_81?
can be constructed from the fine moduli spaces J; by taking iterated (relative) moduli
spaces of nowhere-split extensions of the ;. This approach is the one used to prove
Theorem R.1.1]

The space P? is constructed from P! by taking a projective bundle Q? over J; x Jo
and setting P? = Q2 x Hf:3 Ji (with the morphism P2 — P! being given by the identity
on the factor Hf:g Ji). The fibre of Q? over the point (Fy, ) € J; x Ja is given by
P(Ext&(Fy, F1)). The projective bundle Q? is a fine moduli space for nowhere-split
(twisted) extensions of Uy by U;, up to a suitable notion of equivalence. In particular,
Q? carries a universal sheaf ¢/2, the middle term of the universal short exact sequence
parametrised by Q2.

In order to show that such a fine moduli space exists and is a projective bundle over
J1 x Jo, we make use of results of Lange [80] concerning universal spaces of extensions
of coherent sheaves. Letting pi1o, p13 and pag be the projections from C x J; x Jo onto

C x J1, C x Jg and Jq x Jy respectively, we set

Q= Pj,.7, (Exty,, (Pislhs, PTolh))
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The relative Ext sheaf Extilm (pisUa, piolh) is locally trivial; the proof of this uses the
base change results presented in loc. cit. together with the fibrewise vanishing of
Exti(pfgl/{g,pﬁul) for i = 0,2. The local triviality of the relative Ext sheaf is also
used to show that Q? has the desired universal properties.

The space P3 is constructed from P? in a similar manner, by taking the projective
bundle

Q= P27, (Ext),, (pisUs, pisld?))

over Q% x J3 and setting P3 = Q3 x Hf: 4 Ji. As with Q?, the space Q3 carries a universal
short exact sequence with middle term 23, which is used to construct P* = Q* x Hf:5 J;
from Q3 and Jy.

The construction continues inductively, terminating after ¢ — 1 stages with the con-

struction of the projective bundle
_PZ = Qe = PQZ*1><74 <g$té23 (pﬁlx[e,pﬁue_l))

over P“~1 = Q1 x J,; the space P! is a fine moduli space for nowhere-split (twisted)
extensions of U, by U*~1, up to equivalence. The universal properties of 729‘3” and P*
are then used to define explicit inverse morphisms Jg © — P¢ and P — Jg& .

A priori, each scheme Q' parametrises nowhere-split extensions of coherent sheaves,
up to a suitable notion of equivalence. However, the notion of 7p-simplicity has the
important consequence that any 7p-simple sheaf F' with Harder—Narasimhan filtration
0=F°%c F! c ... C F* = F has the property that each sheaf F’ is simple. This is used
to show that each scheme @Q° parametrises (isomorphism classes of) coherent sheaves on
the nose; in effect, each extension equivalence class in each @° is uniquely determined
by the isomorphism class of the middle term (see Corollary . This is crucial to
proving the existence of an isomorphism P! 2 72‘” , since TQ‘S” is a moduli space of
coherent sheaves (as opposed to a moduli space of sequences of extensions of coherent

sheaves).

Future Directions

There are two main ways in which one could potentially generalise Theorem (in the
non-relative setting). The first is to allow for some of the inclusions F* C F**! in the

Harder—Narasimhan filtration to be split, as opposed to asking that all such inclusions
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are non-split. The second is to possibly allow for unstable sheaves with multiranks other
than (1,...,1); for instance, if each subcurve D; in a given refined Harder—Narasimhan
type is non-singular, one can make use of the existence of universal sheaves on the moduli
spaces of stable locally free sheaves on the curves D; of ranks r; > 0, in place of the
universal sheaves on the fine compactified Jacobians .J;.

The main subtlety in either case which would need addressing (and which does
not arise in the situation of Theorem is that, concerning the extension space
]P’s(é’a:t%( /S(Fg, F1)), if either of Fy or Fy are not fibrewise simple, then Corollary W
no-longer applies, meaning that it is no-longer clear that Pg(Ext}, / g(Fh, F1)) is a moduli
space of coherent sheaves. In higher ranks, the middle terms of non-split extensions of
simple sheaves on curves need not be simpleE As such, it is not clear in either case
that taking the appropriate iterated universal extension spaces results in a moduli space
of (isomorphism classes of) coherent sheaves, especially when working with sheaves of

Harder—Narasimhan length £ > 2.

8.2 Harder—Narasimhan Filtrations for Rank 1 Sheaves on
Curves

Let f: C'— S be a flat projective morphism over a locally Noetherian base scheme S
whose geometric fibres are connected, reduced curves. Pick invertible sheaves L, M on
C, with L relatively ample. As a special case of the existence of Harder—Narasimhan
stratifications for families of coherent sheaves (cf. Section , one has the Harder—
Narasimhan stratification
j>cc*/s = |_| 72*/5
T€HNT(L,M,X)

of Téw /s into locally closed sub-algebraic spaces Je /s = Je / §(L, M), with J; /s barametris-
ing all sheaves F' € jé/s with the property that F' ® M admits a relative Harder—

Narasimhan filtration, necessarily of the form

0=F9oMcF'eMc---CFloM=FeM

1For example, let C' be a smooth curve of genus g > 1, and let 0 = O¢ — F — O¢ — 0 correspond
to a non-trivial element of Extt:(Oc,Oc) = H'(C, Oc) with F locally free. Then h°(F),h°(FY) > 0;
by tensoring together non-trivial sections of F' and F, one can produce an element of HO(C7 FFY)=
End¢ (F) corresponding to a non-scalar endomorphism of F'.
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for a unique filtration 0 = F° ¢ F!' c ... ¢ F* = F of F with flat subquotients
F, = F'/Fi=! of Harder-Narasimhan type 7. In particular, each sheaf F; ® M is
Gieseker semistable with respect to L.

If S = SpecC is a point and if F; has support D;, there are inequalities

X(F1) +degp, M X(F¢) +degp, M
P >
degp, L degp, L

arising from the inequalities of reduced Hilbert polynomials p(Fy @ M,t) > -+ > p(F; ®
M,t) defined with respect to the ample invertible sheaf L. Moreover, the filtration
0=F%c F' ¢ ... ¢ F' = F depends only on the polarisation v(r,m) defined by
(L, M). This leads to the following definition.

Definition 8.2.1. Suppose S = SpecC is a point, and let F' be a torsion-free sheaf on
C of uniform rank 1. Let v = (a, ¢) be a polarisation on C. The v-Harder—Narasimhan

type of F' is given by the ordered tuple of pairs
7(F) = (X(F) + épys ap, )izt

where, if L and M are any invertible sheaves on C with L ample and v = v(g, ar), the
sheaves F* are those appearing in the Harder-Narasimhan filtration 0 = FO ® M C
FloMc ---CF'@M=F®M of F® M with respect to L, and the subcurve D;
is the support of F;. We refer to the filtration 0 = FO ¢ F' ¢ ... ¢ F' = F as the
v-Harder—Narasimhan filtration of F'. The notion of a relative v-Harder—Narasimhan

filtration for families of sheaves on C' is defined analogously.

From now on, we take S = SpecC. Suppose 0 = FO ¢ F1 ¢ ... ¢ F! = F is the
v-Harder—Narasimhan filtration of a torsion-free uniform rank 1 sheaf F'. Since Gieseker
semistable sheaves are of pure dimension, each F; is a non-zero torsion-free quotient of
the subsheaf Fi=! C F* hence is of the form F; = (F?) p, for some non-empty proper
subcurve D; C supp(F?). Each quotient F/F" is torsion-free, as seen by considering the

short exact sequences
0—— FIJF' —— FItH JF' — 5 F, —— 0

for j = £ —1,...,i+ 1,4, and observing that the torsion subsheaf of F/*!/F® must
be contained in the image of the inclusion F7/F* C FI*1/Fi Tt follows that F? =
Fswpp(F)" — ker(F — Fyupp(Fiye), where supp(F*)¢ = C'\ supp(F?) = supp(F/F?").

We introduce a refinement of the notion of v-Harder—Narasimhan types.
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Definition 8.2.2. Fiz subcurves D1,...,Dy C C with the property that C' = Ule D;,
and that if i # j then D;, Dj; share no common irreducible components. Let 7 =
(Hi,vi)le be a Harder—Narasimhan type for torsion-free uniform rank 1 sheaves on C

with respect to v, and let Ty be the ordered tuple
0 = (927 Uiy Dl)f:l

If F is a torsion-free sheaf on C of uniform rank 1, we say that F' has (support-) refined
v-Harder-Narasimhan type 7 if 7,(F) = 7 and if supp(F;) = D; for alli=1,...,¢.

Remark. The refinement of v-Harder—Narasimhan types introduced in Definition [8.2.2
is different to the refinement of v-Harder—Narasimhan types introduced by Hoskins—
Jackson (cf. [66, Definition 6.1]). After first fixing (L, M) with v = vz, 5s), this latter

refinement involves fixing the quantities
dim Hom¢(F/F* ® M, F' @ M), dimHomc(F/F'® M,F"~'® M)

for all i. However, all of these quantities are zero, a consequence of Lemma[5.1.8| so the
Hoskins—Jackson refinement trivially refines an v-Harder—Narasimhan type of unstable
sheaves on the curve C'. For the rest of this chapter, the notion of a refined Harder—

Narasimhan type refers exclusively to Definition

As a consequence of the following Lemma there exists a decomposition
—T —=T7)
Jo=|]7¢
70

of 7TC into open and closed subschemes 73’, where the disjoint union is taken over all

refined Harder—Narasimhan types 7 which refine 7.

Lemma 8.2.3. Let B be a scheme, and let F' be a B-flat family of torsion-free coherent
sheaves on C x B, where C is a connected, reduced, projective curve. Suppose C has
irreducible components Cy,...,Cr. Let r = (r1,...,7r) € (ZZO)* be a tuple of non-
negative integers. Then there exists an open and closed subscheme B, C B such that a
morphism S — B factors through B, if and only if the multirank of Fg is equal to r over

each point s € S.
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Proof. Fix an ample invertible sheaf O¢(1) on C. Suppose by € B is such that Fj,, has
multirank 7. Let T be an irreducible curve, and consider a morphism (7', t9) — (B, bo).
For each t € T, let r;j(t) be the rank of F; along C;. Then r;(ty) = r;, and since the
F} have the same Hilbert polynomial with respect to Oc(1), it follows from the Hilbert

polynomial formula in [122, Septiéme Partie, Corollaire 7] that
k
Y r(t) dege, Oc(1)
j=1

is constant along 7. But each map ¢ — 7;(t) is upper-semicontinuous and each quantity
degc; Oc(1) > 0, so t 2?21 rj(t) dege, Oc(1) must be locally constant on 7'. This

proves the lemma. O

Fix a refined Harder-Narasimhan type 79 = (6;,v;, D;)f_, for torsion-free coherent
sheaves of uniform rank 1 on C', defined with respect to the polarisation v. The T-valued
points of 72 are given by equivalence classes of T-flat, T-finitely presented coherent
sheaves F' on Cr = C x T whose fibres are simple torsion-free sheaves of uniform rank

1, for which F' admits a relative v-Harder—Narasimhan filtration
0=F'cFlc...cF‘=F

of relative Harder—Narasimhan type 7, with the additional property that for each geo-
metric point ¢ € T, the sheaf (F;)p = (F!/F~1)7 is of uniform rank 1 along the subcurve
D; C C; sheaves F' and F’ are declared equivalent if there exists an invertible sheaf N
on T with F’ = F @ prixN. We say that the filtration 0 = FO C F1 c ... C F¥ = F is
the relative refined v-Harder—Narasimhan filtration of the sheaf F.

Over C x J/, there is a universal relative Harder-Narasimhan filtration
0=VWcvc . cV

This filtration is unique up to simultaneously twisting each V' by the pullback of an
invertible sheaf N € Pic(Jg ).
For each i, let x; = 6; — ¢p,, and let J; = jﬁ’ss(l/pi). There is a map
l

gr: jg) - Hj“
i=1
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which sends a sheaf F' with v-Harder-Narasimhan filtration 0 = FO ¢ F1... Cc ... C
F! = F to the tuple (Fi,...,Fy) given by the Harder—Narasimhan subquotients; the
domain of definition of gr is given by the locus where each sheaf F; is (fibrewise) simple.

Motivated by [66], Definition 4.18], we define the following open subschemes of 729

Definition 8.2.4. A sheaf F € jg,) with Harder—Narasimhan filtration 0 = F© c F! C
- C F* = F is said to be 1o-simple if:

1. each sheaf F; is simple (viewed as a sheaf on D;); and
2. each inclusion F' C F'™* is non-split.

If in addition each F; € jg;s(l/pi) is stable with respect to vp,, we say that F is To-
stable. We denote the open subscheme ofjg) parametrising all To-simple (resp. T9-stable)

sheaves by J33 " (resp. J&

Remark. Suppose F; € jDi (¢ = 1,...,¢) are simple torsion-free sheaves, and suppose
we have for each ¢ = 2, ..., ¢ non-split short exact sequences
0 —— Fi-t y [ s I 0

of coherent sheaves on C, where F' = Fy. By inductively applying Lemma each
of the sheaves F' are simple. In particular, F = F' is a simple torsion-free sheaf on C

of uniform rank 1.

8.3 Proof of the Main Result

We now turn to proving Theorem Let 70 = (0;, v, Di)le be a v-refined Harder—
Narasimhan type for unstable simple torsion-free coherent sheaves of uniform rank 1
on the reduced, connected, projective curve C'. Assume that the subcurves D; are all
connected and that D; N Dyy1 # 0 for all i = 1,...,£ — 1 (otherwise the scheme Jg
is empty). Assume further that for all i # j, each point p € D; N Dj is a locally planar
singularity of C.
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8.3.1 Universal Spaces of Extensions

We recall some results of Lange [80] that we require.
Let f: X — S be a flat projective morphism of Noetherian schemes, and let Fy, F5

be coherent sheaves on X, flat over S E|

Definition 8.3.1. The ith relative Ext-sheaf is the coherent sheaf on S defined by
Ext'y(Fy, F1) := R'(f Homx (Fa, —))(F1).

By Lemma 4.1 of loc. cit., if E is a locally free Og-module of finite rank, there are

canonical isomorphisms
Eaxty(Fy, ) @ E S Eat’y(Fy, L @ f*E) = Ext}y(F ® f*EY, F).

Proposition 8.3.2 ([80], Section 4). Assume é’xt?(FQ,Fl) =0 and Ext}(Fg,Fl) com-
mutes with base change (in particular, Sxt}(Fg,Fl) is locally free of finite rank). Let
P:.= IP’S(Sxt}(Fg, F1)), with projection © : P — S. Then:

1. Given a morphism g : T — S, the set of T-valued points of P are given by equiv-
alence classes of pairs (L,0 — (Fi)r ® frL — E — (Fy)r — 0), where L is an
invertible sheaf on T' and where 0 — (F1)r ® f;7L — E — (F2)r — 0 is a nowhere-
split short exact sequence of sheaves on X7 = X xgT, with (L,0 — (F1)r® f;L —
E — (Fy)r — 0) and (L,0 — (F1)r ® f7L' — E' — (F2)r — 0) being declared
equivalent if there are isomorphisms ¢ : L = L' and ¢ : E = E' which fit into the

following diagram:

O*)(Fl)T(X)fj*wL FE > (FQ)T*}O
d(py)p®@Frd Y d(ry)

0— (F1)r® f;L' —— E' —— (Fy)r —— 0

2. There exists a universal extension

0—— (Fﬂ[p@fﬁ@]p(l) Uu > (Fg)]p > 0

on Xp, which is nowhere-split.

By invoking the base change results of [9, Section 1] in place of the base change results of [80], the
results of this subsection remain true in the case where f is a proper flat finitely presented morphism
and the sheaves F1, F» are S-flat and locally finitely presented.
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The universal extension in Proposition [8.3.2| corresponds to the tautological quotient

W*Sact}(Fg, F1)Y — Op(1) — 0 over P under the identifications

Homp (7*Ext}(Fy, F1)¥, 0p(1)) = H (P, n*Eaty(Fy, F1) ® Op(1))
= HO(P, Exty, ((Fy)p, (F1)p) ® Op(1))
= Extkp((Fb)]P, (F1)p ® fpOp(1)),

where the final equality follows from the paragraph succeeding Corollary 4.4 in loc. cit.
The compatibility of Emt}(FQ,Fl) with base change is guaranteed by the fibrewise

vanishing of Hom and Ext?.

Lemma 8.3.3. Let F,G be S-flat coherent sheaves on X, and suppose that for each
geometric point s € S, Homx, (Fs,Gs) = Extgfs(Fs,Gs) = 0. Then Sast(}(F,G) =
Sajtfc(F, G) =0 and Sxt}(F, G) is locally free and commutes with base change.

Proof. This follows from a straightforward application of Theorem 1.4 of loc. cit. For
each point s € S and for i = 0,2, the base change morphism 7°(s) : Sxt}(F, G)Rsk(s) —
Ext'y (Fs, Gs) = 0 is trivially surjective, so Ext%(F,G) ®g k(s) = 0 for all points s € S,
which implies by Nakayama’s lemma that Ea:tl]}(F , G) vanishes. In particular Ezz:t?c(F Q)
is locally free, so we may apply Theorem 1.4 of loc. cit. again to show that 71(s) is

surjective for each point s € S, and in turn to obtain that &Bt} (F,G) is locally free. [

Suppose that €xt9c(F2, F1) =0 and S:rt}(Fg, F1) is compatible with base change, so
that we are in the setting of Proposition Suppose as well that we are given a

morphism ¢ : T' — S and nowhere-split short exact sequences

0—— (F)r® fil —— E —2— (Fy)r » 0,

0—— (F)r® fil —2 B =5 (By)y 0

of coherent sheaves on X.

Lemma 8.3.4. In the situation above, assume in addition that the sheaves F| and Fj

are fibrewise sz’mpleﬂ and that for each geometric point s € S,

Homy, ((F1)s, (F2)s) = 0.

3This is equivalent, by [9, Corollary 5.3], to the condition that for each i = 1,2 the natural morphism
?/s Hsé'mt(} (F;, F) = foHomx (F;, F;) is an isomorphism and is an isomorphism after any base change
— .
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Then the sheaves E and E' are isomorphic if and only if the pairs (L,0 — (F1)r® f7L —
E — (Fo)r — 0) and (L',0 = (F1)r @ f3L' — E' — (F2)r — 0) are equivalent (and
hence correspond to the same T -valued point of Ps(é’wt}(Fg, F))).

Proof. For any invertible sheaf M € Pic(T") we have Homx, ((F1)r ® f7M, (F2)r) =0,
since this is the space of global sections of the sheaf Sm’t(}T((Fl)T, (Fy)r) ® MY, and
53:159% ((F1)71, (F2)7) = 0 by Theorem 1.4 of loc. cit. together with the fibrewise vanishing
Homx, ((F1)s, (F2)s) = 0.

In particular, given an isomorphism v : £ — E’ of coherent sheaves, the compositions
8 orpovyand oy~ oy are both zero; it follows from this and the universal properties
of (co)kernels that there are isomorphisms ¢ : (Fi)r ® f+L — (Fi)r ® frL' and n :
(Fy)7 — (F2)7 which fit into the following diagram:

0—— (F)r @ fil —— E—"— (Fy)r 0

I .

0—— (FI)T ® ff;:L/ 2l s B/ g > (F2)T > 0.

As F5 is fibrewise simple, the isomorphism 7 is given by multiplication by a unit

n € HY(T, OF); without loss of generality, we may assume 7 = 1. On the other hand,
the fibrewise simplicity of F} together with Theorem 1.4 of loc. cit. implies that

Exty (F)r, (F)r) = g*Ext}(Fy, F1) = Or.
As such, we have equalities
Homy, (F\)r @ frL, (F)r ® fyL') = H'(T, L' ® L") = Homr(L, L').

In particular, the invertible sheaves L and L’ are isomorphic, and we may take ¢ to be of
the form id(p,), ® f7.¢', where (" : L = L' is an isomorphism. This shows that the pairs
(L,0 = (F1)r® ffL — E — (Fy)r — 0) and (L', 0 — (F1)r® fL' — E' — (F»)r — 0)

are equivalent. O

Corollary 8.3.5. In the situation of Lemma the set of T-valued points of the
projective bundle IP’S(&Bt}(FQ, F1)) is given by the set of isomorphism classes of coherent
sheaves E € Coh(Xy) for which there exists an invertible sheaf L € Pic(T) and a

nowhere-split short exact sequence

0—— (Fl)T(X)fj*«L E > (FQ)T > 0.

Proof. This immediately follows from Proposition [8.3.2] and Lemma [8.3.4 O
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8.3.2 Constructing the Tower of Projective Bundles

We now construct the tower of projective bundles P* — P! — ... - p2 - pl
appearing in the statement of Theorem Foreachi=1,...,0 let J; = jﬁ_’ss(l/Di)
be the fine compactified Jacobian parametrising vp,-semistable coherent sheaves on D;
of Euler characteristic x; = 0; — ¢p,. Fix a choice of universal sheaf i; on D; x J;. Via
the inclusion D; C C, we may regard U; as a flat family of simple torsion-free sheaves
on C, of uniform rank 1 along the (fibrewise) supports D;.

The projective bundles P’ are constructed inductively. For each i = 1,...,¢, P? will
be a product of the form P! = Q* x Hﬁzi_ﬂ Ji, with Q' := Jq, and for each i > 1, Q° will
be a Zariski-locally trivial projective bundle over Q*~! x J;; the morphism ; : P* — P~!
will be given as the product of the projective bundle Q' — Q*~! x J; with the identity

on the remaining factors. The schemes Q' are constructed as follows.

Construction 8.3.6. Base step: Set Q' := Ji, and set U' := Uy, the chosen universal
sheafon C x Q' = C x J;.

Induction step: Suppose we have constructed for each i = 1,...,k (where 1 < k < /)
the Zariski-locally trivial bundle Q° — Q'~! x J; (where Q := Spec C), together with a
Q'-flat coherent sheaf U on C' x Q, which along each geometric fibre is simple, torsion-
free and of uniform rank 1 along the supporting subcurve D := Ujgi Dj. Consider the

diagram

C x QZ X jiJrl P25 > QZ X ji+1
P12 P13
C x Ql C x ji-i—l
Since D! and D;y; share no common irreducible components and since each p €
DN D, is a locally planar singularity of C, for each geometric point s € Q% x J;41 we
have

Home ((pisUi1)s, (P1al')s) = 0 = ExtZ((pislhis1)s, (Piald")s)

by Lemmas [5.1.8] and [5.1.9] As such, we may apply Lemma to obtain that the
sheaf ExtY  (pisUit1,pisld?) = 0 and that the sheaf Extl  (pisUit1, piU?) is locally free

P23 P23

and commutes with base change. Set

Q= PoixTi (Exty,. (DisUiv1, Piold")).
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Consider the following Cartesian diagram:

/
C x Qitl P23 Qi+l
4
Pt Pit+1
CxQ xJip o5 » Q' x Jit1

By Proposition [8.3.2] there is a nowhere-split universal extension

0 —— (1) DU’ @ (3)* Ogivi (1) yUutt (Pir)*Pisliys —— 0

of coherent sheaves on C' x Qt!. Take U'T! to be the middle term of this extension. The
sheaf U1 is flat over Q**!, and along each geometric fibre is torsion-free and of uniform

rank 1 along the supporting subcurve D!, That U+ is fibrewise simple follows from
Lemma This completes the induction step of Construction [ |

It also follows from Lemma that for all 4, we have Home ((pfold®)s, (DfsUit1)s) =
0 for each geometric point s € Q° x J;41, and so Corollary is applicable to the
scheme Q1. In particular, the set of T-valued points of Q**! is given by the set of
all isomorphism classes of T-flat coherent sheaves F' € Coh(Cr) such that, if % (resp.
(Ui+1)T) denotes the pullback of the sheaf U; (resp. U;11) to Cr, then there exists a

nowhere-split short exact sequence
0 —— UL @priM —— F —— Uis1)r —— 0

for some invertible sheaf M € Pic(T'). Each such sheaf F' is a family of fibrewise simple,

torsion-free sheaves of uniform rank 1 supported along the subcurve D+ c C.

8.3.3 The Isomorphism J, = = P*
We are now in a position to complete the proof of the main result of this chapter.

Proof of Theorem |8.1.1. We first exhibit a well-defined morphism ¢ : jg)_SP — Pt of
schemes over P! = Hle Ji.
Let T be a scheme, and consider a T-valued point of 72‘81’ represented by a coherent

sheaf F' with relative refined v-Harder—Narasimhan filtration
0=F'cF'c...cF‘=F
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From the universal properties of the fine compactified Jacobians J; = jﬁ’ss(ypi), there
are unique morphisms T' — J; such that, if (i;)r denotes the pullback of I; along this
morphism, viewed as a coherent sheaf on Cp with fibrewise support D; C C, then there

are invertible sheaves M, ..., M, € Pic(T') and isomorphisms
F; = (U;)r ® prpM;

of coherent sheaves on Cp; in this case, the morphism T — J; coincides with the
composition T — Jg5 7 — H§:1 J; — J;. Since the F; are all (fibrewise) simple, the
isomorphism class of the invertible sheaf M; is uniquely determined by the isomorphism
class of F; (cf. proof of Lemma . However, any other representative of the given
T-point is isomorphic to F' ® priN for some N € Pic(T'), and so the M; € Pic(T)
themselves are only uniquely determined up to simultaneous translation by N. In order
to have a distinguished representative of the given T-valued point of jgisp, we impose
the condition that M, =2 O is trivial, so that the final subquotient Fy is isomorphic to
the pullback along T of the universal sheaf U.

From the inclusion F! C F? we have a nowhere-split short exact sequence
0 —— (U1)r @ pris(My @ MyY) —— F? @ priMy —— (Us)r — 0,

from which we obtain a morphism 7" — Q? over T — J; x Jo, with the pullback Z/{% of
U? along T — Q? coinciding with F? ® pri»My (up to isomorphism), and the pullback
of Og2(1) coinciding with M; @ My .

For each ¢ > 2, we have a nowhere-split short exact sequence
0 —— F'®@pry My, —— F @ pri MY, —— (Uip1)r —— 0.

By induction, there is a morphism 7" — Q' for which F? = Z/{} ® prpM;.  As such,
the above sequence yields a morphism 7" — Q**!, compatible with the morphism 7" —
Q' x Ji41, for which the pullback U= of U+! along T — Q! is isomorphic to F'*! @
pri- My, and the pullback of Ogi+1(1) along T — Q“t! is isomorphic to M; ® M.
After £ — 1 stages, we obtain a well-defined morphism T — Q° = P* for which the

composition T — P! — P! = Hle J; coincides with the composition T' — jg_s‘n —

Hle Ji. In particular, we may take T = J ; the identity morphism T — Jg

corresponds to any choice of universal relative Harder—Narasimhan filtration
0=VWcVic...c)f
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over C x 729‘”’. Without loss of generality, we may assume that the universal filtration

has been chosen such that the sheaf V, = V¢/V*~1 is isomorphic to the pullback (Ue)5mo-sr
C

of the universal sheaf ;. From this filtration we obtain our desired morphism of P!-

schemes ® : J&» 7 — Pt

Next, we exhibit a well-defined morphism ¥ : P¢ — J3

&~ of schemes over P'. By
an abuse of notation, we identify the universal sheaves 4’ and U; with their pullbacks to
C x P'. Writing Y' = U;, and denoting by L; the pullback of Ogi+1(1) to P*, we have

over C' x P! nowhere-split short exact sequences

0 —— U @pri, L U+t r Uiy » 0,

and hence a filtration

/-1

0=mWlcWwW'c...cwt, w =U" @ prp ®Lj ,

j=i
whose inclusions are nowhere-split, with the subquotients given by W; = Wi/Wi-1 =
U; @ prp, (®§;} Lj). The sheaf W; corresponds to a flat, finitely presented family of
simple v-semistable torsion-free coherent sheaves on C, of uniform rank 1 along the
supporting subcurve D; C C; the filtration 0 € W! C --- € W’ is a relative refined
Harder—Narasimhan filtration of refined Harder—Narasimhan type 7. As such, this fil-
tration gives rise to a morphism ¥ : P¢ — 729‘3” of schemes over P!

Jo P = Pland U : PY — JO7 are inverse.

We claim that the morphisms @ :
We have uniquely determined classes M; € Pic(Jg 7)) (with M, = Oorg-sp) for which
c

V; = V'/V~! is isomorphic to the pullback of U; twisted by pr}o,sp(Mi), for each
C

i=1,...,£. From the construction of ® and ¥, there are isomorphisms
' ' -1
Vi (ide x @)W, Vi (ide x ®)Wi,  M; = & ®Lj ifi<e—1,
j=i
and

UH(M; @ My, y)  ifi<l—1,

W (ide x UV, W, = (ide x O)*V;, L &
(ide x ¥) (idg x ¥) {\I/*Mg_l im0,

In particular, both compositions ®o ¥ and ¥o® preserve the respective universal objects
parametrised by P¢ and jg)*sP, whence both compositions must be the identity. This

completes the proof. O
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Remark. It is possible to give another proof that the scheme 72‘%) is quasi-projective,
by making use of non-reductive quotienting in stages. Fix (L, M) with v = v ap.
Without loss of generality we may assume M = O¢, since twisting by M yields an iso-
morphism J¢ (L, M) = Jg& °(L,Oc¢). Recall that if Cohsciymp’TFRl is the open substack
of the stack of coherent sheaves Coh¢ parametrising all flat families of simple torsion-free

coherent sheaves on C of uniform rank 1, then there is an isomorphism
=~ imp, TFR1
Jo & Cohs(}mp /] G

In particular, for sufficiently large integers M’ > N > 0 as in the statement of Propo-
sition applied to the polarised scheme (C, L), there is an isomorphism of algebraic
stacks

Jo (L,00) 2SN /GL(VN)] [ G =[Sy~ /PGL(Vy)],

where S is the open subscheme of the Harder-Narasimhan stratum S}, parametris-
ing those quotients whose underlying sheaf is m-stable. With the groups P, C SL(Vy)
and P, C GL(Vy) as in the statement of Proposition m there is also an equiv-
ariant isomorphism S ° = SL(Vy) xPr Y7075 where Y075 C Y** consists of those
quotients whose underlying sheaf is 7g-stable, and an isomorphism of quotient stacks

(SR /GL(Vy)] = [Y0~%/P;]. Consequently, there is an isomorphism of stacks

Jo =Y P [ G = [YT0 /P,
where P, is the common image of P, and ]57 in PGL(Vy). In particular, the natural
morphism Y07% — 729_5 is a geometric Pr-quotient.

The quasi-projectivity of 729‘8 can be shown by applying NRGIT to the Pr-action on
the closure of Y°~¢ by utilising non-reductive quotienting-in-stages, making use of the
results of [66, Section 4.2.4]E| the key observation is that taking the Harder-Narasimhan
associated graded preserves the Hoskins—-Jackson refined Harder-Narasimhan type (cf.
remark after Definition . Unlike with Theorem NRGIT says little about the
geometry of jgis aside from its quasi-projectivity. As such, we elect to not carry out

the NRGIT construction here.

—T0—S

4NRGIT quotienting-in-stages also yields a proof, independent of the results of Section that J¢o
is a scheme.
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8.4 Nodal Refined Harder—Narasimhan Types

In the case where any two of the subcurves D;, D; meet only at nodes of C, the relative di-
mension of jg)_SP — Hle J; can be expressed solely in terms of the Harder-Narasimhan

length ¢ and the point counts |D? N D*~1.

Definition 8.4.1. Let C be a reduced connected curve, and let 19 = (Oi,vi,Di)le be a
refined Harder—Narasimhan type for simple torsion-free sheaves on C of Fuler charac-
teristic x and uniform rank 1, with the property that each subcurve D; is connected and
that the intersections D; N D1 # 0 for alli =1,...,£ — 1. We say that 19 is a nodal
refined Harder—Narasimhan type if in addition that for all i # j, any point p € D; N D;

is a nodal singularity of C.

Fix a nodal refined Harder Narasimhan type 79. Let P* — P~1 — ... — P2
Pl = Hle Ji be the tower of projective bundles obtained by applying Construction
with the refined Harder—Narasimhan type 9.

Lemma 8.4.2. Let p € C be a nodal singularity, with branches D and D'. Then
dim¢ EXt}QCp(OD,p7 OD/JJ) =1.

Remark. Tt follows from Lemma [R.4.2] that if

0 > Opr p > M Opp—0

is any short exact sequence of O¢jp-modules, then M = Op, ® Opr,, correspond-
ing to 0 € Ext%f)cp(OD,p,(’)D/,p), or M = Oc¢,p, corresponding to the span of 1 €
EXt%Oc,p(OD,pv Oprp) =C.

Proof of Lemma[8.7.3 Since Ext! is finite dimensional over C, by passing to the com-
pletion (504) of O¢,, with respect to the maximal ideal there is an equality

Exto,, (Opp, Opryp) = Ext}ac (Opp, Opr p).

P
As p € C is a nodal singularity, there is an isomorphism 6(),;; = Cl[z,y]]/(zy); with
respect to this identification, there are isomorphisms O p,p = C[[z]] and O prp = C[[y]] of
C[[z,y]]/ (xy)-modules. A projective resolution of C[[z]] as an A := C[[x, y]]/(xy)-module

is given by




Applying the functor Hom 4(—, C[[y]]) and taking cohomology yields

BExt s (Cl[=]], Clly]]) = Clly]] /yCllyl] = C.

This proves the lemma. ]

Corollary 8.4.3. Let D, D’ be subcurves of C with D N D' # (), which do not share in
common any irreducible component of C. Suppose in addition that each point p € DN D’
is a node of C. Let F, F’' be torsion-free rank 1 sheaves supported on D, D’ respectively.
Then

dim¢ Ext&(F, F') = |[DN D'|.

Proof. As in the proof of Lemma[5.1.9] consider the local-to-global Ext spectral sequence
EY? = HP(C, Extd(F, F')) = ExtZ(F, F').

We have By? = E3° = 0, s0 Extl(F, F') = HO(C, Exth(F, F')). Asthe sheaf Extl(F, F')
is supported at the nodes p € D N D', there is an equality

HY(C,Exte(F F)) = P Extp,, (Fp, Fp).
peDND’

At the node p, since D and D’ are both non-singular at p there are isomorphisms
F, = Op, and FI’, = Oprp (cf. Proposition [5.1.10). The corollary now follows from
Lemma [8.4.2) O

Corollary 8.4.4. Let 19 = (6;, v;, Di)le be a nodal refined Harder—Narasimhan type of
C. The fibre dimension of the locally trivial projective bundle mj, : P* — P*~1 is equal
to |Dy N D*=1| — 1, where D=1 = Ujgk—l Dj. In particular, the relative dimension of
the morphism gr: Jgo " — Hle Ji is equal to 2522 |Di N DY — (0 —1).

Proof. From Construction the relative dimension of 7, is equal to the fibre dimen-

sion of the locally trivial projective bundle
QF =Py g, (Exth, (Pislh, pisU™ 1)) = Q"1 x .

Fix a geometric point s € Q¥~! x Ji, and set F' = (piUy)s, F' = (pfld*1)s; the fibre
of Q¥ over s is given by the projective space Q¥ = P(Ext}(F, F')). Applying Corollary
we have dim¢ Extl(F, F') = | Dy, N DF~1|. The result follows. O
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8.5 Generalising to Families of Curves

Instead of working with a fixed curve C, consider instead a flat projective morphism f :
C — S of finite presentation over a locally Noetherian base scheme S, whose geometric
fibres are connected, reduced curves. Fix invertible sheaves L and M on C, with L
relatively ample, fix an Euler characteristic x, and fix a Harder—Narasimhan stratum
76/5 = jg/S(L, M) C j’é/s, where 7 = (6;,v;)_, is a HarderNarasimhan type of
length ¢. Assume there are closed subschemes Dq,...,D, C C, each flat over S, such

that for each geometric point s € S:
(i) (Dj)s is a connected subcurve of Cs;
(ii) for all i # j, (D;)s and (D;)s contain no common irreducible component of Cl;
(iii) for all ¢ # j, any point p € (D;)s N (D;)s is a locally planar singularity of Cy; and
(iv) foralli=1,....0—1, (D;)s N (Diy1)s # 0.
Fix a choice of a sequence Dy, ..., D, of such subschemes of C.

Lemma 8.5.1. There exists an open and closed sub-algebraic space 729/5 - jg/s
parametrising all sheaves F € jg/s such that, if 0 = FO ¢ F' ¢ ... ¢ F* = F is
the relative Harder—Narasimhan filtration of F', then for each geometric point s € S, the

support of (F;)s is equal to (D;)s, and (F;)s is of uniform rank 1 along (D;)s.

Proof. The proof proceeds along very similar lines to the proof of Lemma [8.2.3] using
the fact that the rank of a flat torsion-free sheaf along any of the subcurves D; is upper-

semicontinuous. O]

Let 729/;51’ C 7?/5 be the open sub-algebraic space parametrising those sheaves
Fe jg)/s such that, if 0 = FO ¢ F! C --- C F* = F is the relative Harder-Narasimhan
filtration of F', then

(i) each sheaf F; is (fibrewise) simple; and

(ii) each inclusion F* C F**! is nowhere-split.

190



There is also an open sub-algebraic space 729/_5 C 72/‘5”’ obtained by imposing the
additional constraint that each Fj is fibrewise stable with respect to (L, M), viewed as a
family of torsion-free uniform rank 1 sheaves on D;/S. The fibres of 72/—;;7 over closed
points of S are given by moduli spaces of simple, torsion-free, uniform rank 1 coherent
sheaves of refined Harder—Narasimhan type 7y to which Theorem [8.1.1] is applicable.
Setting x; = 0; — degp, M, we have a well-defined morphism
¢
or : 729/_5813 — HT&’/SE(L, M)
i=1

which associates to a sheaf F' with relative Harder-Narasimhan filtration 0 = F0 ¢ F! C
... C F* = F the tuple (F,..., Fy) consisting of the Harder-Narasimhan subquotients
(here the product should be understood as a fibre product of schemes over .5).

Assume further that there are sections o1,...,0, : S — C of f, each factor-
ing through the S-smooth locus of C, such that for each geometric point s € S,
each irreducible component of Cjs is geometrically integral and contains o;(s) for some
i=1,...,n, so that by Lemma the étale and Zariski sheafifications of j*Di /s coin-
cide for all ¢ = 1,..., ¢, and all of the fine compactified Jacobians jDi /s admit universal
sheaves. Construction [8:3.6] then carries over to the relative setting after making the
necessary notational changes, yielding a tower of Zariski-locally trivial projective bun-
dles P! — P! — ... — P2 — P'. There are relative analogues of the morphisms ®
and ¥ which appear in the proof of Theorem [8.1.1] The same argument used to show
that these morphisms are inverse to each other carries over to the relative setting. As
such, we obtain the following result, which generalises Theorem to cover relative
moduli spaces of unstable simple torsion-free uniform rank 1 sheaves over the fibres of

C/S, of refined Harder-Narasimhan type 7y with respect to (L, M):

Theorem 8.5.2. In the situation described above, there exists a diagram
—T0—8p ~ ¢
JC/S P
I

Péfl
1

o I
P2
RE2
? TXi»
P = Hi:l J)lc)jg(LM)
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where each 7; : P* — Pl is a Zariski-locally trivial projective bundle.
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