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Abstract

This thesis is comprised of three main results.

The first main result is the existence of GIT constructions for good moduli spaces of

compactified universal Jacobians, and their higher rank analogues, over stacks of marked

stable curves and stable maps. The construction is carried out in a way which allows for

changes in stability conditions to be governed by variation of GIT. We also prove that

the singularities of these good moduli spaces (when working over Mg,n) are canonical

when g ≥ 4, extending work of Casalaina-Martin–Kass–Viviani.

The second main result concerns the construction of quasi-projective coarse moduli

spaces parametrising complete flags of subschemes of a fixed projective space P(V ) up to

projective automorphisms; these flags are obtained by intersecting non-degenerate non-

singular subvarieties of P(V ) of dimension n by flags of linear subspaces of P(V ) of length

n, with each positive dimension component of the flags being required to be non-singular

and non-degenerate, and with the dimension 0 component being required to satisfy a

Chow stability condition. These moduli spaces are constructed using non-reductive

Geometric Invariant Theory, making use of a non-reductive analogue of quotienting-in-

stages developed by Hoskins and Jackson.

The final main result is the existence of quasi-projective fine moduli spaces of Gieseker

unstable torsion-free coherent sheaves of uniform rank 1 on a reducible projective curve

with Gorenstein singularities. These are the first examples of projective moduli spaces of

unstable sheaves on projective schemes which admit fully modular descriptions, without

any restriction on the Harder–Narasimhan length. These moduli spaces are constructed

by taking iterated universal extension bundles over fine compactified Jacobians of the

subcurves.
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Chapter 1

Introduction

In this thesis, we present the following three main results:

1. The existence of Geometric Invariant Theory (GIT) constructions for good mod-

uli spaces of compactified universal Jacobians, and their higher rank analogues,

over stacks of marked stable curves and stable maps, and its implications for the

geometries of these moduli spaces (Chapter 6).

2. The construction of quasi-projective coarse moduli spaces parametrising complete

flags of subschemes of a projective space P(V ) which we call hyperplanar admissible

flags, using non-reductive GIT (Chapter 7).

3. The existence of quasi-projective fine moduli spaces of Gieseker unstable torsion-

free coherent sheaves of uniform rank 1 on a reducible projective curve with Goren-

stein singularities (Chapter 8).

We refer the reader to the introductions of Chapters 6, 7 and 8 for more information

about these results, including the significance of these results and how these results relate

to other work in the literature.

The original motivation for the work presented in this thesis involved seeking new,

GIT based approaches to constructing moduli spaces of projective varieties. A fruitful

approach when studying a moduli problem in algebraic geometry using GIT is to add

additional structure/decoration into the moduli problem and formulate stability condi-

tions for the enlarged setup, depending on the additional data, in a way which allows

for the original setup to be recovered by restricting to certain stability conditions in the

enlarged setup. Having a larger space of stability conditions allows for more flexibility
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to work with well-behaved stability conditions, in the sense that there are no strictly

semistable objects (so that the resulting GIT quotient is geometric) and that the points

of the resulting quotient can be described explicitly. As the stability condition is allowed

to vary, the resulting GIT quotients are related by variation of GIT, yielding information

about the original setup.

In addition to considering as usual ample invertible sheaves on the variety, the en-

visioned additional structure comes from considering morphisms from (marked) curves

into the variety, making use of the fact that moduli spaces of stable curves and stable

maps have well-understood geometries, especially when compared with moduli spaces of

higher-dimensional varieties. Including morphisms from curves into the varieties being

parametrised can be thought of as capturing information about dimension 1 subschemes

of the varieties, in contrast to the invertible sheaves corresponding to divisors (i.e. codi-

mension 1 subschemes). It is hoped that the results of this thesis serve as useful assistance

in providing constructions of moduli spaces of such decorated varieties.

Chapter Summaries

Chapters 2 through 5 constitute the preliminary chapters of this thesis. We begin by

reviewing the results from GIT that are required in this thesis, before moving on to

review results concerning moduli spaces and stacks of coherent sheaves on projective

schemes.

In Chapter 2 we focus on the classical situation in GIT, involving the construction

of categorical quotients for the action of a reductive linear algebraic group on a quasi-

projective scheme. We recap the connection between GIT and moduli theory, in par-

ticular concerning the existence of corepresentations, coarse and good moduli spaces for

moduli functors and algebraic quotient stacks. We also review a selection of additional

results relating to reductive GIT quotients, including the Hesselink–Kempf–Kirwan–Ness

instability stratification of the unstable locus.

Chapter 3 provides an overview of the results we require from non-reductive GIT,

with a focus on the existence of categorical quotients of projective schemes by actions

of linear algebraic groups with an internally graded unipotent radical. This includes an

overview of the quotienting-in-stages construction of Hoskins and Jackson, which applies

when forming non-reductive quotients of actions by parabolic subgroups of the special
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linear group. We also review how the problem of forming quotients of unstable HKKN

strata relates to non-reductive GIT.

We review in Chapter 4 the notion of Gieseker (semi)stability of coherent sheaves

on a projective scheme, and how this yields projective schematic moduli spaces. We

also recap the existence of Harder–Narasimhan filtrations of unstable coherent sheaves,

and of the existence of schematic Harder–Narasimhan stratifications arising from flat

families of coherent sheaves. We also review how the problem of constructing moduli

spaces of unstable sheaves of a fixed Harder–Narasimhan type is related to the existence

of quotients of certain unstable HKKN strata. We finish by reviewing the notion of

Gieseker stability with respect to multiple ample invertible sheaves, as formulated by

Greb–Ross–Toma.

In Chapter 5, the final preliminary chapter of this thesis, we review the aspects

of the theory of compactified Jacobians of a projective curve required in this thesis.

In particular, we explain how these moduli spaces relate to moduli spaces of Gieseker

semistable sheaves. We also prove some technical results relating to torsion-free sheaves

on reducible curves, in advance of Chapter 8.

The final three chapters of this thesis, Chapters 6, 7 and 8, are where we present

the main results of this thesis. Summaries about the contents of these chapters can be

found in their respective introductions.

Notation and Conventions

• Throughout, we work over an algebraically closed field C of characteristic zero. All

schemes are assumed to be schemes over C. In particular, the notions of reductivity,

linear reductivity and geometric reductivity for algebraic groups coincide.

• The end of an example is denoted by a black square �.

• If X is a scheme, we occasionally use |X| to denote the underlying topological

space of X.

• A point of a scheme X is always understood to be a closed point of X, unless

specified otherwise. We use the notation κ(x) = OX,x/mX,x to denote the residue

field of x ∈ X.

• A variety is an integral separated scheme of finite type over C.
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• We often use the abbreviation 1PS for one-parameter subgroup or the plural one-

parameter subgroups.

• If V is a vector space, then P(V ) is always understood to be the projective space

of lines in V . More generally, if E is a locally free coherent sheaf on a scheme X,

then PX(E) := ProjX(Sym•E∨) is the fine moduli space parametrising invertible

quotients E∨ → L→ 0 of E∨.

• If G is an algebraic group, and if H is an algebraic subgroup of G which acts on

a quasi-projective scheme Z, then G ×H Z denotes the geometric quotient of H

acting on G× Z by h · (g, y) = (gh−1, hy); by [109, Theorem 4.19] G×H Z exists

and is a scheme.

• Let C be a reduced projective curve.

(i) C is said to be a nodal curve if each singular point p ∈ C is a node, meaning

that there is an isomorphism of complete local C-algebras ÔC,p ∼= C[[x, y]]/(xy).

(ii) C is said to have Gorenstein singularities if each local ring OC,p of C is

Gorenstein, equivalently if C admits an invertible dualising sheaf ωC .

(iii) C is said to have locally planar singularities if at each singular point p ∈ C,

there exists an isomorphism of complete local rings ÔC,p ∼= C[[x, y]]/(f),

where f is a reduced power series. In particular, nodal curves have locally

planar singularities. Any curve with locally planar singularities is Gorenstein.
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Chapter 2

Reductive Geometric Invariant
Theory

In this chapter, we present a review of the key results of reductive GIT and how it can

be used to form categorical quotients of schemes by actions of linear algebraic groups.

We also include various technical results which will be called upon in later parts of

this thesis, including the existence of the HKKN instability stratification of the GIT

unstable locus. We indicate how reductive GIT relates to moduli theory, as understood

both classically (i.e. in terms of existence of corepresentations of moduli functors) as

well as the contemporary perspective, in terms of the existence of good moduli spaces

of algebraic stacks.

The standard reference for reductive GIT remains the seminal book [101], originally

written by Mumford and with later additions by Fogarty and Kirwan.1 Other references

include the books [103] and [118].

2.1 Schematic Quotients in Algebraic Geometry

Let G be a linear algebraic group acting on a scheme X.

Definition 2.1.1. A categorical quotient of the action G � X is a scheme X // G

together with a G-invariant morphism X → X//G which is universal for all G-invariant

morphisms X → Y where Y is a scheme. A universal categorical quotient is a categorical

quotient X → X //G such that the base change X ×X//G T → T is a categorical quotient

for all morphisms T → X // G where T is a scheme.

1A word of caution: the now accepted notion of GIT stability in the literature is what Mumford
referred to as proper stability in [101].
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From the universal property, if a categorical quotient exists then it is unique up to

unique isomorphism. Within the context of GIT, a special class of quotients are given

by good quotients.

Definition 2.1.2. A morphism of schemes q : X → Y is said to be a good quotient if:

1. q is G-invariant;

2. q is surjective;

3. q is an affine morphism;

4. the natural morphism OY → q∗OX induces an isomorphism of OY -algebras OY
'→

(q∗OX)G;

5. if Z ⊂ X is a G-invariant closed subset of X then the image q(Z) is closed in Y ;

and

6. q separates disjoint G-invariant closed subsets of X.

A geometric quotient is a good quotient q : X → Y with the additional property that for

each closed point y ∈ Y , q−1(y) is a single G-orbit. A universal good quotient (resp.

universal geometric quotient) is a good (resp. geometric) quotient q : X → Y such that

the base change X ×Y T → T is a good (resp. geometric) quotient for all morphisms

T → Y , where Y is a scheme.

Remark. A good quotient of an action of a linear algebraic group is always a categorical

quotient. If q : X → Y is a good quotient then for any point x ∈ X, the fibre q−1(q(x))

coincides with the orbit closure G · x. In particular, if each point of x has a closed orbit

then q is a geometric quotient.

Remark. The key example of a good quotient is given as follows. Let A be an algebra of

finite type acted on by a reductive group G. By a theorem of Nagata [102], the invariants

AG are of finite type. The morphism SpecA → SpecA // G := SpecAG is then a good

quotient. Conversely, any good G′-quotient q : X → Y (whether G′ is reductive or not)

is locally given by taking G′-invariants of rings of sections of G′-invariant open affine

subschemes of X.
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We give a few elementary results needed in this thesis concerning geometric quotients.

These results are very likely standard, however we provide proofs where necessary when

satisfactory references are lacking.

Lemma 2.1.3 ([118], Exercise 1.5.3.3). Let X be a scheme acted on by G ×H, where

G and H are linear algebraic groups.

1. If there exists a good quotient X → X // G × H, then there are good quotients

X → X//G and X//G→ (X//G)//H, and there is an isomorphism (X//G)//H ∼=
X // G×H.

2. Conversely, if there are good quotients X → X // G and X // G → (X // G) // H,

then there exists a good quotient X → X // G × H, and there is an isomorphism

(X // G) // H ∼= X // G×H.

Lemma 2.1.4. Let q : X → X/G be a geometric quotient for the action of a reductive

linear algebraic group G on a scheme X of finite type. Let Z ⊂ X be a G-invariant

locally closed subscheme of X. Then q restricts to give a geometric G-quotient q|Z :

Z → q(Z) ⊂ X/G, where q(Z) is a locally closed subscheme of X/G.

Proof. Let Z be the closure of Z in X; as Z is locally closed in X then Z is open in Z.

Since q is a good quotient then q(Z) is closed in X/G; moreover q(Z) inherits a canonical

scheme structure from Z (if Z ⊂ X is locally SpecA/I ⊂ SpecA then q(Z) ⊂ X/G is

locally Spec(A/I)G = SpecAG/IG ⊂ SpecAG). The restriction q|Z : Z → q(Z) is then

a geometric G-quotient.

As q is surjective, there is an equality q(Z) = q(Z) \ q(Z \Z), and so q(Z) is open in

q(Z). Since the property of a morphism being a geometric quotient is local on the base,

q restricts to a geometric quotient Z → q(Z).

Lemma 2.1.5. Let q : X → X/H be a Zariski-locally trivial quotient for the action

of a linear algebraic group H (not assumed reductive) on a scheme X of finite type.

Let Z ⊂ X be an H-invariant locally closed subscheme of X. Then there exists a

unique scheme structure on the set-theoretic image q(Z) and a locally closed immersion

q(Z) → X/H such that Z ∼= q(Z)×X/H X as schemes and such that q|Z : Z → q(Z) is

a locally trivial quotient.
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Proof. Once again consider the closure Z. The image q(Z) is closed in X/H; we endow

q(Z) with the scheme-theoretic image scheme structure. Over an affine open SpecA ⊂
X/H where q is trivial, we have q−1(SpecA) = SpecA ×H, where H acts trivially on

the first factor and by multiplication on the second. Writing q(Z) ∩ SpecA = SpecA/I

for I ⊂ A an ideal, as Z is H-invariant we have Z = q−1(q(Z)) = SpecA/I × H, and

q|Z is the projection Spec(A/I) × H → Spec(A/I). It follows that q|Z : Z → q(Z) is

a locally trivial H-quotient and that Z ∼= q(Z) ×X/H X as schemes. By restricting to

the open subscheme Z ⊂ Z, the same statements hold for Z in place of Z, since q(Z) is

open in q(Z).

The uniqueness of the scheme structure follows from the fact that locally trivial

quotients are categorical quotients and categorical quotients are unique up to unique

isomorphism.

Lemma 2.1.6. Let G be a linear algebraic group acting on quasi-projective schemes

X and Y . Let H = StabG(y0) ⊂ G be the stabiliser of a point y0 ∈ Y , and let Z =

X × {y0} ⊂ X × Y . Then the map σZ : G × Z → GZ, (g, z) 7→ gz descends to an

isomorphism G×H Z ∼= GZ.

Proof. The orbit map σy0 : G = G× {y0} → G · y0 is faithfully flat (cf. [95, Proposition

7.4]) and hence is a principal H-bundle (with respect to the fppf topology). As the

diagram

G× Z G× {y0}

GZ G · y0

idG×prY

prY

σZ σy0

is Cartesian, σZ is also a principal H-bundle, and in particular a geometric H-quotient.

The lemma then follows from the uniqueness of geometric quotients.

2.2 GIT for Reductive Linear Algebraic Group Actions

2.2.1 Definition of the GIT Quotient

Throughout, let X be a quasi-projective scheme acted on by a reductive linear algebraic

group G. In this situation, GIT is used to construct quotients of appropriate G-invariant

open subschemes of X which are themselves quasi-projective, satisfying many other
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desirable properties. In order to construct GIT quotients of X by G, an extra piece of

data is required.

Definition 2.2.1. A linearisation L of the action G � X is an invertible sheaf L on the

quotient stack [X/G]. It is said to be (very) ample if the pullback of L along X → [X/G]

is (very) ample.2

Equivalently, a linearisation is a choice of an invertible sheaf L on X together with

a lifting of the action G � X to a bundle action of G on the underlying line bun-

dle of L. Given a choice of linearisation L, for each integer n the invertible sheaf Ln

is also a linearisation, and there is an induced action of G on the space of sections

H0(X,Ln). Setting R(X,L) :=
⊕

n≥0H
0(X,Ln), we may consider the subalgebra of

invariants R(X,L)G =
⊕

n≥0H
0(X,Ln)G. By a theorem of Nagata [102], the ring of

invariants R(X,L)G for the reductive group G is finitely generated over C.

Definition 2.2.2. The GIT quotient of X by G (with respect to L) is the scheme

X //L G = ProjR(X,L)G.

The inclusion R(X,L)G ⊂ R(X,L) defines a map X 99K X //L G; the domain of

definition is the locus of semistable points.

Definition 2.2.3. Let L be a linearisation for the action G � X.

1. A point x ∈ X is said to be semistable (with respect to L) if there exists n ≥ 1

and f ∈ H0(X,Ln)G such that f(x) 6= 0 and Xf is affine, where Xf = {x′ ∈ X :

f(x′) 6= 0}.

2. A point x ∈ X is said to be stable (with respect to L) if dimG · x = dimG and if

there exists n ≥ 1 and f ∈ H0(X,Ln)G such that f(x) 6= 0, Xf is affine and the

action of G on Xf is closed.

3. A point x ∈ X is said to be polystable (with respect to L) if there exists n ≥ 1

and f ∈ H0(X,Ln)G such that f(x) 6= 0, Xf is affine and the orbit of x in Xf is

closed.

2By an abuse of notation, we will consider linearisations as being invertible sheaves on X; that is, we
identify a linearisation L of the action G � X with its pullback along X → [X/G].
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The locus of semistable points, denoted Xss(L), is naturally a G-invariant open sub-

scheme of X. Xss(L) contains Xs(L), the locus of stable points, as an open subscheme,

and Xps(L), the locus of polystable points, as a subset. All stable points are polystable,

and in turn all polystable points are semistable.

Definition 2.2.4. The complement Xus(L) = X \ Xss(L) of the semistable locus is

known as the unstable locus. A point x ∈ X is said to be unstable (with respect to L)

if x ∈ Xus(L).

Definition 2.2.5. Let x, y ∈ Xss(L) be two points. x and y are said to be S-equivalent3

if their orbit closures in Xss(L) intersect.

The S-equivalence class of a polystable point x is the orbit G · x. Every semistable

point x is S-equivalent to a unique orbit of polystable points; this orbit is characterised

as being the unique orbit of minimal dimension in the semistable orbit closure of x.

2.2.2 Main Theorem of Reductive GIT

The main properties of the GIT quotient X //L G are given by the following theorem.

Theorem 2.2.6 (Mumford, [101]). Let X be a quasi-projective scheme acted on by a

reductive linear algebraic group G with linearisation L.

1. The restriction q : Xss(L) → X //L G of X 99K X //L G to Xss(L) is a universal

good quotient and a universal categorical quotient for the action of G on Xss(L).

In particular, q is surjective.

2. The image q(Xs(L)) is open in X //L G, and the restriction q|Xs(L) : Xs(L) →
q(Xs(L)) =: Xs(L)/G is a universal geometric quotient.

3. The GIT quotient X //L G admits an ample invertible sheaf M such that q∗(M) ∼=
LN |Xss(L) for some N > 0; in particular, X //LG is quasi-projective. If L is ample

and if X is projective, then X //L G is projective.

4. If x, y ∈ Xss(L), then q(x) = q(y) if and only if x and y are S-equivalent. In

particular, there is a bijection of sets Xps(L)/G→ X //L G.

3The ‘S’ stands for Seshadri.
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This theorem is summarised by the following diagram:

X X //L G

Xss(L) Xs(L)/G

Xs(L)

◦

◦ ◦

R(X,L)G⊂R(X,L)

good quot.

geom. quot.

2.2.3 The Hilbert–Mumford Criterion

At first glance, the definitions of GIT stability and semistability seem intractable to work

with in practice. However, in many situations the GIT stable and semistable loci can

be characterised in a more computationally-friendly manner, in terms of one-parameter

subgroups (1PS) of the group.

Let X be a projective scheme acted on by a reductive linear algebraic group G, with

an ample linearisation L. Let λ : Gm → G be a 1PS. Given a point x ∈ X, let

x0 := lim
t→0

λ(t) · x ∈ Xλ(Gm).

The λ(Gm)-action on the restriction of L to the fixed point x0 is given by a character of

Gm of the form t 7→ tr.

Definition 2.2.7. The Hilbert–Mumford weight of λ on x is given by µL(x, λ) := −r.

Suppose L is very ample4. The Kodaira embedding of L yields a G-equivariant closed

embedding

X
|L|
↪→ PN = P(H0(X,L)∨),

with L the pullback of OPN (1). Given x ∈ X and a 1PS λ, write x = [v] ∈ PN , where

v = x0e0 + · · ·+ xNeN , with e0, . . . , eN a basis of CN+1 chosen such that λ(t) · ei = triei

for integers r0, . . . , rN . One may then express the Hilbert–Mumford weight of λ on x as

µL(x, λ) = min{ri : xi 6= 0}.
4This is not a genuine restriction, since replacing L by Ln for any positive integer n does not alter

the semistable loci nor the GIT quotient.
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Theorem 2.2.8 (Hilbert–Mumford Criterion: Projective Case, [101]). Let X be a pro-

jective scheme acted on by a reductive linear algebraic group G, with an ample lineari-

sation L. Let x ∈ X be a point. Then:

1. x ∈ Xss(L) if and only if µL(x, λ) ≥ 0 for all non-trivial 1PS of G; and

2. x ∈ Xs(L) if and only if µL(x, λ) > 0 for all non-trivial 1PS of G.

We have the following equivalent formulation of the Hilbert–Mumford criterion; let

T be a maximal torus of G. Since any 1PS of G is conjugate to a 1PS of T , we have

equalities

XG−(s)s(L) =
⋂
g∈G

g ·XT−(s)s(L).

The condition that µL(x, λ) > 0 (resp. µL(x, λ) ≥ 0) for all non-trivial 1PS λ of T can

be expressed in terms of the T -weights of the coordinates of the point x.

Theorem 2.2.9 (Hilbert–Mumford Criterion for Tori). Let X be a projective scheme

acted on by a reductive linear algebraic group G. Let T be a maximal torus of G. Assume

X is endowed with a very ample G-linearisation L, with X ⊂ PN = P(H0(X,L)∨).

Choose coordinates on CN+1 which diagonalise the action of T . For each x ∈ X, let

conv(x) ⊂ Lie(T )∨ be the convex hull of the T -weights corresponding to the non-zero

coordinates of x. Then:

1. x ∈ XT−ss(L) if and only if 0 ∈ conv(x); and

2. x ∈ XT−s(L) if and only if 0 ∈ int(conv(x)).

Another version of the Hilbert–Mumford criterion exists in the situation when a

reductive linear algebraic group G acts on an affine space V with respect to a character

χ : G → Gm.5 In other words, we endow V with the G-linearisation OV (χ) whose

underlying line bundle is the trivial line bundle, with action

g · (v, z) = (g · v, χ(g)z), g ∈ G, v ∈ V, z ∈ C.

The ring of G-invariants R(V,OV (χ))G =
⊕

n≥0H
0(V,OV (χn))G coincides with the ring

of χ-semi-invariants of the underlying coordinate ring of the affine space V .

Let 〈−,−〉 denote the natural pairing between characters and 1PS of G.

5This situation is sometimes referred to in the literature as “twisted affine GIT”.
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Theorem 2.2.10 (Hilbert–Mumford Criterion: Twisted Affine Case, [75], [58]). Suppose

G is a reductive linear algebraic group acting on an affine space V linearised by OV (χ).

Let v ∈ V be a point.

1. v ∈ V ss(OV (χ)) if and only if 〈χ, λ〉 ≥ 0 for all non-trivial 1PS λ of G for which

limt→0 λ(t) · v exists in V .

2. v ∈ V s(OV (χ)) if and only if 〈χ, λ〉 > 0 for all non-trivial 1PS λ of G for which

limt→0 λ(t) · v exists in V .

2.2.4 Quotients by Finite Groups

Since finite groups are reductive linear algebraic groups, one immediate consequence of

the Hilbert–Mumford criterion is that if L is an ample G-linearisation on a projective

scheme X for the action of a finite group G, then X = Xs(L), whence there exists a

projective geometric quotient X/G.6 In a similar vein, an action of a finite group on a

quasi-projective scheme always yields a quasi-projective geometric quotient.

Lemma 2.2.11. Let X be a quasi-projective scheme acted on by a finite group G. Let

L be an ample G-linearisation on X. Then there exists a quasi-projective geometric

G-quotient X → X/G.

Proof. Since L is an ample linearisation, for r > 0 sufficiently large there exists a finite-

dimensional subspace W ⊂ H0(X,Lr)∨ and a locally closed immersion ι : X → P(W ),

such that ι∗OP(W )(1) = Lr. By averaging W over the finite group G if necessary we

can always ensure that W is a G-invariant subspace, and that ι is G-equivariant. By

Lemma 2.1.4, the restriction of the geometric quotient P(W )→ P(W )/G to X yields a

quasi-projective geometric quotient X → X/G.

2.3 GIT and Moduli Theory

2.3.1 Existence of Corepresentations

As highlighted numerous times in the seminal text [101], the primary raison d’être of

GIT concerns the existence and construction of corepresentations and (coarse) moduli

6It is possible to give a direct proof that X = Xs(L); see for instance [118, Paragraph after Remark
2.1.1.1].
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spaces of algebro-geometric moduli functors. Here we indicate how GIT can be used to

construct corepresentations of a given moduli functor F .

Let S be a scheme. Fix a functor

F : Schop
S → Set.

For any S-scheme T , let hT = HomSchS (−, T ) denote the functor of points of T .

Definition 2.3.1. A corepresentation of F is a pair (M,Φ), where M is an S-scheme

and Φ : F → HomSchS (−,M) is a natural transformation, such that for any S-scheme T ,

any natural transformation F → HomSchS (−, T ) factors uniquely through Φ; if (M,Φ) is

a corepresentation of F , we also say that M corepresents F . A corepresentation (M,Φ)

is said to be a coarse moduli space for F if for each morphism SpecC→ S, the induced

map F(SpecC)→M(SpecC) is a bijection.

A universal corepresentation (resp. universal coarse moduli space) of F is a corepre-

sentation (M,Φ) such that for all morphisms T →M , T corepresents (resp. is a coarse

moduli space for) the contravariant functor

FT : T ′ 7→ HomSchS (T ′, T )×HomSchS
(T ′,M) F(T ′).

GIT can be used to construct corepresentations of moduli functors, provided that

the functor F admits an object with the so-called local universal property, admitting

appropriate symmetries by an algebraic group.

Definition 2.3.2. If T is an S-scheme and if W ∈ F(T ), we say that W has the

local universal property for F if for all S-schemes T ′, for all W ′ ∈ F(T ′) and for all

points t ∈ T ′, there exists an open neighbourhood U of T ′ and a morphism of S-schemes

f : U → T such that W ′|U = f∗(W ) ∈ F(U), where W ′|U denotes the pullback of W ′

along the open immersion U → T ′.

Proposition 2.3.3 (cf. [103], Proposition 2.13). Let F : Schop
S → Set be a functor.

Suppose there exists W ∈ F(T ) with the local universal property for F . Suppose in

addition that there is a linear algebraic group G acting on T (and acting trivially on S)

with the property that for any two geometric points t1, t2 ∈ T lying over a common point

of S,

Wt1 = Wt2 ⇐⇒ G · t1 = G · t2, (2.3.1)

where Wt is the pullback of W along SpecC t→ T . Then:
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1. an S-scheme M corepresents F if and only if M is a categorical quotient of T by

G (in the category of S-schemes); and

2. a categorical quotient M of T by G is a coarse moduli space for F if and only if the

preimages of closed points of M under the quotient T →M are single G-orbits.

Proof. This result is likely known to experts, though we give a proof (largely following

the proof of [103, Proposition 2.13]) for lack of an appropriate reference. To prove

the first assertion, we claim that for any S-scheme M , there exists a natural one-to-

one correspondence between natural transformations Φ : F → HomSchS (−, T ) and G-

invariant morphisms of S-schemes φ : T → M . Given the natural transformation Φ

we set φ = ΦT (W ). On the other hand, given the morphism φ we define Φ as follows.

Suppose T ′ is an S-scheme and W ′ ∈ F(T ′). By the local universal property of W ,

we may cover T ′ by open subschemes Ui such that there are morphisms ψi : Ui → T

with W ′|Ui = ψ∗iW . The G-invariance of ψ along with Property (2.3.1) implies that the

morphisms φ◦ψi glue to give a morphism T ′ →M which is independent of the choice of

trivialising cover Ui and the morphisms ψi; we set ΦT ′(W
′) to be this morphism. This

defines a natural transformation Φ, and the two correspondences are mutually inverse;

this establishes the claim.

The first assertion of Proposition 2.3.3 now follows from the observation that T →M

is a categorical quotient of T by G if and only if the corresponding natural transformation

F → HomSchS (−, T ) corepresents F . Moreover, the preimages of closed points of M

under the quotient T → M are single G-orbits if and only if the map F(SpecC) →
M(SpecC) is a bijection, which yields the second assertion.

2.3.2 Good Moduli Spaces and GIT

Another frequent application of GIT, closely related to the existence of corepresentations

of moduli functors, concerns the existence of good moduli spaces for certain (quotient)

algebraic stacks.

Definition 2.3.4. A morphism π : X → X from an algebraic stack to an algebraic space

is a coarse moduli space if

1. the induced map X (C)/ ∼→ X(C) is a bijection, where X (C)/ ∼ is the set of

isomorphism classes of objects of X over C; and
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2. π is universal for morphisms from X to algebraic spaces.

Definition 2.3.5 (Alper, [6]). A morphism π : X → X from an algebraic stack to an

algebraic space is a good moduli space if

1. π is quasi-compact;

2. π∗ : QCoh(X )→ QCoh(X) is exact; and

3. the induced morphism OX → π∗OX is an isomorphism.

If in addition the induced map X (C)/ ∼→ X(C) is a bijection, we say that π : X → X

is a tame moduli space.

If π : X → X is a good moduli space, then π is surjective and universally closed,

and in particular X has the quotient topology inherited from X . The property of being

a good moduli space is stable under base changes X ′ → X, where X ′ is an algebraic

space. If X is locally Noetherian, then π is universal for morphisms from X to algebraic

spaces. In addition, every closed point of X has a reductive stabiliser (cf. Proposition

12.14 of loc. cit.). In particular, a tame moduli space whose source is locally Noetherian

is a coarse moduli space.

By the Keel–Mori theorem [73], if X is a Deligne–Mumford stack which is separated

and of finite type over an algebraic space S, then there exists a coarse moduli space

π : X → X with the additional properties that π∗OX = OX , that X is separated and of

finite type over S, and that any flat base change of π is also a coarse moduli space. In the

case where X is an algebraic stack of finite presentation, whose automorphism groups

are affine and whose diagonal is separated over a Noetherian algebraic space, a result of

Alper–Halpern-Leistner–Heinloch [7] characterises the existence of a good moduli space

of X in a manner which is intrinsic to X .7 If the algebraic stack X is known to be

isomorphic to a quotient stack, GIT can also be used to prove the existence of a good

moduli space.

Proposition 2.3.6 (Alper, [6]). The following statements hold:

7Namely, X admits a good moduli space if and only if X is S-complete and Θ-complete/Θ-reductive;
the notions of S-completeness and Θ-completeness are defined using valuative criteria.
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1. Let G be a linear algebraic group acting on a scheme X. If X → X // G is a good

(resp. geometric) quotient, then the morphism [X/G] → X // G is a good (resp.

tame) moduli space. Conversely, if [X/G] admits a schematic good (resp. tame)

moduli space Y , then the composition X → [X/G]→ Y is a good (resp. geometric)

quotient.

2. In particular, let G be a reductive linear algebraic group acting on a quasi-projective

scheme X. Let L be a linearisation for the action G � X. Then the natural

morphism [Xss(L)/G]→ X//LG is a good moduli space, and the natural morphism

[Xs(L)/G]→ Xs(L)/G is a tame moduli space.

2.4 Reductive GIT Relative to a Base

In this section, we indicate how the formation of reductive GIT quotients can be extended

to the relative situation, where one works over a quasi-compact base scheme S.

Definition 2.4.1 ([6], Definition 11.1). Let S be a quasi-compact scheme, let G be

a reductive linear algebraic group scheme over S, let p : X → S be a quasi-compact

morphism and let L be a G-linearisation on X. A point x ∈ X is said to be relatively

semistable (with respect to L) if there exists an open neighbourhood U ⊂ S of p(x), a

positive integer n and an invariant section t ∈ H0(p−1(U), Ln)G for which t(x) 6= 0 and

for which the locus {y ∈ p−1(U) : t(y) 6= 0} is affine. The locus of points which are

relatively semistable with respect to L is denoted Xss(L/S).

Remark. By Remark 11.2 of loc. cit., if S is affine and if p is quasi-projective, then

the relative semistable locus coincides with the semistable locus as defined in Definition

2.2.3: Xss(L/S) = Xss(L).

Proposition 2.4.2 ([6], Theorem 13.6). Let S be a quasi-compact scheme, let G be

a reductive linear algebraic group scheme over S, let p : X → S be a quasi-compact

morphism and let L be a G-linearisation on X.

1. There exists an open subscheme Y ⊂ ProjS
⊕∞

k=0(p∗L
k)G and a good moduli space

[Xss(L/S)/G] → Y . In other words, there exists a good quotient q : Xss(L/S) →
Y = Xss(L/S) // G.
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2. If in addition Xss(L/S) is quasi-compact (e.g. if X is Noetherian), there exists

an S-ample invertible sheaf8 M on Y such that q∗(M) ∼= LN |Xss(L/S) for some

N > 0.

2.4.1 Relative GIT for Projective Morphisms

Suppose p : X → S is a projective morphism of finite type to a finite type base scheme

S. Suppose in addition that X is acted on by a reductive linear algebraic group G in

such a way that the morphism p is G-invariant, so that G acts on each geometric fibre

of f . Equivalently, we may consider this action as one of the S-group scheme G× S on

the S-scheme X. Let L be a relatively ample linearisation on X (i.e. a linearisation on

X for the action G � X whose underlying invertible sheaf is relatively ample). Since

Xss(L/S)//G is a categorical quotient, the morphism p : Xss(L/S)→ S factors through

Xss(L/S) // G.

Proposition 2.4.3 ([6], Theorem 13.6). The good quotient Xss(L/S) // G is projective

over S, and there is an equality of S-schemes

Xss(L/S) // G = ProjS
⊕
n≥0

(p∗L
n)G.

Proposition 2.4.4 ([124], Lemma 1.13). Let t ∈ S be a geometric point. Then there

are equalities (X(s)s(L/S))t = X
(s)s
t (Lt). In particular, there is an equality

(Xss(L/S) // G)t = Xt //Lt G.

2.4.2 Relative GIT for Affine Morphisms

We require in Chapter 6 versions of Propositions 2.4.3 and 2.4.4 which hold for relative

twisted affine GIT, where the morphism X → S is no-longer projective.

Proposition 2.4.5. Let S be a finite type base scheme, let p : X → S be an affine

morphism of finite type, let G be a reductive linear algebraic group (over C), and let

χ be a character of G. Suppose G acts on X (and acts trivially on S) in such a way

that the morphism p is invariant. Let L = OX(χ) be the linearisation given by twisting

8Here, M can be taken to be the restriction of O(N) for some N > 0, where O(1) denotes the twisting
sheaf.
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the structure sheaf OX by the character χ, and let Xss(L/S) denote the resulting rela-

tively semistable locus. Assume that for each geometric point s ∈ S, the (non-relative)

semistable locus (Xs)
ss(Ls) for the induced action G � Xs is non-empty.

Then the good moduli space of [Xss(L/S)/G] is given by

Y = ProjS

∞⊕
k=0

(p∗L
k)G = ProjS

∞⊕
k=0

(p∗OX(χk))G,

and for each geometric point s ∈ S there is an equality of schemes

(Xss(L/S))s = (Xs)
ss(Ls). (2.4.1)

Proof. There is a map X 99K ProjS
⊕∞

k=0(p∗L
k)G arising from the inclusions of G-

invariants (p∗L
k)G ⊂ p∗L

k; the domain of definition of this map is the open subscheme

Xss(L/S), and the image coincides with the good moduli space Y .

Take a geometric point s ∈ S. We have an inclusion (Xss(L/S))s ⊂ (Xs)
ss(Ls). To

show that the reverse inclusion holds, without loss of generality we may assume that

S = SpecA is affine, so that X = SpecB is also affine. Let m ⊂ A be the maximal ideal

which corresponds to s ∈ S, so Xs = SpecB/mB. If x ∈ (Xs)
ss(Ls) is a point, there

exists a positive integer n and a χn-semi-invariant f ∈ B/mB which does not vanish at x.

The ring of χ-semi-invariants of B/mB can be identified with a ring of G-invariants of the

graded ring (B/mB)[t] (cf. [99, Page 193]). As G is reductive then taking G-invariants of

graded rings is exact; consequently there exists a χn-semi-invariant f ∈ B whose image

in B/mB is f . In particular, f does not vanish at x, and so x ∈ (Xss(L/S))s; this gives

the equality (2.4.1).

It remains to show Y = ProjS
⊕∞

k=0(p∗L
k)G. However, the restriction of the mor-

phism Xss(L/S) → ProjS
⊕∞

k=0(p∗L
k)G over a geometric point s ∈ S coincides with

the surjective good quotient

Xss
s (Ls)→

(
ProjS

∞⊕
k=0

(p∗L
k)G

)
×S SpecC = Proj

∞⊕
k=0

H0(Xs,OXs(χk))G,

and so Xss(L/S)→ ProjS
⊕∞

k=0(p∗L
k)G must be surjective.
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2.4.3 A Miscellaneous Relative GIT Result

We require one further relative GIT result, which will also be used in Chapter 6. Let

G be a reductive linear algebraic group, let X, Y be quasi-projective schemes, and let

q : X → Y be a projective morphism. Assume X and Y admit G-actions with respect to

which the morphism q is equivariant. Let N be a G-linearised relatively ample invertible

sheaf on X. Assume there exists an equivariant open immersion ι : Y ↪→ Y into a

projective scheme Y acted on by G with ample linearisation L. Assume further that

Y
ss

(L) = Y
s
(L) = Y.

Proposition 2.4.6. Let q : X → Y be as above. Then there are projective geometric

quotients X // G and Y // G of X and Y respectively, and the morphism q induces a

projective morphism q̂ : X // G → Y // G. If y ∈ Y is a closed point, the fibre of q̂ over

the orbit G · y is isomorphic to Xy/StabG(y), the geometric quotient of Xy by the group

StabG(y).

Proof. In the situation of Proposition 2.4.6, there are representations G → GL(Vi),

i = 1, 2, a commutative diagram

X P(V1)× P(V2)

Y Y P(V2)

κ

q

ι η

pr2

whose rows are given by G-equivariant locally closed immersions, and positive integers

a and b with

Na ∼= κ∗(OP(V1)×P(V2)(1, 0)) and Lb ∼= η∗(OP(V2)(1)).

Let X denote the closure of the image of X in P(V1)× P(V2). The morphism pr2 : X →
P(V2) factors through Y , giving a projective morphism q : X → Y making the following

diagram commute:

X X P(V1)× P(V2)

Y Y P(V2)

q

ι η

pr2

κ ⊂

q
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By [68, Theorem 3.11]9 for all d � 0 there are equalities of semistable loci (over

SpecC)

X
ss

(OP(V1)×P(V2)(1, d)|X) = X
s
(OP(V1)×P(V2)(1, d)|X) = q−1(Y

ss
(η∗OP(V2)(1)))

= q−1(Y
ss

(Lb))

= q−1(Y ) = X.

Applying Theorem 3.13 of loc. cit. to q̄ yields the result.

2.5 Additional Reductive GIT Results

We conclude this chapter by collecting some additional results concerning reductive GIT

quotients which are required for this thesis, including the existence of the Hesselink–

Kempf–Kirwan–Ness (HKKN) instability stratification of the unstable locus.

2.5.1 Matsushima’s Criterion

An important result of Matsushima [86] states that GIT polystable points always have

reductive stabiliser groups.

Proposition 2.5.1 (Matsushima). Let X be an affine scheme acted on by a reductive

linear algebraic group G. Suppose x ∈ X is polystable, i.e. has closed orbit. Then the

group StabG(x) is reductive.

2.5.2 Existence of Étale Slices

The étale-local behaviour of a reductive GIT quotient is described via the slice theorem

of Luna [85]. Let X = SpecA be an affine scheme acted on by a reductive linear algebraic

group G, with good quotient π : X → X // G = SpecAG. Let x ∈ X be a closed point,

with stabiliser H = StabG(x) ⊂ G.

Definition 2.5.2. A slice of the G-action on X through x is an H-invariant locally

closed subscheme Y ⊂ X containing x such that:

1. the morphism G×H Y → X arising from the action map G×Y → X is étale, and

its image is an open affine U ⊂ X which is π-saturated, i.e. π−1(π(u)) ⊂ U for

all u ∈ U ;

9As indicated by Schmitt in [119], Hu’s result is erroneously stated and only applies in certain cir-
cumstances; the case where both the domain and target are projective is one such circumstance.
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2. there are categorical quotients U // G and U // H;

3. the induced morphism (G×H Y )/G→ U // G is étale; and

4. the induced morphism G×H Y → U ×U//G U // H is an isomorphism.

Theorem 2.5.3 (Luna). Assume that x ∈ X is polystable. Then there exists a slice of

the G-action on X through x.

2.5.3 Variation of Reductive GIT

The GIT quotient X //L G depends on the choice of linearisation; different choices of

linearisations in general yield different semistable loci and hence different GIT quotients.

Variation of GIT (VGIT) concerns the study of the dependence of X //L G on L, and

was first studied in independent work by Thaddeus [126] and Dolgachev–Hu [41]. We

give a brief overview of VGIT, with a particular emphasis on the notion of a Thaddeus

flip.

Let X is a projective scheme acted on by a reductive linear algebraic group G.

Let PicG(X) = Pic([X/G]) be the set of isomorphism classes of G-linearised invertible

sheaves on X; PicG(X) is an abelian group under the tensor product.

Definition 2.5.4. Two linearisations L1, L2 ∈ PicG(X) are said to be G-algebraically

equivalent if there exists a connected scheme S, a linearisation L on X × S (where G

acts trivially on S) and points s1, s2 ∈ S such that L|X×si ∼= Li as G-linearisations, for

i = 1, 2.

This defines an equivalence relation on PicG(X); the set of equivalence classes is

denoted NSG(X).

The set NSG(X) also inherits an abelian group structure coming from the tensor

product. Since L and Ln (for any n > 0) define the same (semi)stable loci and the

same GIT quotient, one can pass to the space of rational linearisations NSG(X)Q =

NSG(X)⊗ZQ; it is shown in [126] that the semistable locus Xss(L) (and hence the GIT

quotient X //LG) depends only on the span of [L] in NSG(X)Q, and, at least when X is

a normal variety, that NSG(X)Q is a finite dimensional Q-vector space.

Inside NSG(X)Q are two cones CG ⊂ AG:

1. AG consists of all rational linearisation classes for which the corresponding G-

algebraic equivalence class is represented by an ample linearisation; and
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2. CG consists of those classes in AG for which the semistable locus is non-empty.

An important result of VGIT states that in many cases (for instance, when X is a

projective normal variety), the cone CG carries a finite wall-and-chamber decomposition,

where two linearisations in the same chamber yield the same semistable locus, and where

linearisations on adjacent sides of a wall are related through a transformation known as

a Thaddeus flip:

Definition 2.5.5. Let Y+, Y− and Y0 be schemes. We say that Y+ and Y− are related by

a Thaddeus flip through Y0 if there exists a Noetherian scheme X over a quasi-compact

scheme S, acted on by a reductive linear algebraic group G over S, with G-linearisations

L+, L−, L0 on X such that:

1. there are equalities Y± = Xss(L±/S) // G and Y0 = Xss(L0/S) // G; and

2. there exists a diagram

Y+ Y−

Y0

ψ+ ψ−

where ψ± is the morphism arising from an inclusion of relative semistable loci

Xss(L±/S) ⊂ Xss(L0/S).

Thaddeus flips enjoy rich geometric properties, and are studied by Thaddeus in [126].

As we do not explicitly rely on these properties in this thesis, we state here only a couple

of these,10 referring the reader to loc. cit. for the full list.

Proposition 2.5.6 ([126], Theorem 3.3). In the situation of Definition 2.5.5, assume

X is integral. Then the morphisms ψ± are proper and birational. If they are both

small, meaning that their exceptional loci are of codimension at least 2, then the rational

morphism g : Y− 99K Y+ is a flip, in the following sense: if M± are the invertible sheaves

on Y± arising from the twisting sheaves on ProjS
⊕∞

k=0(p∗L
k
±)G, then these correspond

to Q-Cartier divisors D± and g∗(−D−) is equivalent to D+.

Proposition 2.5.7 ([126], Theorem 3.5). In the situation of Definition 2.5.5, there exist

ideal sheaves J± on Y± and J0 on Y0, defined by taking G-invariants of ideal sheaves

generated by sections of L± and L0 respectively, such that:

10Thaddeus works in the absolute setting S = SpecC, however the above stated results concern
properties which are affine-local over Y0 = Xss(L0/S) // G, and so carry over to the relative setting.
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1. the pullback of J0 under ψ± is equal to J±; and

2. if X is irreducible, the blow-ups BlJ±Y± and BlJ0Y0 are all isomorphic to the

irreducible component of the fibre product Y+ ×Y0 Y− dominating Y0.

2.5.4 Actions of Gm on Algebraic Spaces

We take a slight detour to state the following result of Drinfeld [44] concerning actions of

the group Gm on algebraic spaces; this result generalises the classical Bia lynicki-Birula

theorem [21].

Let X be an algebraic space of finite type over C acted on by Gm.

Theorem/Definition 2.5.8 (Drinfeld). Let Gm act on A1 in the usual way. The

functors

MorGm(−, X), MorGm(A1 ×−, X)

are represented by algebraic spaces of finite type, respectively denoted X0 = XGm, the

fixed point locus of X, and X+, the attractor of X. Moreover:

1. The natural morphism X0 → X is a closed embedding.

2. There is a natural surjective morphism p : X+ → X0, which on points coincides

with the map x 7→ limt→0 t · x, and the morphism p is affine.

3. The natural morphism X+ → X is unramified, and the fibre over any geometric

point of X0 has a single point. X+ → X is a monomorphism if X is separated. If

X is proper then each geometric fibre of X+ → X is reduced and has exactly one

point.

4. X+ → X is an isomorphism if and only if the Gm-action on X can be extended to

an action of the monoid A1, in which case the extension is unique.

5. If X is smooth, then so are X0 and X+, and the morphism p : X+ → X0 is also

smooth.
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2.5.5 The HKKN Stratification

In addition to furnishing a schematic quotient of the semistable locus, reductive GIT

also yields a finite locally closed stratification of the unstable locus by “instability type”,

known as the Hesselink–Kempf–Kirwan–Ness (HKKN) stratification or as the instability

stratification. Here we describe this stratification.

Let X be a projective scheme acted on by a reductive linear algebraic group G

with respect to a very ample linearisation L; we identify X with its image in PN =

P(H0(X,L)∨) under the (G-equivariant) Kodaira embedding of L. Fix a maximal torus

T ⊂ G, fix a positive definite Weyl-invariant integral bilinear form on the Lie algebra of

T , and use this to define an invariant norm on the Lie algebra of G. The norm gives an

identification of the character lattice of T with the co-character lattice of T , as well as

an identification of the Lie algebra of T with the dual Lie algebra.

Definition 2.5.9. Let x ∈ X be a point.

1. If λ is a non-trivial 1PS of G, the normalised Hilbert–Mumford weight of λ on x

is given by ML(x, λ) = µL(x, λ)/||λ||, where || − || is the induced norm on 1PS of

G.

2. A non-trivial 1PS λ of G is said to be a Kempf 1PS or a maximally destabilising

1PS for x if ML(x, λ) ≤ML(x, λ′) for all non-trivial 1PS λ′ of G.

Proposition 2.5.10 (Kempf, [74]). Suppose x ∈ Xus(L) is an unstable point.

1. The set of Kempf 1PS for x is non-empty.

2. There exists a parabolic subgroup Px of G such that for any Kempf 1PS λ for x,

Px = P (λ) :=
{
g ∈ G : lim

t→0
λ(t)gλ(t)−1 exists in G

}
.

Any Px-conjugate of a Kempf 1PS for x is a Kempf 1PS for x.

3. A Kempf 1PS λ of x is unique up to conjugation by Px and replacing λ 7→ λn,

where n is a positive integer.

The HKKN stratification is indexed by conjugacy classes β of rational 1PS of G. The

semistable locus is a stratum S0, indexed by the conjugacy class of the trivial 1PS. The
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unstable strata Sβ are described as follows. Pick a representative λβ of the conjugacy

class β (if one fixes a positive Weyl chamber t+ of Lie(T ), one can always choose the

representatives to come from t+), and let Pβ = P (λβ) be the corresponding parabolic

subgroup of G. If Uβ ⊂ Pβ is the unipotent radical of Pβ, given by the subgroup of

elements g ∈ G for which limt→0 λβ(t)gλβ(t)−1 is the identity, and Rβ ⊂ Pβ is the Levi

subgroup given by elements of the form limt→0 λβ(t)gλβ(t)−1 with g ∈ Pβ, we have a

Levi decomposition Pβ = Uβ oRβ.

Definition 2.5.11. Let Zβ be the union of the components of the fixed locus Xλβ(Gm)

on which the Hilbert–Mumford weight µL(−, λβ) takes the value −||λβ||2. Let Xβ be the

locally closed subscheme of X consisting of all points x ∈ X with pβ(x) := limt→0 λβ(t) ·
x ∈ Zβ.

Remark. By Theorem/Definition 2.5.8, the schemes Zβ and Xβ inherit canonical scheme

structures from X, making them locally closed subschemes of X. The retraction pβ :

Xβ → Zβ is a morphism of schemes.

The scheme Xβ is invariant under the action of Pβ, the scheme Zβ is invariant under

the action of Rβ and the retraction pβ : Xβ → Zβ is equivariant with respect to the

quotient map qβ : Pβ → Rβ. Let χ−β : Rβ → Gm denote the character corresponding to

the 1PS λ−1
β : Gm → Z(Rβ). Let Lβ denote the Rβ-linearisation on Zβ given by twisting

the linearisation L by the character χ−β.

Definition 2.5.12. We define the following loci:

1. Zssβ := Z
Rβ−ss
β (Lβ);

2. Xss
β := p−1

β (Zssβ ); and

3. Sβ := G ·Xss
β .

We may now state the results of [76] concerning the existence and properties of the

HKKN stratification.

Theorem 2.5.13 (Hesselink–Kempf–Kirwan–Ness Stratification). Let X be a projective

scheme acted on by a reductive linear algebraic group G with respect to a very ample

linearisation L.
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1. There is a stratification

X =
⊔
β∈B

Sβ

of X into disjoint locally closed G-invariant subschemes, with S0 = Xss(L). The

indexing set β is finite.

2. The closure Sβ of a stratum satisfies

Sβ ⊂ Sβ t
⊔

||γ||>||β||

Sγ .

3. For every β ∈ B, there is a G-equivariant isomorphism Sβ ×Pβ G ∼= Xss
β .

4. For β ∈ B \ {0}, a point x ∈ X is contained in Xss
β if and only if λβ is a Kempf

1PS for x.
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Chapter 3

Non-Reductive Geometric
Invariant Theory

The theory of reductive GIT is a well-established toolkit for constructing and studying

quotients of schemes in algebraic geometry by reductive groups. Much more recently,

considerable progress has been made in extending this theory to cover, in certain well-

behaved cases, quotients by non-reductive groups. In addition to giving a statement

of the Û -Theorem of Bérczi–Doran–Hawes–Kirwan, which will play an important role

in this thesis, we also give an overview of the non-reductive quotienting-in-stages con-

struction of Hoskins–Jackson, which concerns the formation of quotients by actions of

parabolic subgroups of SL(V ); this construction will be utilised in Chapter 7. We con-

clude this chapter by stating how non-reductive GIT (NRGIT) can be used to form

quotients of unstable HKKN strata.

3.1 Groups with a Graded Unipotent Radical

Let H be a linear algebraic group. If U is the unipotent radical of U and R is a choice of

Levi subgroup of H,1 we have a semi-direct product decomposition H = U oR, known

as a Levi decomposition of H. Fix such a Levi decomposition.

Definition 3.1.1. An internal grading of H is a 1PS λ : Gm → Z(R) such that λ(Gm)

acts by conjugation on the Lie algebra Lie(U) with strictly positive weights; if an internal

grading exists, we also say that H has an internally graded unipotent radical. Given a

1A Levi subgroup R ⊂ H always exists and is unique up to conjugation.
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choice of internal grading λ, we denote

Û = Ûλ := U o λ(Gm),

and denote R := R/λ(Gm).

Remark. In this thesis, we we will be concerned with quotients by groups with an inter-

nally graded unipotent radical. However, there is the slightly more general notion of an

external grading of the unipotent radical of a linear algebraic group; the formation of

quotients by groups with an externally graded unipotent radical is considered in [19].

Remark. When forming quotients by internally graded groups, one can always replace

λ by λn for a positive integer n without affecting the resulting quotients. In particular,

this allows us to work with rational internal gradings λ.

Example 3.1.2. Our main examples of internally graded groups come from parabolic

subgroups of reductive groups G. Let λ : Gm → G be a (rational) 1PS, with associated

parabolic subgroup

P = P (λ) =
{
g ∈ G : lim

t→0
λ(t)gλ(t)−1 exists in G

}
= U oR.

This has unipotent radical U =
{
g ∈ G : limt→0 λ(t)gλ(t)−1 = e

}
and Levi factor R ={

limt→0 λ(t)gλ(t)−1 : g ∈ P
}

. We have an inclusion λ(Gm) ⊂ Z(R). That we have

limt→0 λ(t)uλ(t)−1 = e for each u ∈ U implies that the conjugation action of λ(Gm) on

Lie(U) has strictly positive weights. In other words, λ internally grades the unipotent

radical of P . �

3.2 Quotients by Internally Graded Groups

3.2.1 Setup for the Û-Theorem

Let X be a projective scheme acted on by a linear algebraic group H = U o R, such

that there exists a very2 ample H-linearisation L on X. Assume in addition that H

has an internally graded unipotent radical; fix an internal grading λ : Gm → Z(R). Let

W := H0(X,L)∨, and view X ⊂ P(W ). Let ωmin = ω0 < ω1 < · · · < ωmax be the weights

by which λ(Gm) acts on the fibres of L∨ over points of the connected components of the

2The distinction between working with ample and very ample H-linearisations is not crucial, since
one is free to replace an ample H-linearisation on X with any positive integer power.
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fixed locus Xλ(Gm) for the induced action of λ(Gm) on X. Without loss of generality

we assume that there are at least two distinct weights, since otherwise the unipotent

radical U acts trivially on X,3 and so forming a quotient by H is equivalent to forming

a quotient by the reductive group R. Let Wmin ⊂ W be the weight space where λ acts

with weight ωmin.

Remark. For the purposes of simplicity of exposition,4 we will always assume that there

exists a dense open subscheme X◦ ⊂ X such that for all points x ∈ X◦, λ(Gm) acts

on the fibre of L∨ over limt→0 λ(t) · x with a common weight; this common weight is

necessarily the minimal weight ωmin. This assumption always holds if X is irreducible,

and this assumption holds for all graded unipotent quotients considered in this thesis.

Definition 3.2.1. We introduce the following loci:

1. the λ-minimal weight space Zmin = Z(X,λ)min is the closed subscheme Zmin =

X ∩ P(Wmin);

2. the λ-attracting open subscheme X0
min = X(λ)0

min is the open subscheme of X

whose set of points is X0
min = {x ∈ X : limt→0 λ(t) · x ∈ Zmin};

3. the λ-retraction is the morphism p : X0
min → Zmin given on points by p(x) =

limt→0 λ(t) · x; and

4. the (semi)stable minimal weight space is Z
(s)s
min = Z

R−(s)s
min , and we set X

0,(s)s
min =

p−1(Z
(s)s
min ).

Remark. It follows from Theorem/Definition 2.5.8 that all of the loci appearing in Defi-

nition 3.2.1 admit canonical scheme structures, making them locally closed subschemes

of X.

Since λ(Gm) ⊂ Z(R), the λ-minimal weight space Zmin is invariant under the action

of R, and the group λ(Gm) acts trivially on Zmin; as such Zmin inherits a residual R-

action. The property λ(Gm) ⊂ Z(R) also implies that the λ-retraction p is R-equivariant,

and the property that λ(Gm) acts on Lie(U) with strictly positive weights implies that

p is U -invariant. In particular, the λ-attracting open subscheme X0
min is invariant under

the action of H, and p is equivariant with respect to the quotient H → H/U = R.

3For in this case X0
min = Zmin and p is the identity on X0

min, but p is U -invariant.
4A priori, different irreducible components could have different minimal λ(Gm)-weights; without this

simplifying assumption, each of these minimal weights would need to be kept track of.
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Definition 3.2.2. The very ample linearisation L is said to be:

1. borderline if ωmin = 0 < ω1 < · · · < ωmax; and

2. adapted if ωmin < 0 < ω1 < · · · < ωmax.

Given a property P of very ample H-linearisations of X, we say that property P holds for

L being a well adapted linearisation if there exists ε > 0 such that if −ε < ωmin < 0 < ω1,

then property P applies to L.

Remark. The only properties P for which the distinction between an adapted and a well

adapted linearisation is necessary are properties of finite generation of invariants; for

forming quotients, the distinction does not matter.

3.2.2 Quotients with Borderline Linearisations

In the case where L is borderline, the formation of quotients for the induced action

H � X0,ss
min can be handled using reductive GIT.

Proposition 3.2.3 ([66], Proposition 2.17). Let H = U oR be a linear algebraic group

with internal grading λ : Gm → Z(R), and let X be a projective scheme acted on by H

with a very ample borderline linearisation L. Then there is an isomorphism of graded

rings ⊕
n≥0

H0(X,Ln)H ∼=
⊕
n≥0

H0(Zmin, L
n|Zmin)R,

and the following actions all admit a categorical quotient given by the reductive GIT

quotient Zmin //L R:

1. the action of R on Zssmin;

2. the action of R on X0,ss
min ; and

3. the action of H on X0,ss
min .

Moreover, the categorical quotient X0,ss
min → X0,ss

min // H = Zmin //L R factors through the

λ-retraction p : X0,ss
min → Zssmin.

Unfortunately, since X0,ss
min → X0,ss

min // H factors through the λ-retraction, the cate-

gorical quotient X0,ss
min // H is almost never a geometric H-quotient, as too many orbits

get identified with each other.
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3.2.3 The Û-Theorem

The approach taken with the Û -Theorem is to instead work solely with linearisations

which are adapted, which has the effect of destabilising the locus UZmin, so that points

x ∈ X0
min can no-longer be identified with their limits under the λ-attraction. This comes

at the cost of having to first prove the existence of a geometric U -quotient of X0
min or of

X0,ss
min , which imposes constraints on the U -stabilisers of points x ∈ X0

min.

Definition 3.2.4. We define the following stabiliser conditions concerning the action

H � X:

1. We say semistability coincides with stability for Û if

dim StabU (z) = 0 for all z ∈ Zmin. [Û ]0

2. We say semistability coincides with stability for Û on the reductive semistable

locus if

dim StabU (z) = 0 for all z ∈ Zssmin. [Û ;R− ss]0

3. If U is abelian, we say that semistability coincides with Mumford stability for Û

if

dim StabU (−) is constant on X0
min. [Û ]

4. If U is abelian, we say that semistability coincides with Mumford stability for Û

on the reductive semistable locus if

dim StabU (−) is constant on X0,ss
min . [Û ;R− ss]

5. We say that semistability coincides with stability for R if

dim StabR(z) = 0 for all z ∈ Zssmin. [R]0

In the case where U is not abelian, statements (3) and (4) should be modified to

require that there exists a series of subgroups {e} = U0 ⊂ U1 ⊂ · · · ⊂ U ` = U which is

normalised by H and whose successive quotients are abelian, such that (3) (resp. (4))

holds for each subgroup U i.

We can now state the Û -Theorem of Bérczi–Doran–Hawes–Kirwan [18] [19] [20].
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Theorem 3.2.5 (Bérczi–Doran–Hawes–Kirwan). Let H = U o R be a linear algebraic

group with internal grading λ : Gm → Z(R), and let X be a projective scheme acted

on by H with a very ample adapted linearisation L. Assume in addition that condition

([Û ]) holds. Then the following statements hold:

1. The Û -stable locus XÛ−s
min := X0

min \ UZmin is an open, H-invariant subscheme of

X0
min which admits a projective geometric Û -quotient

q
Û

: XÛ−s
min → X //L Û .

The quotient X //L Û is endowed with an ample R-linearisation L inherited from

L, for the residual action of R. Moreover, if L is well adapted, there exists a suffi-

ciently divisible positive integer c with the properties that the ring of Û -invariants⊕
n≥0H

0(X,Lcn)Û is finitely generated and X//L Û = Proj
(⊕

n≥0H
0(X,Lcn)Û

)
.

2. Let q : XÛ−s
min 99K X //L H := (X //L Û) //L R be the composition of q

Û
with the

reductive GIT quotient qR : (X //L Û)R−ss(L)→ (X //L Û) //LR. Then q is defined

on an open subscheme dom(q) ⊂ XÛ−s
min , and q : dom(q)→ X //L H is a projective

good H-quotient. Moreover, if L is well adapted, there exists a sufficiently divisible

positive integer c′ such that the ring of H-invariants
⊕

n≥0H
0(X,Lc

′n)H is finitely

generated and X //L H = Proj
(⊕

n≥0H
0(X,Lc

′n)H
)

.

The following result of Hoskins–Jackson can be used in certain cases to determine

the domain of the quotient maps appearing in Theorem 3.2.5.

Theorem 3.2.6 ([66], Theorem 2.28). In the situation of Theorem 3.2.5, denote by

XH−s
min := X0,s

min \ UZsmin the H-stable locus. Then:

1. If x ∈ XH−s
min then q

Û
(x) ∈ (X //L Û)R−s(L).

2. Fix a maximal torus T of R which contains λ(Gm). Then there are open inclusions

XH−s
min ⊂ dom(q) ⊂

⋂
h∈H

hXT−ss(L) =
⋂
u∈U

uXR−ss(L) ⊂ X0,ss
min \ UZ

ss
min.

If ([R]0) holds, then all of these inclusions are equalities.
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3. The restriction of q to the open subscheme XH−s
min ⊂ X0

min yields a quasi-projective

geometric H-quotient XH−s
min → q(XH−s

min ) = XH−s
min /H with projective completion

X //L H. In particular, if ([R]0) holds, then XH−s
min /H = X //L H is a projective

geometric H-quotient of XH−s
min .

It is possible to weaken the condition ([Û ]) to ([Û ;R− ss]) to still obtain a projective

good H-quotient of an open subscheme of X0,ss
min \ UZssmin; the difference here is that the

Û -quotient will only be quasi-projective.

Theorem 3.2.7 (cf. [66], Theorem 2.29). Let H = UoR be a linear algebraic group with

internal grading λ : Gm → Z(R), and let X be a projective scheme acted on by H with

a very ample adapted linearisation L. Assume in addition that condition ([Û ;R− ss])
holds. Then the following statements hold:

1. (Bérczi–Doran–Hawes–Kirwan) There exists a quasi-projective geometric Û -quotient

q
Û

: X0,ss
min \ UZssmin → (X0,ss

min \ UZssmin)/Û . By composing q
Û

with a reductive GIT

quotient map for the residual R-action, there is a map

q : X0,ss
min \ UZ

ss
min

q
Û→ (X0,ss

min \ UZ
ss
min)/Û

qR
99K X //L H

which restricts to a projective good H-quotient q : dom(q)→ X//LH of the domain

of q. Moreover, if L is well adapted, there exists a sufficiently divisible positive

integer c such that the ring of H-invariants
⊕

n≥0H
0(X,Lcn)H is finitely generated

and such that there is an equality X //L H = Proj
(⊕

n≥0H
0(X,Lcn)H

)
.

2. (Hoskins–Jackson) There is an inclusion XH−s
min := X0,s

min \ UZsmin ⊂ dom(q), and

the restriction of q to the open subscheme XH−s
min ⊂ X0

min yields a quasi-projective

geometric quotient XH−s
min → q(XH−s

min ) = XH−s
min /H with projective completion X//L

H. If in addition ([R]0) holds, then dom(q) = XH−s
min , and XH−s

min /H = X //L H is

a projective geometric H-quotient of XH−s
min .

In order to prove the results of Chapter 7, we require a slightly modified version of the

Û -Theorem, which is able to handle the situation where, on a non-empty open of X0
min,

points have trivial unipotent stabilisers, with the same holding for the λ(Gm)-limits for

these points, whilst allowing for the possibility of some points of Zsmin to have positive

unipotent stabiliser dimensions. The cost is that the resulting non-reductive quotients

are only guaranteed to be quasi-projective. In order to state the modified version of the

Û -Theorem, we introduce the following terminology.
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Definition 3.2.8. Let H = U o R be a linear algebraic group with internal grading

λ : Gm → Z(R), and let X be a projective scheme acted on by H with a very ample

adapted linearisation L.

1. The U -very stable locus is the open subscheme of X whose set of points is

XU−vs
min = {x ∈ X0

min : dim StabU (p(x)) = 0}.

2. The H-very stable locus is the open subscheme of X whose set of points is

XH−vs
min = {x ∈ XU−vs

min : p(x) ∈ Zsmin} \ UZmin.

Remark. That XU−vs
min is open in X0

min follows from the semicontinuity of dimensions of

U -stabiliser dimensions. In turn, the same argument given in [20, Proof of Theorem

4.21, Page 21] shows that the U -sweep of {z ∈ Zmin : dim StabU (z) = 0} is closed in

XU−vs
min , whence XH−vs

min is an open subscheme of X0
min. XU−vs

min is invariant under the

action of U , and XH−vs
min is invariant under the action of H.

Theorem 3.2.9. Let H = U o R be a linear algebraic group with internal grading

λ : Gm → Z(R), and let X be a projective scheme acted on by H with a very ample

adapted linearisation L. Assume in addition that XU−vs
min is non-empty.

1. There is a locally trivial U -quotient qU : XU−vs
min → XU−vs

min /U . Moreover, there ex-

ists a positive integer m > 0 such that XU−vs
min /U admits a locally closed immersion

into P((H0(X,Lm)U )∨) in such a way that qU is induced by the linear projection

P(H0(X,Lm)∨) 99K P((H0(X,Lm)U )∨).

2. Assume further that XH−vs
min is non-empty. Fixing m as above, let Q denote the

closure of XU−vs
min /U in P((H0(X,Lm)U )∨). Endow Q with the R-linearisation

obtained by restricting the O(1) of P((H0(X,Lm)U )∨), and let Q // R denote the

resulting reductive GIT quotient. Then there exists a map

q : XU−vs
min XU−vs

min /U Q // R
qU qR

with the following properties:

(i) XH−vs
min is contained in the domain of q, and the restriction q : XH−vs

min →
q(XH−vs

min ) is a geometric H-quotient.
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(ii) There exists an integer M ≥ m and a locally closed immersion of q(XH−vs
min )

into P((H0(X,LM )H)∨) with the property that q is induced by the linear pro-

jection P(H0(X,LM )∨) 99K P((H0(X,LM )H)∨).

Proof. It is possible to prove Theorem 3.2.9 using the results of [110], however we provide

a simplified proof, by following the proofs of Theorems 3.2.5 and 3.2.6.

As before, set W := H0(X,L)∨. By [20, Proposition 4.26], there exists a locally

trivial U -quotient P(W )U−vsmin → P(W )U−vsmin /U , given by the restriction of the enveloping

quotient (cf. [43, Section 4]). Moreover, from the proof of [18, Proposition 3.1.19] there

exists a positive integer m such that for all positive multiples m′ of m, P(W )U−vsmin /U ad-

mits a locally closed immersion into P((H0(P(W ),OP(W )(m
′))U )∨), with the composition

P(W )U−vsmin → P(W )U−vsmin /U → P((H0(P(W ),OP(W )(m
′))U )∨) coinciding with the mor-

phism obtained by restricting the rational map between projective spaces corresponding

to the inclusion H0(P(W ),OP(W )(m
′))U ⊂ H0(P(W ),OP(W )(m

′)).

By Lemma 2.1.5, this quotient restricts to a locally trivial quotient qU : XU−vs
min →

XU−vs
min /U , with XU−vs

min /U a closed subscheme of P(W )U−vsmin /U . By replacing m with a

larger multiple if necessary, so that the natural map SymmH0(X,L) → H0(X,Lm) is

onto, the closed immersion X → P(H0(P(W ),OP(W )(m))∨) factors through the projec-

tive space P(H0(X,Lm)∨), and in addition the composite

H0(P(W ),OP(W )(m))U H0(P(W ),OP(W )(m)) H0(X,Lm)
⊂

factors through H0(X,Lm)U . It follows that the composite

XU−vs
min /U → P(W )U−vsmin /U → P((H0(P(W ),OP(W )(m))U )∨)

factors through P((H0(X,Lm)U )∨), and so qU fits into a diagram

XU−vs
min P(H0(X,Lm)∨)

XU−vs
min /U P((H0(X,Lm)U )∨)

qU H0(Lm)U⊂H0(Lm)

whose horizontal arrows are given by locally closed immersions. This completes the

proof of the first part of the theorem.
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The proof of the second part of the theorem boils down to reductive GIT for the

residual action of R. Let Q be the closure of XU−vs
min /U in P((H0(X,Lm)U )∨), and en-

dow Q with the very ample linearisation LQ obtained as the restriction of the O(1) of

P((H0(X,Lm)U )∨). Choosing s > 0 sufficiently large such that
⊕

kH
0(Q,LskQ )R is gen-

erated in degree 1 and such that the natural morphism SymrH0(X,Lm)U → H0(Q,LrQ)

is a surjection for all r ≥ s, by Theorem 2.2.6 the map

qR : Q 99K Q // R = Proj
⊕
k

H0(Q,LskQ )R ⊂ P((H0(Q,LsQ)R)∨)

induced by the inclusion
⊕

kH
0(Q,LskQ )R ⊂

⊕
kH

0(Q,LskQ ) restricts to give a geometric

R-quotient of the open stable locus QR−s(LQ). Increasing s if necessary, the above

morphisms yield a surjection H0(X,Lsm)U → H0(Q,LsQ); taking R-invariants (which is

exact, as R is reductive) then yields a surjection (H0(X,Lsm)U )R = H0(X,Lsm)H →
H0(Q,LsQ)R. This yields a closed immersion P((H0(Q,LsQ)R)∨)→ P((H0(X,Lsm)H)∨),

such that the composite Q // R→ P((H0(X,Lsm)H)∨) fits into the following diagram:

XU−vs
min P(H0(X,Lsm)∨)

XU−vs
min /U

Q // R P((H0(X,Lsm)H)∨)

qU

qR

H0(Lsm)H⊂H0(Lsm)

In light of Lemmas 2.1.4 and 2.1.5, it remains to show that the locally closed sub-

scheme qU (XH−vs
min ) of Q is contained in the GIT stable locus QR−s(LQ). But this is a

consequence of the first assertion of [66, Theorem 2.28].

Remark. Unlike in reductive GIT, where the resulting quotients are always projective, we

remark that in the setting of the Û -Theorem, without the stabiliser conditions ([Û ]0) or

([Û ;R− ss]0) holding one only obtains a quasi-projective goodH-quotient of an invariant

open subscheme of X0
min. If one seeks projective quotients, one must first modify the

H-scheme X so that either ([Û ]0) or ([Û ;R− ss]0) hold. In favourable situations, this

can be achieved (albeit at the cost of not having a modular completion) by blowing-up

X along a suitable H-invariant subscheme, supported along the U -sweep of the locus of
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points in Zmin whose U -stabiliser dimension is strictly larger than the generic dimension

[20, Section 4.5] [110]; this should be thought of as being analogous to the procedure of

Kirwan desingularisation [77] in reductive GIT, as well as its stacky analogue [47].

3.2.4 Application to Quotients of Unstable HKKN Strata

Let G be a reductive linear algebraic group acting on a projective scheme with respect

to a very ample linearisation L. Recall from Section 2.5.5 the HKKN stratification of

X:

X =
⊔
β∈B

Sβ, Sβ = G ·Xss
β
∼= G×Pβ Xss

β .

As in Example 3.1.2, Pβ is internally graded by the 1PS λβ. From the isomorphism

Sβ ∼= G ×Pβ Xss
β , the existence of a categorical quotient Sβ // G is equivalent to the

existence of a categorical quotient Xss
β // Pβ.

Let Yβ = Xβ denote the closure of Xβ in X. For ε ∈ Q≥0, let L(1+ε)β be the

(rational) Pβ-linearisation on Yβ obtained by twisting L with respect to the character

χ−(1+ε)β corresponding under the Weyl-invariant norm || − || on Lie(G) to the rational

1PS λ−1
(1+ε)β : Gm → Z(Rβ).

Proposition 3.2.10 ([66], Proposition 3.5). Let β ∈ B \ {0} be a non-zero index of an

HKKN stratum of X. Endow Pβ with the grading 1PS λβ. Then, with respect to the

linearisation L(1+ε)β:

1. there is an equality Zβ,min := Z(Yβ, λβ) = Zβ;

2. there is an equality Yβ,min := Yβ(λβ)0
min = Xβ.

3. the λβ-retraction is given by the morphism pβ : Xβ → Zβ; and

4. if ε > 0 is sufficiently small, the linearisation L(1+ε)β is well adapted for the graded

unipotent group Ûλβ .

Note that in order to apply Theorems 3.2.5 and 3.2.6 to this situation, there is still the

requirement to check that the various stabiliser assumptions hold. For many examples

of unstable strata (see for instance [66] and [70]), the conditions ([Û ]) and ([Û ;R− ss])
can both fail, and even if these conditions hold then the condition ([R]0) can also fail.
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For example, in the setting of moduli of unstable sheaves of a fixed Harder–Narasimhan

type of length ` (cf. [66] and Section 4.3.2), there is an (`−1)-dimensional torus T ⊂ Rβ
which acts trivially on Zβ (but not on Xβ), meaning that unless ` = 2 then ([R]0)

automatically fails.

3.3 Parabolic Groups of SL(V ) and the Quotienting-in-
Stages Construction

In order to rectify the issue of ([R]0) failing when dealing with grading 1PS with ` > 2

distinct weights, the approach of Hoskins–Jackson [66] (in the case of forming quotients

of parabolic subgroup P ⊂ SL(V ) for some finite dimensional vector space V ) is to

break the process of quotienting by P into stages, according to the row filtration of P ,

and at each stage form a quotient of a group graded by a 1PS with only two distinct

weights. The condition ([R]0) has a better chance of holding stage-by-stage, at least over

a non-empty open subscheme of Zmin.

3.3.1 Notation for Parabolic Subgroups of SL(V )

Let λ : Gm → SL(V ) be a 1PS. Fix a basis {v1, . . . , vN} for V diagonalising the action

of λ(Gm), with weights r1 ≥ r2 ≥ · · · ≥ rN . Let ` = `(λ) be the number of distinct

weights of λ, let β1 > · · · > β` be these distinct weights, and suppose the weight βi

occurs mi-times.

Let

P = P (λ) =
{
g ∈ SL(V ) : lim

t→0
λ(t)gλ(t)−1 exists in SL(V )

}
= U oR

be the parabolic subgroup of SL(V ) associated to λ, with unipotent radical U = U(λ)

and Levi factor R = R(λ). The groups P , U and R can be explicitly described in terms

of block upper-triangular matrices (defined with respect to the basis {v1, . . . , vN}) as

follows:

(i) P =


A =


A1,1 A1,2 · · · A1,`−1 A1,`

0 A2,2 · · · A2,`−1 A2,`
...

...
. . .

...
...

0 0 · · · A`−1,`−1 A`−1,`

0 0 · · · 0 A`,`

 ∈ SL(V ) : Ai,j ∈ Cmi×mj


.

39



(ii) R = {A ∈ P : Ai,j = 0 for all 1 ≤ i < j ≤ `} consists of all block diagonal matrices

in P .

(iii) The centre T = Z(R) of R is given by

T =

{
diag(t1Im1 , . . . , t`Im`) : ti ∈ Gm,

∏̀
i=1

ti = 1

}
∼= G`−1

m .

(iv) The semisimple part of R is given by

R′ = {diag(A1,1, . . . , A`,`) ∈ R : each Aii ∈ SL(mi,C)} ∼=
∏̀
i=1

SL(mi,C).

(v) U = {A ∈ P : Ai,i = Imi for all 1 ≤ i ≤ `}.

The 1PS λ grades the unipotent radical U . Let H := U oR′ ⊂ P and Ĥ := HoT =

U o (R′ × T ). There are surjections R′ → R/T and H → P/T , both with finite kernels.

Forming quotients by the actions of these finite kernels can always be done, by Lemma

2.2.11. As such, the problem of forming a categorical (resp. good, geometric) quotient

of an action by P is equivalent to that of forming a categorical (resp. good, geometric)

quotient by an action of Ĥ.

Following [66, Definition 4.6], we introduce the following notation.

(vi) For each 1 ≤ i < `, set m>i =
∑

j>imj , m≤i =
∑

j≤imj ,

β>i =

∑
j>i βjmj

m>i
and β≤i =

∑
j≤i βjmj

m≤i
.

We define 1PS λ(i) and λ[i] of T = Z(R) by setting

λ(i)(t) := diag(tβ1Im1 , . . . , t
βiImi , t

β>iIm>i), λ[i](t) = diag(tβ≤iIm≤i , t
β>iIm>i).

(vii) Let U [i] be the unipotent radical of the parabolic P [i] := P (λ[i]) ⊃ P :

U [i] = {A ∈ U : for all p < q,Ap,q = 0 if q ≤ i or p > i}.

This is graded by the 1PS λ[i] and is normal in P . For i ≥ 2, we also set U [i−1,i] =

U [i−1] ∩ U [i].

(viii) Let U (i) be the unipotent radical of the parabolic P (λ(i)) ⊃ P ; this is graded by

the 1PS λ(i) and is normal in P .
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(ix) Let P (i) := U (i) oR(i) ⊂ P , where

R(i) =

{
{A ∈ L : Aj,j = Imj if j > i} if i < `− 1,

R if i = `− 1.

We denote the successive quotients by Li := L(i)/L(i−1), Ui := U (i)/U (i−1) and

Pi := P (i)/P (i−1).

(x) Let H(i) := U (i) oR
′(i) ⊂ P (i), where

R
′(i) =

{
{A ∈ R′ : Aj,j = Imj if j > i} if i < `− 1,

R′ if i = `− 1.

Let R′i := R
′(i)/R

′(i−1) and Hi := H(i)/H(i−1) = Ui oR′i.

(xi) Let T (i) =
∏
j≤i λ

(j)(Gm) =
∏
j≤i λ

[j](Gm) ⊂ T , and set Ĥ(i) := H(i) o T (i).

(xii) For each j ≤ i let λ
[i]
j be the 1PS of length 2 given by the composition

λ
[i]
j : Gm P P/P (j−1),λ[i]

Note that λ[i] = λ
[i]
1 for all i.

(xiii) As a special case of the above, set λi = λ
[i]
i for each i. The associated parabolic

P (λi) has unipotent radical isomorphic to Ui, and λi grades Ui. Let Ĥi :=

Ĥ(i)/Ĥ(i−1) ∼= Hi o λi(Gm) = Ui o (R′i × λi(Gm)).

Suppose Xi is a projective scheme acted on by Ĥi with a very ample linearisation Li.

The group Ĥi has a one-dimensional character group, which is generated by a character

χi dual to the 1PS λi = λ
[i]
i grading the unipotent radical Ui of Ĥi. Twisting Li by

some multiple εiχi of χi corresponds to shifting the λi(Gm)-weights each by εi. As such,

by twisting Li by εiχi for suitable εi, we can always ensure that Li is (well) adapted;

twisting by such a character does not alter the loci Xi(λi)
0
min nor Z(Xi, λi)min.

3.3.2 Non-Reductive Quotienting-in-Stages

We now present the quotienting-in-stages construction of Hoskins–Jackson, concern-

ing the formation of non-reductive quotients of projective schemes X acted on by the

parabolic subgroup P ⊂ SL(V ) with respect to very ample P -linearisations. We quotient
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out the groups Ĥi turn-by-turn by applying the Û -Theorem at each stage, arriving at a

quotient of an open subscheme of X by the whole parabolic group P at the end. The pre-

sented construction closely follows [66, Construction 4.20]. However, unlike in loc. cit.,

which utilises Theorems 3.2.5 and 3.2.6, the version of the Û -Theorem we apply at each

stage is Theorem 3.2.9. Construction 3.3.1 is the version of the quotienting-in-stages

construction that will be required in Chapter 7.

Construction 3.3.1 ([66], Construction 4.20). Base step: Let X = X1 be a projective

scheme acted on by P with respect to a very ample P -linearisation L = L1. Viewing L

as a Ĥ1-linearisation, by twisting L1 by a suitable multiple ε1χ1 of χi if necessary, we

may ensure that L1 is adapted.

Assuming we can apply Theorem 3.2.9 to the action Ĥ1 � X1, in other words assum-

ing that (X1)Ĥ1−vs
min is non-empty, there exists a geometric Ĥ1-quotient q1 : (X1)Ĥ1−vs

min →
(X1)Ĥ1−vs

min /Ĥ1, together with a locally closed immersion of schemes (X1)Ĥ1−vs
min /Ĥ1 ⊂

P((H0(X1, L
s1
1 )Ĥ1)∨) for some integer s1 > 0, with the quotient being induced by the

projection P(H0(X1, L
s1
1 )∨) 99K P((H0(X1, L

s1
1 )Ĥ1)∨). We set X2 to be the closure of

(X1)Ĥ1−vs
min /Ĥ1 in P((H0(X1, L

s1
1 )Ĥ1)∨), and set L2 to be the very ample linearisation for

the residual action of P/Ĥ(1) = P/Ĥ1 obtained by restricting the O(1) of the projective

space P((H0(X1, L
s1
1 )Ĥ1)∨).

Induction step: Suppose i < ` − 1, and suppose we have constructed successive

quotients qj of the form

(Xj)
Ĥj−vs
min (Xj)

Ĥj−vs
min /Ĥj

Xj Xj+1

P(H0(Xj , L
sj
j )∨) P((H0(Xj , L

sj
j )Ĥj )∨)

qj

◦ ◦

p p

qj

H0(Xj ,L
sj
j )Ĥj⊂H0(Xj ,L

sj
j )

for each j = 1, . . . , i, where the top horizontal arrow is a geometric Ĥj-quotient, where

Xj+1 is the closure of the locally closed subscheme

(Xj)
Ĥj−vs
min /Ĥj ⊂ P((H0(Xj , L

sj
j )Ĥj )∨),
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and where each Xj is endowed with the very ample linearisation Lj obtained by restrict-

ing the O(1) of P((H0(Xj−1, L
sj−1

j−1 )Ĥj−1)∨) to Xj , twisted by a suitable character.

The very ample invertible sheaf Li+1 on the projective scheme Xi+1 carries a lineari-

sation for a residual action of P/Ĥ(i), and in particular for Ĥi+1. By twisting Li+1 by

a character of Ĥi+1 of the form εi+1χi+1, we can ensure that this Ĥi+1-linearisation is

adapted. Assuming once again that we can apply Theorem 3.2.9, we obtain, for some

integer si+1 > 0, a diagram of the form

(Xi+1)
Ĥi+1−vs
min (Xi+1)

Ĥi+1−vs
min /Ĥi+1

Xi+1 Xi+2

P(H0(Xi+1, L
si+1

i+1 )∨) P((H0(Xi+1, L
si+1

i+1 )Ĥi+1)∨)

qi+1

◦ ◦

p p

qi+1

H0(Xi+1,L
si+1
i+1 )Ĥi+1⊂H0(Xi+1,L

si+1
i+1 )

where the top horizontal arrow is a geometric Ĥi+1-quotient and whereXi+2 is the closure

of the locally closed subscheme (Xi+1)
Ĥi+1−vs
min /Ĥi+1 ⊂ P((H0(Xi+1, L

si+1

i+1 )Ĥi+1)∨). If

i < `− 2, we define Li+2 to be the restriction of the O(1) of P((H0(Xi+1, L
si+1

i+1 )Ĥi+1)∨)

to Xi+2. The induction step of Construction 3.3.1 is complete. �

Assuming that Theorem 3.2.9 can always be applied at each stage, that is assuming

that (Xi)
Ĥi−vs
min 6= ∅ for all i = 1, . . . , `−1, after `−1 stages Construction 3.3.1 terminates,

yielding a diagram of the form

X1 X2 · · · X`−1 X`

(X1)Ĥ1−vs
min (X2)Ĥ2−vs

min · · · (X`−1)
Ĥ`−1−vs
min

◦ ◦ ◦

q1 q2 q`−2 q`−1

q`−1q2q1

where for each i the restriction qi : (Xi)
Ĥi−vs
min → qi((Xi)

Ĥi−vs
min ) = (Xi)

Ĥi−vs
min /Ĥi is a

geometric Ĥi-quotient. For each i = 1, . . . , `− 1, set

q(i) := qi ◦ qi−1 ◦ · · · ◦ q1 : X1 99K Xi+1.
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We inductively define open subschemes X(i) ⊂ X = X1 for i = 1, . . . , ` − 1 by setting

X(1) := (X1)Ĥ1−vs
min and setting for i > 1

X(i) := X(i−1) ∩ q−1
(i−1)((Xi)

Ĥi−vs
min ).

Then, for each i, the morphism q(i) : X(i) → q(i)(X(i)) = X(i)/Ĥ
(i) ⊂ Xi+1 is a well-

defined geometric Ĥ(i)-quotient. In particular, q(`−1) : X(`−1) → q(`−1)(X(`−1)) =

X(`−1)/Ĥ ⊂ X` is a quasi-projective geometric quotient for the action of the group

Ĥ.

Proposition 3.3.2. Assume that Theorem 3.2.9 can be carried out at each stage of Con-

struction 3.3.1. Then Construction 3.3.1 yields a non-empty invariant open subscheme

X(`−1) of X which admits a quasi-projective geometric quotient by P .

Proof. Recall that we have surjections R′ → R/T and H → P/T , both with finite

kernels. Since Lemma 2.2.11 can be used to form quotients by the residual actions of

these finite kernels, the existence of a quasi-projective geometric quotient of X(`−1) by

the action of Ĥ implies the existence of a quasi-projective geometric quotient of X(`−1)

by the action of P .

Remark. By [66, Proposition 4.27] there exists a (rational) character χ of P with the

property that, if Lχ is the twist of the very ample P -linearisation L by χ, then Lχ is

adapted, and at each stage of Construction 3.3.1 the linearisations (Lχ)i are adapted

without further twisting.

Remark. If the so-called quotienting-in-stages assumption (Assumption 4.29 of loc. cit.)

holds, it is possible to write down an explicit invariant open subscheme XP−qs (cf.

Definition 4.11 of loc. cit.) of X for which non-reductive quotienting-in-stages produces

a quasi-projective geometric quotient. Without this assumption, the open subscheme

XP−ps is no-longer guaranteed to be contained in the domain of the quotient morphism

resulting from implementing Construction 3.3.1 or Construction 4.20 of loc. cit.
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Chapter 4

Moduli Spaces of Coherent
Sheaves

In this chapter we review results relating to coherent sheaves and their moduli which

are required in this thesis. We first recall the notion of Gieseker stability for coherent

sheaves on a polarised projective scheme (X,OX(1)), and then outline the GIT con-

struction of the projective moduli space of Gieseker semistable sheaves on (X,OX(1)),

due to Simpson. Next, we recall the notion of Harder–Narasimhan filtrations of unstable

sheaves and of Harder–Narasimhan stratifications, and state results of Hoskins–Kirwan

and Hoskins concerning how such stratifications relate to HKKN stratifications coming

from Simpson’s construction. We also review the notion of multi-Gieseker stability, due

to Greb–Ross–Toma, in advance of Chapter 6.

A standard reference for the theory of Gieseker semistable sheaves and their moduli

is the book [69] of Huybrechts and Lehn.

4.1 Gieseker Stability for Coherent Sheaves

Let X be a projective scheme, and let OX(1) be an ample invertible sheaf on X. For any

coherent sheaf F on X with d = dim suppF , the Hilbert polynomial of F with respect

to X is of the form

P (F, t) = POX(1)(F, t) := χ(X,F (t)) =
d∑
i=0

αi(F ) · t
i

i!

for integers αi(F ).
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Definition 4.1.1. The reduced Hilbert polynomial of F with respect to OX(1) is the

polynomial

p(F, t) = pOX(1)(F, t) :=
P (F, t)

αd(F )
∈ Q[t].

Let ≺ be the total ordering on monic polynomials in Q[t] defined by f ≺ g if and

only if deg f > deg g,1 or deg f = deg g and f(m) < g(m) for all m� 0.

Definition 4.1.2. A coherent sheaf F on X is said to be Gieseker semistable (with

respect to OX(1)) if for all non-trivial subsheaves G ⊂ F , p(G, t) � p(F, t). F is said to

be Gieseker stable if F is Gieseker semistable and for all proper non-trivial subsheaves

G ⊂ F , p(G, t) ≺ p(F, t). F is said to be Gieseker polystable if F is Gieseker semistable

and is isomorphic to a direct sum of Gieseker stable sheaves.

Remark. If F is a Gieseker semistable sheaf on X, it follows as a straightforward conse-

quence of Definition 4.1.2 that F is necessarily pure, i.e. for all all non-zero subsheaves

G ⊂ F , dim suppG = dim suppF .

Remark. Let F be a coherent sheaf of pure dimension d. By [69, Proposition 1.2.6], in

order to check for the Gieseker (semi)stability of F , it is enough to consider saturated

subsheaves, i.e. subsheaves G ⊂ F for which the quotient F/G is 0 or pure of dimension d.

The Gieseker (semi)stability of F can also be characterised in terms of proper quotients

F → G→ 0 with G of pure dimension d; F is Gieseker (semi)stable if and only if for all

such quotients, one has p(F, t) ≺ (�) p(G, t).

Remark. The condition of being Gieseker stable (resp. semistable) is open in flat families

(cf. Proposition 2.3.1 of loc. cit.); that is, if F is an B-flat, B-finitely presented coherent

sheaf over a projective B-scheme X endowed with a relatively ample invertible sheaf

OX(1), then the locus of geometric points b ∈ B such that Fb is Gieseker stable (resp.

semistable) with respect to OXb(1) is an open subscheme of B.

Example 4.1.3. Suppose F is a locally free sheaf on a smooth projective curve C of

rank r and degree d. Then for any choice of ample invertible sheaf on C, one has

p(F, t) = µ(F ) + t, µ(F ) =
d

r
.

As such, F is Gieseker (semi)stable if and only if F is (Mumford) slope (semi)stable,

that is µ(G) < (≤) µ(F ) for all proper non-trivial (locally free) subsheaves G ⊂ F . �

1Note the change of direction in the inequality!
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Every semistable sheaf on X admits a canonical filtration; this filtration plays a role

in determining which sheaves correspond to a given point in the moduli space of all

Gieseker semistable sheaves on X.

Proposition/Definition 4.1.4 ([69], Proposition 1.5.2). Let F be a Gieseker semistable

sheaf on X with respect to a given ample invertible sheaf OX(1). Then there exists a

filtration

0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F ` = F

of F , known as a Jordan–Hölder filtration of F , with the property that each subquotient

Fi := F i/F i−1 is Gieseker stable and has the same reduced Hilbert polynomial as F . Up

to isomorphism, the Jordan–Hölder associated graded sheaf of F , namely the sheaf

grJH(F ) :=
⊕
i

Fi,

does not depend on the choice of Jordan–Hölder filtration.

Definition 4.1.5. Let F,G be semistable coherent sheaves on X. F and G are said to

be S-equivalent if grJH(F ) ∼= grJH(G).

Remark. The Jordan–Hölder filtration of a stable sheaf F is the trivial filtration 0 ⊂ F ;

as such, up to isomorphism the only coherent sheaf which is S-equivalent to F is F

itself. More generally, two polystable sheaves are S-equivalent if and only if they are

isomorphic.

One further property of Gieseker stable sheaves is that they are so-called simple

coherent sheaves.

Definition 4.1.6. A coherent sheaf F on a projective scheme X is said to be simple if

EndX(F ) = C.

Remark. As with Gieseker (semi)stability, the condition of being simple is open in flat

families (cf. Proposition 2.3.1 of loc. cit.).

Proposition 4.1.7 ([69], Corollary 1.2.8). Let F be a Gieseker stable sheaf on a pro-

jective scheme X. Then F is simple.
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4.2 Moduli of Gieseker Semistable Sheaves on a Projective
Scheme

4.2.1 Families of Semistable Sheaves

Let f : X → B be a projective morphism (of finite type), where B is a fixed base scheme.

Let OX(1) be a relatively ample invertible sheaf on X.

Definition 4.2.1. Let T be a B-scheme. A family of Gieseker (semi)stable sheaves

parametrised by T is a T -flat, T -finitely presented coherent sheaf F over XT = X ×B T
such that for each geometric point t ∈ T , the sheaf Ft ∈ Coh(Xt) is Gieseker (semi)stable

with respect to OXt(1) = OX(1)|Xt.

Definition 4.2.2. Fix a polynomial P (t) ∈ Q[t] of degree d. Define moduli functors

M(s)s =M(s)s
X/B(OX(1), P ) : Schop

B → Set

by associating to a B-scheme T the set of all isomorphism classes of families of Gieseker

(semi)stable sheaves parametrised by T with Hilbert polynomial P .

The existence of moduli schemes corepresenting the functors M(s)s was first proved

by Simpson [124], making use of reductive GIT.

Theorem 4.2.3 (Simpson). Assume that the base scheme B is of finite type. The

moduli functor Mss is universally corepresented by a scheme M ss = M ss
X/B(OX(1), P )

which is projective over B. There exists an open subscheme M s = M s
X/B(OX(1), P ) of

M ss which universally corepresents the moduli functor Ms. Moreover:

1. The points of M ss over a geometric point b ∈ B are in bijection with the set of

S-equivalence classes of Gieseker semistable sheaves on Xb with Hilbert polynomial

P , and the points of M s over a geometric point b ∈ B are in bijection with the set

of isomorphism classes of Gieseker stable sheaves on Xb with Hilbert polynomial

P .

2. Locally in the étale topology on M s, the fibre product X ×BM s admits a universal

sheaf.
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4.2.2 An Outline of Simpson’s Construction

Here we give an outline of how M ss is constructed using GIT, as we will make use of

this construction both in Chapter 6 and later on in this chapter, when discussing moduli

of unstable sheaves. Proofs for the results stated in this subsection can be found in loc.

cit., as well as in Huybrechts–Lehn [69].

Let f : X → B be a projective morphism, where B is a finite type base scheme,

and fix a choice of a relatively ample invertible sheaf OX(1) on X. Fix a polynomial

P ∈ Q[t]. A key result required for Simpson’s construction is that the collection of all

Gieseker semistable coherent sheaves F on Xb with Hilbert polynomial P , taken across

all geometric fibres Xb of f , forms a bounded family, in the sense that there exists a

scheme B′ of finite type over B and a coherent sheaf E over XB′ , such that each such

sheaf F appears as a fibre of E over a geometric fibre of fB′ .

For a natural number N , let VN = CP (N), and let QN = QuotX/B(VN⊗OX(−N), P )

be the relative Grothendieck Quot scheme parametrising quotients of VN⊗OX(−N) with

Hilbert polynomial P . Let

VN ⊗OXQN (−N)→ UN → 0

be the universal quotient over XQN = X ×B QN .

The group GL(VN ) acts naturally on QN via composition:2 for g ∈ GL(VN ) and

[VN ⊗OXb(−N)
q→ F → 0] ∈ QN ,

g · [VN ⊗OXb(−N)
q→ F → 0] := [VN ⊗OXb(−N)

q◦(g−1⊗id)→ F → 0].

This action factors through the quotient PGL(VN ) of GL(VN ). In addition, the structure

morphism QN → B is GL(VN )-invariant.

Denote byRN the open subscheme ofQN consisting of all quotients [VN⊗OXb(−N)→
F → 0] where F is Gieseker semistable and where the map VN → H0(Xb, F (N)), ob-

tained by twisting the given morphism VN ⊗ OXb(−N) → F by OXb(N) and taking

global sections, is an isomorphism; let RsN be the open subscheme of RN where F is

Gieseker stable. The subschemes RsN ⊂ RN are invariant with respect to the action

of the subgroup GN := SL(VN ) ⊂ GL(VN ) on QN . Let RN denote the closure of RN

in QN . Fixing N , for all sufficiently large positive integers M � N , we have that

2Observe that this action factors through the quotient PGL(VN ) of GN .
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LN,M := det((fQN )∗(UN (M))) is a relatively very ample invertible sheaf on QN (and

hence on the closed subscheme RN ), which is naturally linearised with respect to the

GN -action on QN (resp. RN ).

By combining the boundedness of the collection of all semistable sheaves over all

geometric fibres Xb with Grothendieck’s results on cohomology and base change [57],

there exists a positive integer N0 such that for all N ≥ N0, for all B-schemes T and for

all T -flat, T -finitely presented coherent sheaves F on XT whose fibres over geometric

points t ∈ T are Gieseker semistable coherent sheaves with Hilbert polynomial P , the

following statements hold:

(i) for each t ∈ T , the sheaf Ft is N -regular: H i(Xt, Ft(N − i)) = 0 for all i > 0;

(ii) the higher derived pushforwards Ri(fT )∗(F (N)) for i > 0 are all zero;

(iii) the sheaf (fT )∗(F (N)) is locally free of rank P (N) and is compatible with base

change; and

(iv) the sheaf F (N) is generated by its global sections, i.e. the natural morphism

(fT )∗(fT )∗(F (N))→ F (N)→ 0

is surjective.

Taking T = SpecC → B to be a geometric point b ∈ B, we have (fT )∗(F (N)) =

H0(Xb, F (N)); twisting the surjection (fT )∗(fT )∗(F (N)) → F (N) → 0 by OXb(−N)

then yields a surjection

H0(Xb, F (N))⊗OXb(−N)→ F → 0.

By choosing an isomorphism VN = CP (N) ∼= H0(Xb, F (N)), we obtain a GN -orbit of

points in RN ⊂ QN = QuotX/B(VN ⊗ OX(−N), P ) which corresponds to the sheaf

F . Two sheaves F, F ′ are isomorphic if and only if they lie in the same GN -orbit of

RN . Moreover, the scheme RN , together with the restriction of the universal quotient

to the open subscheme XRN ⊂ XQN , has the local universal property for the functor

Mss. Invoking Proposition 2.3.3, it follows that a categorical quotient of RN by GN

corepresents the moduli functor Mss.
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Proposition 4.2.4 (cf. [69], Lemma 4.3.1). If RN → M ss (resp. RsN → M s) is a

universal categorical quotient for the action of GN on RN (resp. RsN ) then M ss (resp.

M s) universally corepresents the moduli functor Mss (resp. Ms).

The existence of categorical quotients of RsN ⊂ RN is given by reductive GIT.

Theorem 4.2.5 (Simpson, [124]). Fix a positive integer N ≥ N0, and in turn fix a

sufficiently large positive integer M . Then for the action of GN on RN , one has equalities

R
ss
N (LN,M/B) = RN , R

s
N (LN,M/B) = RsN .

Moreover:

1. The good quotient RN //LN,M GN = RN // GN universally corepresents Mss, and

the open subscheme RsN/GN ⊂ RN //LN,M GN given by the geometric quotient of

the (relative) GIT stable locus universally corepresents Ms; in particular, M ss =

RN //LN,M GN and M s = RsN/GN .

2. The closures of the orbits of points [VN ⊗ OXb(−N) → F → 0] and [VN ⊗
OXb′ (−N) → G → 0] in RN coincide if and only if b = b′ and if F , G are

S-equivalent coherent sheaves over Xb.

3. The orbit of a point [VN ⊗OXb(−N)→ F → 0] is GIT polystable if and only if F

is a polystable sheaf.

4.2.3 Moduli Stacks of Semistable Sheaves

Continue to assume that the base scheme B is of finite type. Let CohX/B be the al-

gebraic stack parametrising all flat, finitely presented families of coherent sheaves on

X/B (cf. [127, Tag 08KA]). There is an open and closed substack CohX/B(OX(1), P ) ⊂
CohX/B parametrising those subsheaves which have Hilbert polynomial P with respect

to the choice of relatively ample invertible sheaf OX(1). In turn, by the openness of

Gieseker (semi)stability in flat families there are open substacks CohsX/B(OX(1), P ) ⊂
CohssX/B(OX(1), P ) ⊂ CohX/B(OX(1), P ) parametrising those sheaves which are (fibre-

wise) Gieseker (semi)stable with respect to OX(1).

There are natural morphismsRN → CohssX/B(OX(1), P ) andRsN → CohsX/B(OX(1), P )

obtained by associating to a quotient in RN the underlying coherent sheaf.
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Proposition 4.2.6. Let RN and M (s)s be as in the statement of Theorem 4.2.5.

1. There are isomorphisms of algebraic stacks

CohssX/B(OX(1), P ) ∼= [RN/GL(VN )], CohsX/B(OX(1), P ) ∼= [RsN/GL(VN )].

2. The moduli space M ss is a good moduli space for the stack CohssX/B(OX(1), P ), and

M s is a tame moduli space for CohsX/B(OX(1), P ).

Proof. By the same arguments given in the proof of [81, Théorème 4.6.2.1], the morphism

RN → CohssX/B(OX(1), P ) is a surjective smooth morphism which is a GL(VN )-torsor;

this yields an isomorphism CohssX/B(OX(1), P ) ∼= [RN/GL(VN )]. This isomorphism re-

stricts to give an isomorphism CohsX/B(OX(1), P ) ∼= [RsN/GL(VN )].

Since GL(VN ) acts on RN through the quotient PGL(VN ), there are equalities of

good quotients

RN // GL(VN ) = RN // GN and RsN // GL(VN ) = RsN // GN .

As such, the second statement follows from Proposition 2.3.6.

4.3 Harder–Narasimhan Theory for Coherent Sheaves

4.3.1 Harder–Narasimhan Filtrations and Stratifications

The natural measure of instability for coherent sheaves is recorded via the Harder–

Narasimhan filtration. This can be used to define a discrete invariant of an unstable

sheaf, the Harder–Narasimhan type.

Proposition/Definition 4.3.1. Let F be a coherent sheaf on X. Then there exists a

unique filtration

0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F ` = F

of F , known as the Harder–Narasimhan filtration of F , with the property that the sub-

quotients Fi := F i/F i−1 are Gieseker semistable with strictly decreasing reduced Hilbert

polynomials pi(t) = p(Fi, t):

p1 � p2 � · · · � p`.

The Harder–Narasimhan associated graded sheaf of F is the sheaf

grHN(F ) :=
⊕
i

Fi.
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Proof. That the Harder–Narasimhan filtration exists and is unique is proved in [115,

Corollary 28]. In the case where F is of pure dimension, a proof can also be found in

[69, Section 1.3].

Remark. The subsheaf F 1 ⊂ F is also known as the maximally destabilising subsheaf of

F .

Definition 4.3.2. Let F be a coherent sheaf on X with Harder–Narasimhan filtration

0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F ` = F.

Write Pi(t) for the Hilbert polynomial of Fi. The Harder–Narasimhan type τ = τHN(F )

of F is the tuple of Hilbert polynomials

τ = (P1, . . . , P`) ∈ Q[t]`.

We also say that F has Harder–Narasimhan length `.

Remark. Observe that a sheaf F has Harder–Narasimhan length 1 if and only if F is

Gieseker semistable.

In the case where X is projective over a base scheme B, the relative analogue of a

Harder–Narasimhan filtration is defined as follows.

Definition 4.3.3. Let f : X → B be a projective morphism, where B is a locally

Noetherian scheme, and let OX(1) be a relatively ample invertible sheaf on X. Let F be

an B-flat coherent sheaf on X, such that for each geometric point b ∈ B, the sheaf Fb

has Harder–Narasimhan type τ = (P1, . . . , P`).

A relative Harder–Narasimhan filtration of F is a filtration

0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F ` = F (4.3.1)

by coherent subsheaves of F , such that the following properties hold:

1. For each i = 1, . . . , `, the subquotient Fi = F i/F i−1 is flat over B.

2. For each geometric point b ∈ B, the restriction of the filtration (4.3.1) is the

Harder–Narasimhan filtration of Fb.
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Extending work of Shatz [123], there is the following result of Nitsure [104] (see also

[65, Theorem 5.15]) concerning the existence of stratifications by Harder–Narasimhan

type.3

Proposition 4.3.4 (Shatz, Nitsure). Let f : X → B be a projective morphism, where

B is a locally Noetherian scheme, and let OX(1) be a relatively ample invertible sheaf

on X. Let F be a B-flat coherent sheaf on X with Hilbert polynomial P . Let

HNTP :=

{
(P1, . . . , P`) : ` ≥ 1,

∑̀
i=1

Pi = P, p1 � p2 � · · · � p`

}
⊂ lim−→̀Q[t]`

denote the set of Harder–Narasimhan types of coherent sheaves on X with Hilbert polyno-

mial P (here pi is the monic polynomial obtained by dividing Pi by its leading coefficient).

1. There exists a partial ordering ≤ on HNTP such that the map |B| → HNTP defined

by b 7→ τHN(Fb) is upper-semicontinuous. In particular, each level set

Bτ (F ) = {b ∈ B : τHN(Fb) = τ}

is a locally closed subset of the topological space |B|.

2. There exists a unique scheme structure on the topological space Bτ (F ), making

Bτ (F ) into a locally closed subscheme of B, such that Bτ (F ) has the following

universal property: any morphism T → B of schemes factors through Bτ (F ) if and

only if the pullback FT admits a relative Harder–Narasimhan filtration of Harder–

Narasimhan type τ .

3. A relative Harder–Narasimhan filtration of F , if one exists, is always unique.

4. For any morphism T → B of locally Noetherian schemes, there is a Cartesian

diagram of schemes
T τ (FT ) Bτ (F )

T B

y

3Nitsure only considers sheaves of pure dimensions, but with minor modifications his arguments carry
over to the case of considering sheaves which are not necessarily pure.
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Definition 4.3.5. The stratification

B =
⊔

τ∈HNTP

Bτ (F )

of B into the locally closed subschemes Bτ (F ) is known as the Harder–Narasimhan

stratification of B with respect to F .

4.3.2 Relating HN and HKKN Stratifications

Let f : X → B be a projective morphism, where B is a finite type base scheme, and fix

a choice of a relatively ample invertible sheaf OX(1) on X. Fix a Hilbert polynomial P .

We refer back to the notation of Subsection 4.2.2.

Associated to the universal sheaf UN on XQN is the Harder–Narasimhan stratification

QN =
⊔

τ∈HNTP

QτN , QτN := QτN (UN ).

Fix a Harder–Narasimhan type τ = (P1, . . . , P`) ∈ HNTP . Inside the Harder–Narasimhan

stratumQτN , there is an open subscheme SτN parametrising all quotients VN⊗OXb(−N)→
F → 0 for which the induced map VN

'→ H0(Xb, F (N)) is an isomorphism.

Choose a basis for the vector space VN ∼= CP (N). For a pair of natural numbers

(N,M) ∈ N2, denote by βN,M (τ) the (conjugacy class of) the rational 1PS of GN =

SL(VN ) ∼= SL(P (N),C) given by

λβN,M (τ)(t) = diag(tβ1 idP1(N), . . . , t
β` idP`(N)), βi :=

P (M)

P (N)
− Pi(M)

Pi(N)
.

Let Pτ = Uτ o Rτ ⊂ GN be the parabolic subgroup corresponding to λβN,M (τ)(t). The

1PS λβN,M (τ)(t) of GN induces a filtration

0 = V 0
N ⊂ V 1

N ⊂ · · · ⊂ V `
N = VN

of VN . Given an element [VN ⊗ OXb(−N)
q→ E → 0] of QN , set Ei = q(V i

N ) ⊂ E and

Ei = Ei/Ei−1, We then have induced quotients

(V i
N/V

i−1
N )⊗OXb(−N)→ Ei → 0.

By [69, Lemma 4.3] the limit limt→0 λβN,M (τ)(t) · [VN ⊗OXb(−N)
q→ E → 0] is given by

the direct sum of quotients[⊕̀
i=1

(
(V i
N/V

i−1
N )⊗OXb(−N)→ Ei → 0

)]
∈ QN .
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By considering the possible Hilbert polynomials of the sheaves Ei, there is an isomor-

phism of schemes

Q
λβN,M (τ)(Gm)

N
∼=

⊔
(P ′1,...,P

′
`)∈Q[t]`∑

i P
′
i=P

∏̀
i=1

QuotX/B((V i
N/V

i−1
N )⊗OX(−N), P ′i ).

Let Zssτ be the open subscheme of Q
λβN,M (τ)(Gm)

N corresponding under the above

isomorphism to the open subscheme of
∏`
i=1 QuotX/B((V i

N/V
i−1
N )⊗OX(−N), Pi) where

each of the coherent sheaves Ei is Gieseker semistable and where each of the induced

maps V i
N/V

i−1
N

'→ H0(Xb, Ei(N)) is an isomorphism. The following result of Hoskins–

Kirwan [67] and Hoskins [65] relates the Harder–Narasimhan and HKKN stratifications

of QN (see also [66, Theorem 2.8]).

Proposition 4.3.6 (Hoskins–Kirwan, Hoskins). For M � N � 0, the following state-

ments hold:

1. For any coherent sheaf F over any geometric fibre Xb with τHN(F ) = τ , F is

N -regular.

2. The GN -orbits of closed points in SτN are in bijection with isomorphism classes of

coherent sheaves F over geometric fibres Xb such that F has Harder–Narasimhan

type τ .

Moreover, when B = SpecC is a point, the following additional statements hold:

1. β := [βN,M (τ)] is an HKKN index for the GN -action on QN = QuotX(VN ⊗
OX(−N), P ) with respect to LN,M , and SτN is a closed subscheme of the corre-

sponding HKKN stratum Sβ ⊂ QN .

2. There exists a Rτ -equivariant closed immersion Zssτ ⊂ Zssβ such that if Y ss
τ :=

p−1
β (Zssτ ) ⊂ Yβ is the corresponding attractor, then

SτN = GN · Y ss
τ
∼= GN ×Pτ Y ss

τ .

3. The closed points of Y ss
τ are given by quotients VN ⊗ OX(−N) → F → 0 such

that the induced map VN
'→ H0(X,F (N)) is an isomorphism, F has Harder–

Narasimhan type τ , and the filtration

0 = V 0
N ⊂ V 1

N ⊂ · · · ⊂ V `
N = VN
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of VN = CP (N) induced by the 1PS λβN,M (τ) induces the Harder–Narasimhan filtra-

tion on F . The retraction pβ : Y ss
τ → Zssτ sends a quotient VN⊗OX(−N)→ F → 0

to the tuple whose ith entry is the quotient (V i
N/V

i−1
N )⊗OX(−N)→ Fi → 0, where

Fi = F i/F i−1 is the ith subquotient appearing in the Harder–Narasimhan filtration

of F .

4. Let P̃τ be the parabolic subgroup of GL(VN ) associated to the 1PS λβN,M (τ). Then

there are isomorphisms of algebraic stacks

CohτX ∼= [SτN/GL(VN )] ∼= [Y ss
τ /P̃τ ],

where CohτX = CohτX(OX(1), P ) is the algebraic stack parametrising all flat, finitely

presented families of coherent sheaves on X admitting a relative Harder–Narasimhan

filtration of type τ (cf. [104, Theorem 8]).

4.4 Multi-Gieseker Stability

We conclude this chapter by reviewing the notion of multi-Gieseker stability, due to

Greb–Ross–Toma [55], since we will refer to this notion in Chapter 6.

Let X be a projective scheme. Fix a stability parameter σ = (L, σ1, . . . , σk) on X;

here L is a tuple of ample invertible sheaves L1, . . . , Lk, and the σi are non-negative

rational numbers, not all zero. Given a coherent sheaf E on X of with d = dim suppE,

the multi-Hilbert polynomial of E with respect to σ is the polynomial

P σ(E, t) =

k∑
j=1

σjχ(X,E ⊗ Ltj) =

d∑
i=0

ασi (E)
ti

i!
,

and the reduced multi-Hilbert polynomial of E is

pσ(E, t) =
P σ(E, t)

ασd (E)
.

Definition 4.4.1. A coherent sheaf E on X is said to be multi-Gieseker (semi)stable4

with respect to σ if for all non-zero proper subsheaves F ⊂ E,

pσ(F, t) ≺ (�) pσ(E, t).

4Where no confusion is likely to arise, we also refer to this notion as σ-(semi)stability.
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In the case where only one σi is non-zero, we recover the usual notion of Gieseker

(semi)stability with respect to the ample invertible sheaf Li. The notions of Harder–

Narasimhan filtrations, Jordan–Hölder filtrations and S-equivalence carry over to the

multi-Gieseker setting, and multi-Gieseker (semi)stability is an open property in flat

families (cf. [55, Section 2]). If E is σ-semistable, the Jordan–Hölder associated graded

sheaf is denoted grJH
σ (E).

Following loc. cit.,5 we make the following definitions.

Definition 4.4.2. The coherent sheaf E is said to be (m,L)-regular if E is m-regular

with respect to each Lj, that is for each i > 0 we have H i(E ⊗ Lm−ij ) = 0. More

generally, if π : X → S is a projective morphism of schemes, if L = (L1, . . . ,Lk) is a

tuple of π-ample sheaves and if E is an S-flat coherent sheaf on X, we say that E is

(m,L)-regular if for all j = 1, . . . , k and for all i > 0, one has Riπ∗(E ⊗ Lm−ij ) = 0.

Definition 4.4.3. Given a coherent sheaf E over X, the topological type τ = τtop(E) of

E (with respect to L) is the tuple (P1(t), . . . , Pk(t)), where Pj(t) is the Hilbert polynomial

χ(C,E⊗Ltj) of E with respect to Lj. In the case where X is projective over a base scheme

B and we are given relatively ample invertible sheaves L = (L1, . . . ,Lk) on X, we extend

the notion of topological type to B-flat sheaves on X in the obvious way.

Definition 4.4.4. Let τ be a topological type of sheaves on X defined with respect to

ample invertible sheaves L1, . . . , Lk. The stability parameter σ = (L;σ1, . . . , σk) is said

to be

1. positive if each σi > 0;

2. degenerate if there exists some index i with σi = 0; and

3. bounded (with respect to τ) if the collection of all σ-semistable sheaves on X of

topological type τ forms a bounded family.

Remark. If E is a B-flat, (m,L)-regular sheaf over a projective B-scheme π : X → B

and if B is locally Noetherian, then for all m′ ≥ m and for all j = 1, . . . , k the sheaves

π∗(E⊗Lm
′

j ) are locally free; this follows from the cohomology and base change theorems

of Grothendieck [57] as well as basic properties of Castelnuovo–Mumford regularity.

5The definition of topological type stated above is in fact slightly different to the notion of topological
type in [55] and [56]; in these papers the topological type of a coherent sheaf is defined to be the
homological Todd class τTodd(E) ∈ B(X)Q of E (though see [55] Remark 1.5).
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As with ordinary Gieseker stability, there exist projective moduli spaces of multi-

Gieseker semistable sheaves on the projective variety X. Fix a stability parameter

σ = (L;σ1, . . . , σk) and a topological type τ defined with respect to L, and assume that

σ is positive and bounded with respect to τ . Define a moduli functor

Mσ,τ : Schop → Set

by associating to a scheme T the set of all isomorphism classes of families of σ-semistable

sheaves on X of topological type τ , parametrised by T .

Theorem 4.4.5 (Greb–Ross–Toma, [55]). The moduli functorMσ,τ is universally corep-

resented by a projective scheme Mσ,τ . Moreover, the points of Mσ,τ are in bijection with

the set of S-equivalence classes of σ-semistable coherent sheaves on X of topological type

τ .

The GIT construction of the moduli space Mσ,τ is presented in Chapter 6, together

with an extension of the construction to the relative setting.
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Chapter 5

Compactified Jacobians of
Reduced Curves

In this chapter, the final preliminary chapter of this thesis, we provide a review of the

aspects of the theory of compactified Jacobians of a reduced connected projective curve

C required for Chapters 6 and 8. Compactified Jacobians are moduli spaces of coherent

sheaves on C, closely related to the moduli spaces considered in Chapter 4. As well

as presenting existing results concerning the existence of compactified Jacobians and

some of their basic properties, we also prove an Ext2-vanishing result (Lemma 5.1.9) for

torsion-free sheaves on reduced curves with locally planar singularities, which is needed

for the proof of the main result of Chapter 8.

A good survey of the theory of fine compactified Jacobians of a reduced projective

curve can be found in the paper [91] of Melo–Rapagnetta–Viviani.

5.1 Rank 1 Sheaves on Singular Curves

5.1.1 Jacobians of Singular Curves

Let C be a connected smooth projective curve. It is a standard result (see for instance

[94]) that the set of isomorphism classes of degree 0 invertible sheaves, endowed with the

tensor product, is a complete principally polarised abelian variety Pic0(C), the Picard

variety or the Jacobian of C. Moreover, C×Pic0(C) carries a universal invertible sheaf,

also known as a Poincaré sheaf, making Pic0(C) a fine moduli space for the moduli

problem of classifying degree 0 invertible sheaves on C up to isomorphism. For each

integer d, there is a complete fine moduli space Picd(C) known as the degree d Picard
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variety of C, which parametrises isomorphism classes of degree d invertible sheaves on

C; Picd(C) is a torsor for the Jacobian Pic0(C).

If C is an integral projective curve, no longer assumed to be smooth, the set Picd(C)

of isomorphism classes of degree d invertible sheaves admits a natural scheme structure,

however the scheme Picd(C) is no longer necessarily complete.1 More generally, in the

case where C is a reduced, connected projective curve which is reducible, the space

Picd(C) of isomorphism classes of invertible sheaves of multidegree d is a scheme, once

again not necessarily complete. The theory of compactified Jacobians concerns the

problem of compactifying Picd(C) in such a way that the compactification is itself a

moduli space of coherent sheaves on C.

5.1.2 Torsion-Free Sheaves on Curves

Compactified Jacobians are obtained by widening the class of sheaves being parametrised

to include torsion-free sheaves of uniform rank 1.

Proposition 5.1.1. Let F be a non-zero coherent sheaf on a connected reduced projective

curve C. Then the following are equivalent:

1. F is a torsion-free sheaf, in the sense that for each p ∈ C, no regular element of

mC,p is a zero divisor of Fp.

2. The sheaf F is pure of dimension 1, i.e. for all non-zero subsheaves G ⊂ F ,

dim suppG = 1.

3. F satisfies the Serre condition S1; that is, for each closed point p ∈ C we have

depthOC,p(Fp) = 1.

Though Proposition 5.1.1 is a standard result, we provide a short proof for lack of a

suitable reference. This proof requires the following lemma.

Lemma/Definition 5.1.2 ([122], Septième Partie, Lemme 3). Let F be a coherent

sheaf on a connected reduced projective curve C. Then there exists a unique subsheaf

T ⊂ F , concentrated at a finite number of points of C, such that F/T is torsion-free.

If G ⊂ F is any subsheaf with dim suppG = 0 then G ⊂ T . T is known as the torsion

subsheaf of F .
1For example, if C is the nodal cubic then Pic0(C) ∼= Gm; this isomorphism arises from the choice of

an isomorphism of C-vector spaces OP1 |0
'→ OP1 |∞.
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Proof of Proposition 5.1.1. (1) ⇐⇒ (2): By Lemma/Definition 5.1.2, the sheaf F is

torsion-free if and only if the torsion subsheaf T of F is zero, if and only if F has no

non-zero subsheaves G ⊂ F with dim suppG = 0, if and only if F is pure of dimension

1.

(2) ⇐⇒ (3): Take a closed point p ∈ C. Since dimOC,p = 1, the depth of Fp as an

OC,p-module can either be 0 or 1. We have

depthOC,p(Fp) = 0 ⇐⇒ HomOC,p(κ(p), Fp) 6= 0 ⇐⇒ p ∈ Ass(F ).

On the other hand, F is of pure dimension 1 if and only if the only associated points of

F are of dimension 1.

Remark. From now on, we refer to any coherent sheaf on C satisfying the equivalent

statements of Proposition 5.1.1 as being torsion-free.

Remark. Over the smooth locus of C, a torsion-free sheaf is locally free; this follows

from the fact that any finite torsion-free module over a discrete valuation ring (or more

generally a PID) is free. Conversely, a locally free sheaf on C is torsion-free.

Definition 5.1.3. Let F be a torsion-free sheaf on a connected reduced projective curve

C, and let C1, . . . , Ck denote the irreducible components of C. Let ξi be the generic point

of Ci. The multirank of F is the tuple (r1, . . . , rk), where ri = ri(F ) = rankOC,ξiFξi is

the rank of the locally free OC,ξi-module Fξi. We say that F has uniform rank r if the

multirank of F is (r, . . . , r).

Definition 5.1.4. Suppose D ⊂ C is a (not necessarily connected) subcurve of C and

F is a torsion-free sheaf on C. We denote by FD the maximal torsion-free quotient of

F |D = F ⊗OC OD.

If F is of uniform rank 1 then the sheaf FD may be understood as the unique quotient

of F which has support D and is torsion-free along D.

Lemma 5.1.5. Let F be a torsion-free sheaf on a connected reduced projective curve

C of uniform rank 1. Then the non-zero torsion-free quotients of F are precisely the

sheaves FD, for D ⊂ C a subcurve of C.
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Proof. Let F → G → 0 be a torsion-free quotient of F , and let D be the support of

G. By restricting to D, we have a quotient F |D → G→ 0. Since G is torsion-free, this

map must factor through the quotient FD of F |D, yielding a quotient FD → G → 0.

At any generic point ξ of D, the induced map Fξ → Gξ on stalks is an isomorphism,

since a surjection of invertible sheaves is an isomorphism. It follows that the kernel

K of FD → G cannot be supported along a dimension 1 subscheme of D; since FD is

torsion-free, this forces K = 0, whence the map FD → G is an isomorphism.

Definition 5.1.6. Let F be a torsion-free coherent sheaf on C of uniform rank r.

1. The degree of F is defined by degF := χ(F )− rχ(OC).

2. More generally, if D ⊂ C is a subcurve, we define degD F := χ(FD)− rχ(OD).

3. If C1, . . . , Ck are the irreducible components of C, the multidegree of F is the tuple

(d1, . . . , dk), where di = di(F ) = degCi F .

We collect some more results on torsion-free sheaves on a connected reduced projec-

tive curve C that we will need later on in this thesis.

Lemma 5.1.7 ([48], Proposition 1 and Lemma 2). Let F be a torsion-free uniform rank

1 sheaf on C.

1. F is simple if and only if there do not exist subcurves D,D′ ⊂ C such that D

and D′ share no common irreducible components, D ∪D′ = C and such that the

canonical injection F → FD ⊕ FD′ is an isomorphism.

2. Suppose D,D′ are non-empty subcurves with D∪D′ = C, which share at least one

common irreducible component. If FD and FD′ are both simple, then F is simple.

3. Suppose F fits into an exact sequence

0 F ′ F F ′′ 0,

where F ′ and F ′′ are simple torsion-free sheaves, of uniform rank 1 along their

respective supports D and D′ with C = D ∪ D′. Then F is simple if and only if

the sequence is not split.
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Lemma 5.1.8. Suppose D,D′ are subcurves of C with D,D′ sharing no common irre-

ducible components. Let F , F ′ be coherent sheaves supported on D,D′ respectively, with

F ′ torsion-free. Then HomC(F, F ′) = 0.

Proof. It suffices to show that HomOC,p(Fp, F
′
p) = 0 for all p ∈ D ∩ D′. Fixing p, any

homomorphism Fp → F ′p of OC,p-modules must factor through M = Fp/mD,pFp, since

mD,p · F ′p = 0. But mC,p ·M = 0, so supp(M) ⊂ {mC,p} is 0-dimensional or empty. As

F ′p has depth 1 as an OC,p-module, this implies HomOC,p(M,F ′p) = 0. This proves the

lemma.

Lemma 5.1.9. Let D,D′ be subcurves of C such that D and D′ share no common irre-

ducible components. Let F, F ′ be torsion-free sheaves supported along D,D′ respectively.

Assume further that for each p ∈ D ∩D′, the point p ∈ C is a locally planar singularity.

Then Ext2
C(F, F ′) = 0.

Proof. We have Hp(C, ExtqC(F, F ′)) = 0 for all p ≥ 2 and q ≥ 0 as dimC = 1. We also

have H1(C, Ext1C(F, F ′)) = 0; the latter cohomology group vanishes since Ext1C(F, F ′)

is supported along the 0-dimensional scheme D ∩D′. It follows from the local-to-global

Ext spectral sequence

Hp(C, ExtqC(F, F ′))⇒ Extp+qC (F, F ′)

that Ext2
C(F, F ′) = H0(C, Ext2C(F, F ′)). It thus suffices to show that

Ext2C(F, F ′)p = Ext2
OC,p(Fp, F

′
p) = 0

for all p ∈ D∩D′. Since this is a local problem, without loss of generality we may assume

that D ∩D′ consists of a single singularity p. Let R = OC,p, M = Fp and N = F ′p. We

begin by working on Ext2
R(M,N).

Claim 1: There exists a Grothendieck spectral sequence

Ep,q2 = ExtpR(TorRq (M,HomR(N,R)), ω)⇒ Extp+qR (M,N).

To prove the claim, we apply [114, Theorem 10.62] with A = M , B = HomR(N,R)

and C = R, noting that as R is Gorenstein and N is maximal Cohen–Macaulay (the

latter is true since both the dimension and depth of N are equal to 1 = dimR) then there

is a natural isomorphism N ∼= HomR(B,R) (cf. [26, Theorem 3.3.10]). In order to apply
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this result, we require that for any finite projective (= free, since R is local) R-module

P , ExtiR(B⊗R P,R) = 0 for all i > 0. But B⊗R P is maximal Cohen–Macaulay, so this

indeed is the case by Theorem 3.3.10 of loc. cit. As such we may apply [114, Theorem

10.62], which proves Claim 1.

Set N ′ := HomR(N,R). Each TorRq (M,HomR(N,R)) is a torsion R-module, since it

is supported only at the point p, so E0,q
2 = 0 for all q ≥ 0. We also have Ep,q2 = 0 for

all p ≥ 2, since ω has injective dimension equal to dimR = 1. As such, this spectral

sequence collapses, yielding an isomorphism

Ext2
R(M,N) ∼= Ext1

R(TorR1 (M,N ′), R).

Claim 2: The R-module TorR1 (M,N ′) is trivial.

By a result of Altman–Kleiman [78], an open neighbourhood of p ∈ C admits a

closed immersion into an open neighbourhood of a smooth surface Y . In particular,

there exists a finite local ring homomorphism S := OY,p → R = OC,p from a Noetherian

regular local ring S of dimension 2. By [24, Section 2, Proposition 8] the S-modules M

and N ′ are Cohen–Macaulay. It then follows from [121, Chapter V.B, Theorem 4] that

TorS1 (M,N ′) = 0. From the change-of-rings spectral sequence

TorRp (TorSq (M,R), N ′)⇒ TorSp+q(M,N ′)

(cf. [114, Theorem 10.71]), the module TorS1 (M,N ′) surjects onto TorR1 (M,N ′), whence

TorR1 (M,N ′) = 0. Consequently Ext2
R(M,N) = Ext2

OC,p(Fp, F
′
p) = 0, which finishes the

proof of the lemma.

5.1.3 Rank 1 Torsion-Free Sheaves on Nodal Curves

The case of greatest interest in the literature is when C is a nodal curve and when the

sheaves are torsion-free of uniform rank 1. The local structure of a torsion-free sheaf

over a node admits a simple description.

Proposition 5.1.10 ([122], Huitième Partie, Propositions 2 and 3). Let F be a torsion-

free sheaf over a connected nodal curve C, and let p ∈ C be a node.

1. If p lies on a unique irreducible component of C, then there are unique integers

a, b such that

Fp ∼= O⊕aC,p ⊕m⊕bC,p.

The rank of Fp along this component is equal to a+ b.
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2. If p lies on two irreducible components C1 and C2 of C, then there are unique

integers a, b, c such that

Fp ∼= O⊕aC,p ⊕O
⊕b
C1,p
⊕O⊕cC2,p

.

The multirank of Fp along the components C1, C2 is equal to (a+ b, a+ c).

Let C be a connected nodal curve, and fix a subset S of the set of nodes of C. From

the pair (C, S), we obtain the following nodal curves:

(i) C̃S denotes the partial normalisation of C along S, the curve obtained by normal-

ising only those nodes of C which belong to S.

(ii) ĈS denotes the partial blowup2 of C along S; this is the curve obtained from CS

by inserting a copy Ep of P1 for each node p ∈ S, with Ep attached to the rest of

ĈS at the two points of C̃S lying over p.

The curves C, C̃S and ĈS fit into the following diagram:

C̃S ĈS

C

νS πS

ιS

(5.1.1)

Here νS is the partial normalisation map, ιS is the evident inclusion and πS is the exten-

sion of νS obtained by mapping each exceptional component Ep onto the corresponding

node p ∈ S.

Using the diagram (5.1.1), it is possible to describe torsion-free sheaves of uniform

rank 1 on C in terms of invertible sheaves on the partial normalisations and the partial

blowups of C.

Proposition 5.1.11 (cf. [92], Proposition 1.14). Let S be a subset of the set of nodes of

C. Let TFS(C) be the set of all isomorphism classes of torsion-free sheaves F of uniform

rank 1 on C with {p ∈ C : Fp is not free} = S. Let Pic(ĈS)′ denote the subset of Pic(ĈS)

consisting of all invertible sheaves whose restriction to each exceptional component of ĈS

has degree −1. The diagram (5.1.1) induces a commutative diagram

Pic(C̃S) Pic(ĈS)′

TFS(C)
(νS)∗ (πS)∗

ι∗S

∼=

2This is not a blowup in the usual sense, however the terminology is by now commonplace in the
literature.
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Moreover ι∗S and (πS)∗ are surjective, and (νS)∗ is a bijection; an inverse is given by

sending F ∈ TFS(C) to the quotient of ν∗SF by its torsion subsheaf. For any subcurve

D ⊂ C and any L ∈ Pic(C̃S), we have

degD(νS)∗L = deg
D̃S

L+ |S ∩ (D \Dc)|,

where D̃S = ν−1
S (D) ⊂ C̃S is the partial normalisation of D along S∩D and Dc = C \D.

Proof. As stated, the above consists of the first and third statements of [92, Proposition

1.14]; in turn, the first statement of loc. cit. follows from [5, Lemmas 1.5 and 1.9].

5.2 Stability Conditions for Torsion-Free Uniform Rank 1
Sheaves

5.2.1 Non-Separatedness of the Moduli of Torsion-Free Sheaves

Let C be a reduced, connected, projective curve, with irreducible components C1, . . . , Ck.

If the curve C is reducible, the moduli stack of all torsion-free sheaves on C of uniform

rank 1 fails to be separated.

Example 5.2.1. Let C be a curve with subcurves D1 and D2 with C = D1 ∪D2 and

with D1, D2 sharing no common irreducible components. Let L be an invertible sheaf

on C. Let F = LD1 and G = ker(L � F ); then F ⊕ G is a torsion-free sheaf on C of

uniform rank 1, not isomorphic to L.

Let L = L ⊗C C[t] be the invertible sheaf on C × A1 with constant fibre L, and let

E be the coherent sheaf on C × A1 given by

E = G⊕
⊕
i≥1

ti · L ⊂ L.

Both L and E are flat over A1, since each of their associated points maps to the generic

point of A1, and both L and E restrict to L ⊗C C[t, t−1] away from the origin 0 ∈ A1.

However, the fibre of E over 0 is given by

E0 =
E
tE

=
G⊕ t · L⊕ t2 · L⊕ · · ·
0⊕ t ·G⊕ t2 · L⊕ · · ·

∼= F ⊕G 6∼= L = L0.

This exhibits non-separatedness of the moduli stack. �
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5.2.2 Polarisations on Reducible Curves

As with the case of forming schematic moduli spaces of coherent sheaves on projective

schemes, the solution to the lack of separatedness is to choose a stability condition and

restrict attention to those sheaves which satisfy the chosen stability condition.

Definition 5.2.2. A polarisation on C is a pair ν = (α, φ) of ordered tuples of integers

α = (α1, . . . , αk) and φ = (φ1, . . . , φk), where each αi > 0.

Given a polarisation ν = (α, φ) on C and a subcurve D ⊂ C, we denote αD =∑
Ci⊂D αi and φD =

∑
Ci⊂D φi. We also set νD = (αD, φD).

Definition 5.2.3. Let F be a torsion-free sheaf on C of uniform rank 1. Let ν = (α, φ)

be a polarisation on C. We say that F is ν-stable (resp. ν-semistable) if for all proper

non-empty subcurves D ⊂ C,

χ(F ) + φC
αC

< (resp. ≤)
χ(FD) + φD

αD
. (5.2.1)

Remark. In Definition 5.2.3, in order to check for ν-stability or ν-semistability, it suf-

fices to restrict attention to subcurves D ⊂ C for which D and Dc = C \D are both

connected.

Remark. Suppose C is Gorenstein, with dualising sheaf ωC . By the adjunction formula

for Gorenstein curves (cf. [33, Lemma 1.12]), we have

degD ωC = 2gD − 2 + kD = −2χ(OD) + kD,

where gD is the arithmetic genus of D and where kD := |D ∩Dc|. As such, Inequality

(5.2.1) may be rewritten as

degD F > (≥)
αD
αC

(
degF − degωC

2
+ φC

)
+

degD ωC
2

− φD −
kD
2
. (5.2.2)

Given invertible sheaves L and M on C with L ample, the pair (L,M) determines

a polarisation ν(L,M) by setting degCi L = αi and degCiM = φi for all i = 1, . . . , k. All

polarisations ν on C are of the form ν = ν(L,M) for such a pair (L,M). If ν = ν(L,M),

it follows from Lemma 5.1.5 and [122, Septième Partie, Corollaire 7] that a torsion-free

sheaf F on C of uniform rank 1 is ν = (α, φ)-(semi)stable if and only if F⊗M is Gieseker

(semi)stable with respect to the ample invertible sheaf L. In particular, if F is ν-stable

then F is necessarily simple.
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Remark. Our definition of a polarisation on a curve C differs to the definition commonly

used in the literature on compactified Jacobians (cf. [91, Definition 2.8]). According

to this latter definition, a polarisation on C is an ordered tuple q = (q1, . . . , qk) of

rational numbers, and a torsion-free rank 1 sheaf F on C of uniform rank 1 and of Euler

characteristic χ(F ) =
∑k

i=1 qi is said to be q-(semi)stable if χ(FD) > (≥) qD for all

non-empty proper subcurves D ⊂ C. We elect to work with polarisations as defined

in Definition 5.2.3 as in Chapter 8 we study Harder–Narasimhan filtrations of unstable

torsion-free rank 1 sheaves on curves; this requires working with stability conditions for

sheaves on C for which the Euler characteristic is not assumed to take a fixed value.

Given a polarisation ν = (α, φ), define q = qν by setting

qi =

χ+
k∑
j=1

φj

 αi∑k
j=1 αj

− φi (5.2.3)

for each i = 1, . . . , k. It is easily seen that a torsion-free sheaf F of uniform rank 1 with

χ(F ) = χ is qν-(semi)stable if and only if F is ν-(semi)stable. Conversely, given q with∑k
i=1 qi = χ, it is possible to find a polarisation ν = (α, φ) for which (5.2.3) holds (see

for instance [30, Fact 2.8]), so that q = qν ; in general the polarisation ν is not uniquely

determined.

5.2.3 Multi-Gieseker Stability for Curves

As a slight digression from the theory of compactified Jacobians, we briefly discuss how

the notion of multi-Gieseker stability (cf. Section 4.4) applies in the context of imposing

stability conditions on torsion-free sheaves on reduced connected projective curves C, in

advance of Chapter 6. Indeed, in this setting multi-Gieseker stability reduces to ordinary

Gieseker stability.

Fix a stability condition σ = (L, σ1, . . . , σs) for coherent sheaves on C as in Section

4.4, and suppose E is a torsion-free coherent sheaf on C = C1 ∪ · · · ∪ Ck of multirank

(r1, . . . , rk). By [122, Septième Partie, Corollaire 7], we have

P σ(E, t) :=

s∑
j=1

σjχ(X,E ⊗ Ltj) = χ(E)

s∑
i=1

σi + t

s∑
i=1

σi

 k∑
j=1

rj degCj Li

 . (5.2.4)
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Consequently E is σ-(semi)stable if and only if for all non-zero proper subsheaves F ⊂ E
one has

µσ(F ) < (≤) µσ(E), µσ(E) :=
χ(E)∑

i,j σirj degCj Li
. (5.2.5)

An immediate consequence of Inequality 5.2.5 is that the stability condition is unchanged

if each Li is replaced by Lpi , where p is a positive integer. This allows us to extend the

notion of σ-stability (in particular, Gieseker stability) to the case where the Li are

ample rational invertible sheaves. Moreover, σ-(semi)stability coincides with Gieseker

(semi)stability with respect to the Q-ample invertible sheaf
⊗

i L
σi
i .

Secondly, since the collection of Gieseker stable sheaves on the curve C is bounded,

the stability condition σ is always bounded.

Remark. Equation (5.2.4) implies that fixing the genus g of C and the rank r and the

degree d of a uniform rank torsion-free sheaf E on C fixes the topological type τtop(E)

of E with respect to any finite collection L1, . . . , Ls of ample invertible sheaves on C.

Conversely, given the genus g, then the degree and rank of a torsion-free coherent sheaf

E of uniform rank can be recovered from the topological type.

When C is Gorenstein and when E is of uniform rank 1, the condition of σ-stability

may be rephrased in terms of the subcurves D of C, exactly as with Inequality (5.2.2);

the sheaf E is σ-(semi)stable if and only if for all connected proper subcurves D ⊂ C,

degD E > (≥)

∑
i σi degD Li∑
i σi degLi

(
degE − degωC

2

)
+

degD ωC
2

− kD
2
.

5.3 Existence and Properties of Compactified Jacobians

5.3.1 Fine Compactified Jacobians

Given a choice of polarisation q on a reduced, connected, projective curve C, we now

introduce J
χ,ss
C (ν), the fine compactified Jacobian parametrising ν-semistable torsion-

free sheaves on C of Euler characteristic χ. In fact we will concern ourselves with a

slightly more general situation, where we have a family of curves over a base S.

Let f : C → S be a flat projective morphism over a locally Noetherian base scheme

S whose geometric fibres are connected, reduced curves.

Definition 5.3.1. We define JC/S to be the étale sheafification of the functor J∗C/S :

Schop
S → Set which associates to an S-scheme T the set of equivalence classes of T -flat,
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T -finitely presented coherent sheaves F on CT = C×S T whose fibres are simple torsion-

free sheaves of uniform rank 1, where F , F ′ are declared to be equivalent if there exists

an invertible sheaf M on T with F ∼= F ′ ⊗ f∗TM .

Remark. As a consequence of [9, Corollary 5.3], the fibrewise simplicity of F is equivalent

to the condition that for each T -scheme T ′, the natural morphism

OT ′ → (fT ′)∗HomCT ′ (FT ′ , FT ′)

is an isomorphism.

Proposition 5.3.2 ([9], Theorem 7.4 (see also [91], Fact 2.2)). JC/S is represented by an

algebraic space locally of finite type over S, also denoted JC/S. Moreover, there exists an

open sub-algebraic space JC/S ⊂ JC/S parametrising those sheaves which are invertible.

Remark. Let Cohsimp,TFR1
C/S be the open substack of the stack of coherent sheaves CohC/S

parametrising all flat, finitely presented families of simple torsion-free coherent sheaves

on C of uniform rank 1. Then there is an isomorphism

JC/S ∼= Coh
simp,TFR1
C/S ( Gm

arising from the universal property of rigidification. In particular, JC/S is the coarse

moduli space of the stack Cohsimp,TFR1
C/S .

In many cases, including when S = SpecC, the algebraic space JC/S is a schematic

fine moduli space.

Proposition 5.3.3. Assume there are sections σ1, . . . , σn : S → C of f , each fac-

toring through the S-smooth locus of C, such that for each geometric point s ∈ S,

each irreducible component of Cs is geometrically integral and contains σi(s) for some

i = 1, . . . , n.

1. (Altman–Kleiman) The étale sheafification and the Zariski sheafification of J∗C/S
coincide. Additionally, there exists a universal sheaf on the fibre product C×SJC/S,

which, up to isomorphism, is uniquely determined up to the pullback of an invertible

sheaf on JC/S.
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2. (Esteves) JC/S is a scheme. In particular, if S = SpecC then JC is always a

scheme.

In general, there exists an étale surjection S′ → S such that the base change

JC/S ×S S′ is a scheme.

Proof. See [8, Theorem 3.4] and [48, Theorem B and Corollary 52].

In the case where S = SpecC, by work of Melo–Rapagnetta–Viviani [91] it is known

that if the curve C has locally planar singularities then the scheme JC has many inter-

esting geometric properties.

Proposition 5.3.4 ([91], Theorem 2.3). Suppose C is a connected reduced curve over

SpecC with locally planar singularities. Then:

1. JC is a reduced scheme, with at worst lci singularities; and

2. JC is dense in JC , and coincides with the smooth locus of JC .

We return to working with the locally Noetherian base scheme S. Since Euler char-

acteristics are constant in flat families, there is a decomposition

JC/S =
⊔
χ∈Z

JχC/S

of JC/S into open and closed sub-algebraic spaces, where JχC/S parametrises those sheaves

of Euler characteristic χ.

Definition 5.3.5. Pick invertible sheaves L,M on C, with L relatively ample, and fix

χ ∈ Z. Let J
χ,(s)s
C/S (L,M) be the open sub-algebraic space of JχC/S parametrising those

sheaves F such that F ⊗M is fibrewise Gieseker (semi)stable with respect to L.

Proposition 5.3.6 ([48], Theorems A and C). The algebraic space J
χ,ss
C/S(L,M) is of

finite type over S. Moreover:

1. J
χ,ss
C/S(L,M) is universally closed over S, and

2. J
χ,s
C/S(L,M) is separated over S. In addition, if S is excellent (e.g. if S is locally

of finite type) then J
χ,s
C/S(L,M) is locally quasi-projective over S.
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3. In particular, if S is excellent and if J
χ,ss
C/S(L,M) = J

χ,s
C/S(L,M) then J

χ,ss
C/S(L,M)

is locally projective over S.

Remark. Esteves loc. cit. considers stability conditions on C/S defined in terms of

locally free sheaves on C; stability with respect to (L,M) can be realised as a special

case of stability with respect to an Esteves polarisation. For the purposes of this thesis,

it is enough to consider stability conditions arising from twisted Gieseker stability, as in

Definition 5.3.5.

Suppose S = SpecC; let ν = ν(L,M) be the corresponding polarisation on C, and

write J
χ,(s)s
C (ν) = J

χ,(s)s
C/ SpecC(L,M). The scheme J

χ,ss
C (ν) is known as a fine compactified

Jacobian. The open subscheme J
χ,s
C (ν) is quasi-projective; if all ν-semistable simple

sheaves on C of Euler characteristic χ are ν-stable, so that J
χ,s
C (ν) = J

χ,ss
C (ν), then

J
χ,s
C (ν) is a proper quasi-projective scheme, whence a projective scheme.

5.3.2 Coarse Compactified Jacobians

Let C be a reduced connected projective curve. Given a polarisation ν on C, one has

the so-called coarse compactified Jacobian Uχ,ssC (ν). This is a projective scheme which

corepresents the moduli functor associating to each scheme T the set of isomorphism

classes T -flat coherent sheaves on C×T whose fibres are ν-semistable torsion-free sheaves

of uniform rank 1 with Euler characteristic χ; that Uχ,ssC (ν) corepresents this moduli

functor implies the existence of a natural morphism ρ : J
χ,ss
C (ν) → Uχ,ssC (ν). There is

an open subscheme Uχ,sC (ν) ⊂ Uχ,ssC (ν) parametrising those sheaves which are ν-stable.

If ν = ν(L,M) then Uχ,ssC (ν) is isomorphic (via twisting through by M) to the good

moduli space of the stack CohssC (L, χ) of L-Gieseker semistable, uniform rank 1 coherent

sheaves on C of Euler characteristic χ. In particular, Uχ,ssC (ν) admits a construction

by GIT (cf. Section 4.2). A separate GIT construction of Uχ,ssC (ν) also exists, due to

Seshadri (cf. [122, Septième Partie, Chapitre III]).

From the results of Seshadri loc. cit. and Esteves [48, Section 8], the natural mor-

phism ρ : J
χ,ss
C (ν)→ Uχ,ssC (ν) is surjective and is universal for morphisms from J

χ,ss
C (ν)

to separated schemes; the fibres of ρ are given by S-equivalence classes of ν-semistable

sheaves. The restriction of ρ to J
χ,s
C (ν) is an isomorphism J

χ,s
C (ν)

'→ Uχ,sC (ν); in particu-

lar, Uχ,sC (ν) is a fine moduli space of simple torsion-free uniform rank 1 coherent sheaves

on C.
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Chapter 6

GIT Constructions of
Compactified Universal Jacobians
over Stacks of Stable Maps

6.1 Introduction

This chapter studies compactified universal Jacobians over the stack of stable maps

Mg,n(X,β), along with their analogues involving semistable torsion-free sheaves of uni-

form rank r > 1, where the stability condition is defined using an ample invertible sheaf

L on the universal curve over Mg,n(X,β). The main result is that these stacks admit

projective good moduli spaces which are GIT quotients, and that variation of GIT ap-

plies when the sheaf L is varied. Additionally we prove that, when the base is taken to

be Mg,n with g ≥ 4, the good moduli space of a compactified universal Jacobian has

canonical singularities.

Significant recent attention has been given to the study of compactified universal

Jacobians over the stack Mg,n of n-pointed Deligne–Mumford stable curves of genus

g ([2] [4] [22] [28] [29] [30] [31] [46] [64] [71] [72] [87] [88] [89] [90] [93] [106] [107]).

These are compactifications of the stack of all invertible sheaves of a given degree over

smooth marked curves whose boundary objects consist of uniform rank one torsion-free

sheaves over singular marked stable curves.1 The fibres of the forgetful morphism from

a compactified universal Jacobian to Mg,n are given by moduli stacks of torsion-free

sheaves on nodal curves, including the compactified Jacobians introduced in Chapter 5.

1Strictly speaking, the condition that the sheaves in the boundary are simple is also usually imposed,
however we do not make this requirement in this chapter.
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Compactified universal Jacobians have been successfully used to construct extensions of

the universal Abel map fromMg,n toMg,n, which in turn provides one way of defining

the double ramification cycle on Mg,n (for more details on this connection we refer the

reader to [3] and the references therein).

In order to compactify the stack of all invertible sheaves (or more generally all slope

semistable locally free sheaves) over marked smooth curves, in practice a stability con-

dition is first chosen. One way of doing this is to fix a relatively ample invertible sheaf

L on the universal curve over Mg,n and then require that all torsion-free sheaves in

the boundary are Gieseker semistable with respect to L. Melo in [89] proved that if

all L-semistable sheaves are L-stable then the resulting compactified universal Jacobian

admits a projective coarse moduli space. Melo’s argument makes use of the criterion of

Kollár [79] to prove that the coarse moduli spaces are projective, and does not address

the case where there are strictly L-semistable sheaves.

If n = 0 and if L is the dualising sheaf of the universal family, the resulting compact-

ified universal Jacobian is also known to admit a projective good moduli space (even

though there are strictly semistable sheaves), known as the universal Picard variety ; at

least two prior GIT constructions of this space are known, the first due to Caporaso [27]

and the second due to Pandharipande [108] (Pandharipande deals with the case where

the sheaves are allowed to have any uniform rank r, not just r = 1). The constructions of

Caporaso and Pandharipande rely on the GIT construction of Gieseker [54] of the coarse

moduli space Mg of the stackMg of genus g Deligne–Mumford stable curves. In place of

Gieseker’s construction, we use Baldwin and Swinarski’s GIT construction of the coarse

moduli space Mg,n(X,β). We also use the GIT construction of Greb, Ross and Toma [55]

[56] of moduli spaces of multi-Gieseker semistable sheaves on a projective scheme, which

allows us to deal with multiple stability conditions at the same time. As a special case

of our approach, we provide a new GIT construction of the Caporaso–Pandharipande

moduli space.

As an application of our GIT construction, we use the methods of [55] and [56]

to establish the existence of rational linear wall-chamber decompositions on positive-

dimensional spaces of stability conditions, with the property that as the stability con-

dition varies within the interior of the chamber, the resulting stack remains unchanged,

and that crossing a wall corresponds to modifying the good moduli space by a Thaddeus
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flip through a moduli space corresponding to a stability condition on that wall (cf. Def-

inition 2.5.5). Unlike the wall-chamber decomposition described by Kass and Pagani in

[72] (in the case where the sheaves are all of uniform rank one and where the base stack

is Mg,n), the wall-chamber decompositions described in this chapter rely on auxiliary

choices of relatively ample invertible sheaves over the universal curve over the base stack

Mg,n(X,β), and as such the decompositions are not intrinsic to the stack Mg,n(X,β).

We also extend some of the results of Casalaina-Martin–Kass–Viviani [30] [31] con-

cerning the birational geometry of the Caporaso–Pandharipande moduli space. In par-

ticular, we prove that, when working over the stack Mg,n of stable curves, if g ≥ 4 and

if n is any non-negative integer then the good moduli space of a compactified universal

Jacobian over Mg,n has canonical singularities for any choice of stability condition, ex-

tending the result of Casalaina-Martin–Kass–Viviani that the Caporaso–Pandharipande

space has canonical singularities when g ≥ 4.

Summary of Results

LetMg,n(X,β) be the stack of genus g stable maps with n marked points to a projective

variety X of class β, and letMg,n(X,β) be the open substack where the source curves are

non-singular. Here and throughout this chapter we assume that the discrete invariants

are chosen so that the stack Mg,n(X,β) is non-empty.

Given a relatively ample Q-invertible sheaf L on the universal curve UMg,n(X,β)

over the stack Mg,n(X,β), define J ssg,n,d,r(X,β)(L) to be the Gm-rigidification of the

stack parametrising flat and proper families of degree d, uniform rank r, torsion-free co-

herent sheaves over the underlying nodal curves C of stable maps (C, x, f) inMg,n(X,β)

which are fibrewise Gieseker semistable with respect to L (cf. Section 6.3). Fix relatively

ample Q-invertible sheaves L1, . . . ,Lk on the universal curve, and set Σ := (Q≥0)k \{0}.
For each σ = (σ1, . . . , σk) ∈ Σ,2 form the Q-invertible sheaf Lσ =

⊗
i L

σi
i , and consider

the resulting stacks over Mg,n(X,β):

J (σ) := J ssg,n,d,r(X,β)(Lσ).

We say σ ∈ Σ is positive if each σi > 0, and degenerate otherwise. Next, fix a finite

subset S ⊂ Σ. We may now state our main result, which follows from Corollary 6.5.4,

Theorem 6.5.5 and Proposition 6.5.7.

2Since λσ defines the same stability condition as σ for each positive rational number λ, we are free
to assume that

∑
σi = 1 as necessary.
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Theorem 6.1.1. There exists a quasi-projective scheme Zr = Zr,S and a reductive linear

algebraic group K acting on Zr, such that for each σ ∈ S, there is a K-invariant open

subscheme Zσ−ssr ⊂ Zr, obtained as a (relative) GIT semistable locus for an appropriate

linearisation determined by σ, which admits a good quotient Zσ−ssr // K. Moreover:

1. if σ is positive, then J (σ) is isomorphic to the quotient stack [Zσ−ssr /K];

2. if σ is either positive or degenerate, the stack J (σ) is universally closed and admits

a good moduli space J(σ) = J
ss
g,n,d,r(X,β)(Lσ), which is isomorphic to the good

quotient Zσ−ssr // K, and admits a natural morphism to the coarse moduli space

Mg,n(X,β) of Mg,n(X,β); and

3. the fibre of J(σ) over [(C, x, f)] ∈Mg,n(X,β) is given by the geometric quotient of

the moduli space of degree d, uniform rank r, slope-semistable locally free sheaves

on C by the action of the group of automorphisms Aut(C, x, f) of the stable map

(C, x, f).

Remark. In the case where σ is degenerate, it is still possible to use Theorem 6.1.1 to

exhibit J (σ) as a quotient stack of the form [(Z ′r)
σ′−ss/K ′] for an appropriate subgroup

K ′ ⊂ K, by first omitting the invertible sheaves Li for which the corresponding entry

σi = 0, letting σ′ be the vector obtained by omitting all zero entries from σ; see the

remark following Corollary 6.5.4.

As an application of the construction underlining Theorem 6.1.1 we prove, by adapt-

ing the arguments given in [56], the following result, which concerns what happens at

the level of the good moduli spaces J(σ) as the stability condition σ ∈ Σ is allowed to

vary, after the Q-invertible sheaves L1, . . . ,Lk have been fixed. This result follows from

Proposition/Definition 6.6.4 and Theorem 6.6.5.

Theorem 6.1.2. The set Σ′ =
{
σ ∈ Σ :

∑k
i=1 σi = 1

}
is cut into chambers by a finite

number of rational linear walls,3 such that the moduli stack J (σ) is unchanged as σ

varies in the interior of a chamber. For any σ ∈ Σ′, we have that all Lσ-semistable

sheaves are Lσ-stable (and hence the corresponding stack J (σ) is Deligne–Mumford) if

and only if σ does not lie in any wall. Given σ1, σ2 ∈ Σ′, the moduli spaces J(σi)

3We allow for the possibility that all of Σ′ is a wall; this would occur if for each of the stability
conditions σ ∈ Σ′, there exists a strictly semistable sheaf.

77



(i = 1, 2) are related by a finite number of Thaddeus flips through good moduli spaces of

the form J(σ′), σ′ ∈ Σ′.

The final main result of this chapter is the following extension of [31, Theorem A]

to the situation of studying the singularities of the good moduli space of a compactified

universal Jacobian over Mg,n where n > 0; this result is Theorem 6.7.1.

Theorem 6.1.3. Suppose X = SpecC and β = 0, so that we are considering compact-

ified universal Jacobians over the stack Mg,n. If g ≥ 4, then each of the good moduli

spaces J(σ) has canonical singularities.

Comparison with Other Work

In the case where r = 1 the stacks J ssg,n,d,1(X,β)(L) are examples of compactified uni-

versal Jacobians. The paper [89] treats these stacks in the case where X is a point and

Mg,n(X,β) is replaced with an open substack of the stack of marked reduced curves.

When this substack is taken to beMg,n, Melo considers stability conditions defined with

respect to a locally free sheaf on the universal curve over Mg,n, and for explicit polar-

isations determines functoriality properties of the corresponding compactified universal

Jacobians, such as compatibility with forgetful and clutching morphisms.

Meanwhile, Kass and Pagani [72] study stability conditions defined in terms of suit-

able functions φ defined on the space of dual graphs of stable curves inMg,n, generalising

the approach of Oda and Seshadri [105], and describe an explicit wall-chamber decom-

position on the space of stability conditions, which in their notation is denoted V d
g,n,

where d is the degree of the uniform rank 1 torsion-free sheaves under consideration.

We note that Kass–Pagani and Melo study the same family of stability conditions (cf.

[72] Remark 4.6), and that each of the Kass–Pagani stability conditions can be realised

as a universal (twisted) Gieseker stability condition with respect to a relatively ample

invertible sheaf on the universal curve over Mg,n (cf. Corollary 4.3 of loc. cit.), and

so, by the final remark of Section 6.3.2, are covered by the results of this chapter. Kass

and Pagani also successfully characterise for any φ ∈ V d
g,n the locus of indeterminacy of

the extension Mg,n 99K J dg,n(φ) (where J dg,n(φ) denotes Kass and Pagani’s compactified

universal Jacobian) of the Abel–Jacobi map

αk,d : (C, x) 7→ ω−kC (d1x1 + · · ·+ dnxn), (C, x) ∈Mg,n,
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and in particular describe all stability conditions φ for which αk,d extends to Mg,n.

The main difference between the decomposition of V d
g,n and the decompositions de-

scribed by Theorem 6.1.2 is that the latter decompositions depend on the choice of the

Q-invertible sheaves L1, . . . ,Lk, whereas the decomposition of V d
g,n only depends on the

discrete invariants g, n and d. It would be interesting to determine how the wall-chamber

decompositions relate to each other (given explicit Q-invertible sheaves L1, . . . ,Lk), as

well as whether the decomposition of [72] can be extended to higher rank sheaves and

to working over Mg,n(X,β).

It is possible to construct the good moduli space of J ssg,n,d,r(X,β)(L) via GIT in

a manner which closely follows the construction of Pandharipande [108], by applying

relative GIT to an appropriate Quot scheme over the parameter space considered by

Baldwin–Swinarski [15] (in place of the parameter space considered by Gieseker [54]),

making use of the results of Simpson [124] concerning GIT constructions of relative mod-

uli spaces of Gieseker semistable sheaves (see Proposition 6.7.2). Indeed, it is this alter-

native construction that is considered when proving Theorem 6.1.3. We remark that the

difficult step in Pandharipande’s construction is relating GIT and moduli (semi)stability

for the fibrewise action on the relative Quot scheme; once this has been established, the

rest of Pandharipande’s construction is essentially formal relative GIT. As observed by

Pandharipande himself (cf. [108, Page 433]), the work of Simpson can instead be used

to fully solve the fibrewise GIT problem.

The disadvantage of this approach, as compared with that used to prove Theorem

6.1.1, is that it is not possible to implement VGIT, since different choices of linearisations

L necessitate working with different relative Quot schemes.

For higher ranks, there are alternative compactifications of the moduli stack of slope-

semistable locally free sheaves over the moduli stack of smooth curves, which instead

involve parametrising locally free sheaves on semistable curves instead of semistable

torsion-free sheaves on stable curves. Examples of such compactifications have been

constructed and studied by Fringuelli [50], Schmitt [117] and Teixidor i Bigas [125]. We

do not consider these compactifications in this chapter.

Notation and Conventions

In addition to the conventions specified in the introduction to this thesis, in this chapter

we adopt the following notation and conventions:
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• Whenever we work with the stackMg,n, we implicitly assume that 2g− 2 +n > 0,

so that Mg,n is non-empty and Deligne–Mumford.

• The dual graph of a connected nodal curve C is the graph ΓC whose vertex set

V (ΓC) is the set of irreducible components of C, labelled by arithmetic genera,

and whose edges are given by nodes; for each node p ∈ C incident to components

Cv1 and Cv2 , there is a corresponding edge e ∈ E(ΓC) incident to v1 and v2 (note

that we allow for the possibility that v1 = v2, which corresponds to node internal

to the component Cv1).

• We denote by ArtC the category of Artinian local C-algebras with residue field C.

Given R ∈ ArtC, we denote by Spf R the functor

ArtC → Set, A 7→ Homloc(R,A).

• If F : ArtC → Set is a functor, we define the tangent space of F to be TF =

F (C[ε]), where C[ε] = C[t]/t2 is the ring of dual numbers over C. The vector

space dual of TF is denoted T∨F . We employ standard deformation-theoretic

terminology (see for instance [63] and [120]). In particular, we say that R ∈ ArtC

is a miniversal deformation ring for F if there exists a formally smooth natural

transformation Spf R→ F which is an isomorphism on tangent spaces; such a ring

R is unique up to (non-canonical) isomorphism.

• Let X be a normal variety. The singularities of X are said to be rational if for all

resolutions of singularities f : Y → X, Rif∗OY = 0 for all i > 0.

• Let X be a normal variety. Assuming that the canonical divisor KX is Q-Cartier,

if f : Y → X is a resolution of singularities with exceptional prime divisors Ei, we

may write KY = f∗KX +
∑

i aiEi, where the coefficients ai ∈ Q.

The singularities of X are said to be canonical (resp. terminal) if the canonical

divisor KX of X is Q-Cartier and if for all resolutions of singularities f : Y → X,

the coefficients ai are always non-negative (resp. positive).

Remark. Sections 6.2 to 6.6 (inclusive) of this chapter are taken from the preprint [37].

After this work was originally submitted to arχiv, Pagani and Tommasi [107] proved

that, provided one first imposes the additional constraint that all semistable sheaves are
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stable, the only Deligne–Mumford compactified universal Jacobian overMg in degree d

is the stack corresponding to the Caporaso–Pandharipande moduli space, i.e. when the

dualising sheaf of the universal curve over Mg is used to define the stability condition.

This exists as a Deligne–Mumford stack if and only if gcd(2g − 2, d− g + 1) = 1.

6.2 Prestable Curves and Stable Maps

We begin by recalling the definition of a prestable curve and of a stable map to a

projective variety X.

6.2.1 Prestable and Stable Curves

Let g, n be non-negative integers.

Definition 6.2.1. An n-marked prestable curve (C, x) = (C;x1, . . . , xn) of genus g

consists of a connected, reduced, projective nodal curve C of arithmetic genus g together

with n ordered marked points xi ∈ C, such that the markings xi are distinct and lie in

the non-singular locus of C.

A marked prestable curve (C, x) is said to be stable if any of the following equivalent

conditions hold:

1. (C, x) has no infinitesimal automorphisms.

2. The invertible sheaf ωC(x1 + · · ·+ xn) is ample, where ωC is the dualising sheaf of

C.

3. Each genus 1 component of C has at least one special point, and each genus 0

component of C has at least three special points; here a special point is a marked

point or a node.

The notion of a family of prestable curves is given as follows.

Definition 6.2.2. A family of n-marked prestable curves of genus g parametrised by a

scheme S is a flat and proper morphism π : C → S of finite presentation, together with n

sections σ1, . . . , σn of π, such that for each geometric point s ∈ S, (Cs;σ1(s), . . . , σn(s))

is an n-marked prestable curve of genus g.
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It is well-known (see for instance [59]) that there exists an algebraic stack Mg,n, of

finite presentation and with quasi-compact and separated diagonal, whose groupoid of S-

points is the groupoid of all families of n-marked prestable curves of genus g parametrised

by the scheme S.

6.2.2 Stable Maps

Let X be a projective variety. Following [17], a curve class on X is an element of the

semigroup

H2(X,Z)+ = {β ∈ HomZ(PicX,Z) : β(L) ≥ 0 for all ample L}.

If f : C → X is a morphism from a prestable curve C, the locally constant function

L 7→ deg f∗L on PicX is denoted as f∗[C] ∈ H2(X,Z)+.

Let β ∈ H2(X,Z)+ be a fixed curve class, let g, n be non-negative integers.

Definition 6.2.3. An n-marked stable map (C, x, f) = (C;x1, . . . , xn; f : C → X) of

genus g and curve class β consists of a prestable curve (C, x) together with a morphism

of schemes f : C → X with f∗[C] = β, satisfying any of the following (equivalent)

conditions:

1. (C, x, f) has no infinitesimal automorphisms, where an automorphism of (C, x, f)

is an automorphism α of C which fixes the marked points xi ∈ C and satisfies

f ◦ α = f .

2. If X ⊂ Pb is a fixed embedding of X inside a projective space, then the invertible

sheaf ωC(x1 + · · ·+ xn)⊗ f∗(OPb(3)|X) is ample.

3. Each genus 1 component of C mapped by f to a point has at least one special point,

and each genus 0 component of C mapped by f to a point has at least three special

points; here a special point is a marked point or a node.

A family of n-marked stable maps to X of genus g and curve class β parametrised by a

scheme S consists of a family of n-marked genus g prestable curves (C → S;σ1, . . . , σn)

and a morphism of schemes f : C → X, such that for each geometric point s ∈ S,

(Cs;σ1(s), . . . , σn(s); fs : Cs → X) is a stable map of curve class β.
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It is a standard result (see for instance Theorem 3.14 of loc. cit.) that there exists a

proper Deligne–Mumford stackMg,n(X,β), whose groupoid of S-points is the groupoid

of all families of n-marked stable maps of genus g parametrised by the scheme S. There

is a distinguished open substack Mg,n(X,β) whose objects are given by stable maps

whose source curve C is non-singular. It is also well known that Mg,n(X,β) admits a

projective coarse moduli space Mg,n(X,β). If X is a point then a stable map to X is the

same as a marked stable curve, that is Mg,n(pt, 0) =Mg,n. The stack Mg,n is smooth

and irreducible, and is of dimension 3g − 3 + n.

As explained in [16], if X is smooth then there exists a natural perfect relative

obstruction theory

E•Mg,n(X,β)/Mg,n
:= R•(πU )∗(f

∗
UTX)→ L•Mg,n(X,β)/Mg,n

, (6.2.1)

where L• denotes the relative cotangent complex. This gives rise to a virtual fundamental

class [Mg,n(X,β)]vir of virtual dimension

vdim(Mg,n(X,β)) =

∫
β
c1(TX) + (dimX − 3)(1− g) + n.

Remark. If we fix a closed embedding i : X ↪→ Pb such that i∗β = d′[`], where [`] ∈
H2(Pb,Z)+ is the class of a line, then a necessary condition for non-singular stable maps

to exist is 2g − 2 + n+ 3d′ > 0.

6.3 Stacks of Semistable Sheaves over Stable Maps

In this section, we introduce the stacks J ssg,n,d,r(X,β)(L) which are the main focus of

this chapter, and explore a few of their basic properties.

6.3.1 The Stack of Torsion-Free Sheaves over Mg,n(X, β)

Let X be a projective variety and let β ∈ H2(X,Z)+ be a curve class. Fix integers

g, n, d, r, with g, n ≥ 0, r ≥ 1 and for which the open substack Mg,n(X,β) is non-

empty. Since there exists an (algebraic) stack of all uniform rank r, degree d, torsion-free

coherent sheaves over any family of prestable curves, by [32, Corollary 13] there exists

a stack Mg,n,d,r of n-marked, genus g prestable curves with uniform rank r, degree d,

torsion-free coherent sheaves.
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Let4 Mrig
g,n,d,r := Mg,n,d,r ( Gm denote the Gm-rigidification with respect to the

central Gm in the automorphism groups of the sheaves in Mg,n,d,r. Let Msimp,rig
g,n,d,r be the

open substack of Mrig
g,n,d,r parametrising those objects whose underlying coherent sheaf

is (fibrewise) simple. Set

J g,n,d,r(X,β) :=Mg,n(X,β)×Mg,n M
rig
g,n,d,r,

and

J simp
g,n,d,r(X,β) :=Mg,n(X,β)×Mg,n M

simp,rig
g,n,d,r .

The stack J g,n,d,r(X,β) is the stack associated to the category fibred in groupoids

J g,n,d,r(X,β)pre whose fibre over a scheme S consists of all objects

(π : C → S;σ1, . . . , σn; f : C → X;F ),

where (π : C → S;σ1, . . . , σn; f : C → X) ∈ Mg,n(X,β)(S) is a family of stable maps

parametrised by S and where F is a (S-flat, S-finitely presented) family of torsion-free

coherent sheaves over π : C → S, of relative degree d and uniform rank r; morphisms

between objects (π : C → S;σ1, . . . , σn; f : C → X;F ) and (π′ : C ′ → S;σ′1, . . . , σ
′
n; f ′ :

C ′ → X;F ′) are given by Cartesian diagrams

C C ′

S S′g

g

π π′σi σ′i

y

(6.3.1)

which are compatible with the sections σi and σ′i, together with an equivalence class

of isomorphisms F
'→ g∗F ′ ⊗ π∗M (for some M ∈ PicS); isomorphisms ψ1 : F

'→
g∗F ′ ⊗ π∗M1 and ψ2 : F

'→ g∗F ′ ⊗ π∗M2 are equivalent if there exists an isomorphism

η : M1
'→M2 such that the diagram

g∗F ′ ⊗ π∗M1

F

g∗F ′ ⊗ π∗M2

ψ1

ψ2

id⊗f∗η

4The procedure of rigidification, as described in [1], is also valid for stacks which aren’t necessarily
algebraic.
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commutes. If

J acg,n,d,r(X,β) =Mg,n(X,β)×Mg,n Mg,n,d,r

(resp. J acsimp
g,n,d,r(X,β)) is the stack whose sections coincide with those of J g,n,d,r(X,β)

(resp. J simp
g,n,d,r(X,β)) and whose morphisms are given by diagrams (6.3.1) together with

isomorphisms F '→ g∗F ′, then J g,n,d,r(X,β) is the Gm-rigidification of J acg,n,d,r(X,β).

The stack J g,n,d,r(X,β) admits a universal curve and a universal morphism to X, ob-

tained by pulling back the universal family overMg,n(X,β). The stack J acg,n,d,r(X,β)

admits a universal sheaf over this universal curve.

The stack J g,n,d,r(X,β) admits natural morphisms to the stacks Mg,n(X,β) and

Mrig
g,n,d,r, obtained by forgetting respectively the sheaves and the morphisms to X.

Proposition 6.3.1. The stack J simp
g,n,d,r(X,β) is Deligne–Mumford and the natural for-

getful morphism to Mg,n(X,β) is representable and locally of finite presentation. If X

is smooth then any open Deligne–Mumford substack of J simp
g,n,d,r(X,β) admits a natural

perfect relative obstruction theory over Msimp,rig
g,n,d,r .

Proof. We first show that the stack Msimp,rig
g,n,d,r is algebraic and locally of finite presentation

over Mg,n. Consider a morphism S →Mg,n, where S is a scheme, and let

MS := Msimp,rig
g,n,d,r ×Mg,n S.

If f : C → S is the family of prestable curves associated to S → Mg,n then MS is

equivalent to the étale sheafification of the functor assigning to an S-scheme T the set

of T -flat, T -finitely presented, simple, uniform rank r, degree d, torsion-free coherent

sheaves over CT . By [9, Theorem 7.4], MS is an algebraic space which is locally finitely

presented over S, and so the natural morphism Msimp,rig
g,n,d,r → Mg,n is representable and

locally of finite presentation. As Mg,n is algebraic, it follows that Msimp,rig
g,n,d,r is algebraic.

Base-changing to Mg,n(X,β) shows that the natural morphism c : J simp
g,n,d,r(X,β)→

Mg,n(X,β) is also representable and locally of finite presentation. As Mg,n(X,β) is

Deligne–Mumford, the same is therefore true for J simp
g,n,d,r(X,β).

In the case where X is smooth, the pullback of the perfect relative obstruction theory

(6.2.1) along c defines a perfect relative obstruction theory

E•
J simp
g,n,d,r(X,β)/Msimp,rig

g,n,d,r

:= c∗E•Mg,n(X,β)/Mg,n
→ L•

J simp
g,n,d,r(X,β)/Msimp,rig

g,n,d,r

, (6.3.2)

which restricts to give a perfect relative obstruction theory for any open Deligne–

Mumford substack of J simp
g,n,d,r(X,β).
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Remark. As J acg,n,d,r(X,β) is a Gm-gerbe over the rigidified stack J g,n,d,r(X,β), it

follows from Proposition 6.3.1 that the stack J acsimp
g,n,d,r(X,β) is also algebraic.

6.3.2 Substacks Defined by Polarisations

Let πU : UMg,n(X,β) → Mg,n(X,β) be the universal family over Mg,n(X,β), and fix

a relatively ample Q-invertible sheaf L on the universal curve UMg,n(X,β). For any

family of coherent sheaves F over a family of maps (π : C → S;σ1, . . . , σn; f : C → X)

corresponding to a morphism S →Mg,n, by pulling back L we obtain a relatively ample

Q-invertible sheaf LS over C.

Definition 6.3.2. We say F is L-(semi)stable if for each geometric point s ∈ S, the

sheaf Fs is Gieseker (semi)stable with respect to the ample Q-invertible sheaf Ls (cf.

paragraph after Inequality 5.2.5).

The conditions of being stable/semistable are both open in flat families, so there are

open substacks

J ac(s)s
g,n,d,r(X,β)(L) ⊂ J acg,n,d,r(X,β) and J (s)s

g,n,d,r(X,β)(L) ⊂ J g,n,d,r(X,β)

parametrising objects whose sheaves are L-(semi)stable. As Gieseker stable sheaves are

always simple, we have open immersions

J acsg,n,d,r(X,β)(L) ⊂ J acsimp
g,n,d,r(X,β) and J sg,n,d,r(X,β)(L) ⊂ J simp

g,n,d,r(X,β).

Applying Proposition 6.3.1, the stack J acsg,n,d,r(X,β)(L) is algebraic, and the rigidified

stack J sg,n,d,r(X,β)(L) is Deligne–Mumford and admits a perfect relative obstruction

theory over Msimp,rig
g,n,d,r .

If (C, x, f) is a stable map inMg,n(X,β) with C irreducible, Inequality 5.2.5 reduces

to the usual inequality between the Mumford slopes µ(E) = deg(E)/rk(E). If C is

additionally non-singular then all torsion-free sheaves on C are locally free. This implies

that J ssg,n,d,r(X,β)(L) contains all slope semistable locally free sheaves over stable maps

whose source curve is non-singular. In particular, if Mg,n(X,β) is non-empty then the

stack J ssg,n,d,r(X,β)(L) is also non-empty.

Remark. It follows from Inequality 5.2.5 that replacing L with a positive integral power

of L does not alter the stability condition. As such, we are free to assume as and when

necessary that L is a genuine relatively (very) ample invertible sheaf.
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Remark. Proposition 6.3.1 does not address the issue as to whether J acssg,n,d,r(X,β)(L)

and J ssg,n,d,r(X,β)(L) are algebraic in general. The algebraicity of these stacks will follow

as a consequence of Theorem 6.5.5.

Remark. Given an invertible sheaf N on the universal curve UMg,n(X,β), one may con-

sider the stacks J acssg,n,d,r(X,β)(L,N ) and J ssg,n,d,r(X,β)(L,N ) parametrising (L,N )-

twisted semistable sheaves of degree d and uniform rank r over stable maps inMg,n(X,β)

(that is, in Definition 6.3.2 we impose that for each geometric point s ∈ S, Fs ⊗ Ns is

Gieseker semistable with respect to Ls). This does not widen the class of stacks under

consideration, since twisting by N yields isomorphisms

J acssg,n,d,r(X,β)(L,N ) ∼= J acssg,n,d,r(X,β)(L,O)

and

J ssg,n,d,r(X,β)(L,N ) ∼= J ssg,n,d,r(X,β)(L,O).

In particular, the compactified Jacobians considered by Kass–Pagani [72] and Melo [89]

fit into the framework considered in this chapter, since the stability conditions considered

by these authors can always be realised as twisted stability conditions.

6.3.3 Basic Properties of the Stacks

We summarise some of the basic properties of the stacks J ssg,n,d,r(X,β)(L).

1. The stack J ssg,n,d,r(X,β)(L) is algebraic and of finite presentation over C; this

follows immediately from Theorem 6.1.1.

2. The stack J ssg,n,d,r(X,β)(L) is universally closed. This will follow once we have

established the projectivity of the good moduli space J
ss
g,n,d,r(X,β)(L) of this stack,

as good moduli space morphisms are universally closed.

3. If J sg,n,d,r(X,β)(L) = J ssg,n,d,r(X,β)(L) then the stack is Deligne–Mumford and

the natural forgetful morphism to Mg,n(X,β) is representable. If X is smooth

then the stack admits a natural relative perfect obstruction theory over the stack

Msimp,rig
g,n,d,r ; this follows from Proposition 6.3.1.

4. If J sg,n,d,r(X,β)(L) = J ssg,n,d,r(X,β)(L) then the stack is proper. One way to see

this is to observe that every object of J ssg,n,d,r(X,β)(L) has a finite automorphism
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group scheme, or in other words the inertia stack of J ssg,n,d,r(X,β)(L) is finite. It

then follows from [35] that the coarse moduli space morphism J ssg,n,d,r(X,β)(L)→
J
ss
g,n,d,r(X,β)(L) is proper, so the properness of the stack J ssg,n,d,r(X,β)(L) is a

consequence of the projectivity of J
ss
g,n,d,r(X,β)(L).

In the case r = 1, we have the following additional properties:

5. If n ≥ 1 then the universal sheaf on J acssg,n,d,1(X,β)(L) descends to the rigidifica-

tion J ssg,n,d,1(X,β)(L); this follows from either [71, Lemma 3.35] or [89, Proposition

3.5].

6. If the stack of stable maps Mg,n(X,β) is smooth then the stack J ssg,n,d,1(X,β)(L)

is also smooth; for instance, the argument given in the proof of [89, Proposition

3.7] carries over. If in addition the stack Mg,n(X,β) is irreducible and if the

substack Mg,n(X,β) is dense in Mg,n(X,β) then the stack J ssg,n,d,1(X,β)(L) is

irreducible and of dimension dimMg,n(X,β) +g, as in this case the open substack

parametrising invertible sheaves over stable maps in Mg,n(X,β) is smooth and

dense. This applies for instance when the stack of stable maps Mg,n(X,β) is

taken to be Mg,n or M0,n(Pb, d′).

6.4 GIT Constructions of Moduli Spaces of Stable Maps
and of Multi-Gieseker Semistable Sheaves

The GIT construction of the moduli spaces appearing in the statement of Theorem 6.1.1

relies on two existing reductive GIT constructions, the first by Baldwin–Swinarski [15]

and the second by Greb–Ross–Toma [55] [56]. In preparation for Section 6.5, where these

constructions are combined to construct the moduli spaces J
ss
g,n,d,r(X,β)(L), we give a

sketch of both of these constructions, and explain how the latter construction may be

extended to the relative setting. To avoid the notation from becoming too complicated,

we present the Greb–Ross–Toma construction in a general setting, largely following the

notation used in [55] and [56].

6.4.1 The Construction of Baldwin and Swinarski

Let X be a projective variety, and fix the discrete invariants g, n and β. For simplicity

assume there is at least one marked point (the construction for n = 0 marked points
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involves only minor changes in notation, primarily involving omitting any projective

space factors corresponding to marked points). Fix a closed embedding i : X ↪→ Pb such

that i∗β = d′[`], where [`] ∈ H2(Pb,Z)+ is the class of a line. Suppose (C, x, f) is a stable

map to X of class β (which we may also consider as a stable map to Pb of class d′[`]).

For a ∈ Z, set

e := deg((ωC(x1 + · · ·+ xn)⊗ f∗OPb(3))a) = a(2g − 2 + n+ 3d′).

For any integer a ≥ 10,5 the invertible sheaf (ωC(x1+· · ·+xn)⊗f∗OPb(3))a is non-special

and very ample, and corresponds to a closed embedding of C inside P(H0(C, (ωC(x1 +

· · ·+ xn)⊗ f∗OPb(3))a)∨). Let

W := Ce−g+1.

Choose an isomorphism W ∼= H0(C, (ωC(x1 + · · · + xn) ⊗ f∗OPb(3))a)∨; this yields

a closed embedding C ↪→ P(W ). The graph of f gives in turn a closed embedding

C ↪→ P(W )×Pb. After appending the markings (xi, f(xi)), we have an associated point

of the scheme

H = Hilb(P(W )× Pb, P0)× (P(W )× Pb)×n,

where Hilb(P(W )× Pb, P0) is the Hilbert scheme parametrising curves C ′ ⊂ P(W )× Pb

with Hilbert polynomial

P0(mW ,mb) = χ(OP(W )(mW )⊗OPb(mb)⊗OC′) = emW + dmb − g + 1.

Let (φU : UH → H; τ1, . . . , τn) denote the universal family over H, given by taking the

product of the universal family over Hilb(P(W ) × Pb, P0) with n copies of the identity

map on P(W ) × Pb. Let H′ ⊂ H denote the closed subscheme consisting of all points

(h;x1, . . . , xn) ∈ H where the marked points xi lie on the curve UHh ⊂ P(W ) × Pb.
As explained in [52, Sections 2.3 and 5.1], there exists a locally closed subscheme I =

IX,β ⊂ H′ consisting of all points (h;x1, . . . , xn) ∈ H′ such that the following conditions

are satisfied:6

(i) (UHh;x1, . . . , xn) is a prestable marked curve;

5a = 10 is the smallest choice of a for which the statement of [15, Theorem 5.21] holds for any choice
of valid discrete invariants g, n, d′; we refer the reader to the remark following loc. cit.

6The subscheme H′ is what Baldwin and Swinarski denote as I and the subscheme I is what Baldwin
and Swinarski denote as J ; we have elected to change the notation so as not to confuse notation with
that for the moduli spaces of the stacks J ssg,n,d,r(X,β)(L).
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(ii) the projection UHh → P(W ) is a closed embedding with non-degenerate image;

(iii) the projection pb : UHh → Pb factors through the inclusion i : X ↪→ Pb;

(iv) there is an equality of homology classes (pb)∗[UHh] = β ∈ H2(X,Z)+; and

(v) there exists an isomorphism of invertible sheaves on the curve UHh

OP(W )(1)⊗OPb(1)⊗OUHh ∼= (ωUHh(x1 + · · ·+ xn))a ⊗OPb(3a+ 1)⊗OUHh

(more formally, if S → H′ is a morphism from a scheme, then this morphism

factors through I only if the invertible sheaves OP(W )(1) ⊗ OPb(1) ⊗ OUH′S and

(ωUH′S/S(τ1(S) + · · ·+ τn(S)))a ⊗OPb(3a+ 1)⊗OUH′S differ by the pullback of an

invertible sheaf on S).

Let I denote the closure of I in H′, and consider the restriction of the universal family

to I, denoted as (φU : UI → I; τ1, . . . , τn). There is a universal morphism UI → X given

by the composition of the closed embedding

UI ↪→ I × P(W )× Pb × (P(W )× Pb)×n

with the projection onto the first Pb factor. The restriction of this morphism over each

point of I defines a stable map to X of class β. It follows that the scheme I admits

a natural forgetful morphism to Mg,n(X,β), given by forgetting the embedding of the

stable map inside P(W )× Pb.
Letting GL(W ) act in the usual way on P(W ) and act trivially on Pb, the correspond-

ing diagonal action on P(W )×Pb gives rise to an induced action of GL(W ) on H, under

which the subschemes H′, I and I are all invariant. This action descends to an action

of PGL(W ). The family (φU : UI → I; τ1, . . . , τn) has the local universal property for

Mg,n(X,β), and two points i1, i2 ∈ I correspond to isomorphic stable maps if and only

if i1 and i2 lie in the same GL(W )-orbit (cf. [15, Proposition 3.4]).

For sufficiently large positive integers mW and mb, there is a closed immersion

Hilb(P(W )× Pb, P0) ↪→ P(ΛP0(mW ,mb)ZmW ,mb),

where

ZmW ,mb = H0(P(W )× Pb,OP(W )(mW )⊗OPb(mb)).
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We extend this to a closed embedding

H = Hilb(P(W )× Pb, P0)× (P(W )× Pb)×n ↪→ P(ΛP0(mW ,mb)ZmW ,mb)× (P(W )× Pb)×n

by taking the identity on (P(W )×Pb)×n. After choosing a positive integer mpts, we have

a GL(W )-equivariant closed embedding of H inside a single projective space:

θmW ,mb,mpts : H ↪→ P

(
ΛP0(mW ,mb)ZmW ,mb ⊗

n⊗
i=1

(Symmpts W ⊗ Symmpts Cb+1)

)
.

(6.4.1)

Pulling back the twisting sheaf O(1) along this embedding gives a very ample linearisa-

tion LmW ,mb,mpts for the action of GL(W ) on both H and the closed subscheme I. We

may now state the main result of Baldwin and Swinarski.

Theorem 6.4.1 ([15], Corollary 6.2). Suppose (mW ,mb,mpts) is a triple of positive

integers satisfying the inequalities in the statement of Theorem 6.1 of loc. cit. (such

triples always exist). Then for the induced action of SL(W ) on I there are equalities

I
ss

(LmW ,mb,mpts) = I
s
(LmW ,mb,mpts) = I.

Moreover, the coarse moduli space Mg,n(X,β) of Mg,n(X,β) is isomorphic to the GIT

quotient I //LmW ,mb,mpts
SL(W ). In particular Mg,n(X,β) is a geometric quotient of I.

6.4.2 Quiver Representation Stability

Next, we consider the construction of Greb–Ross–Toma [55] [56] of the moduli space of

multi-Gieseker semistable sheaves on a projective scheme.

Given k ∈ N, consider the labelled quiver

Q = (Q0,Q1, h, t : Q1 → Q0, H : Q1 → Vectfd
C )

with vertex set Q0 = {vi, wj : i, j = 1, . . . , k}, arrow set Q1 = {αij : i, j = 1, . . . , k} and

with heads and tails given by

h(αij) = vi, t(αij) = wj

(the functor H : Q1 → Vectfd
C will be specified momentarily). Let Hij be the vector

space H(αij).
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Definition 6.4.2. A representation of the labelled quiver Q consists of the data ψ =

({Vi}ki=1, {Wj}kj=1, {ψij}ki,j=1), where the Vi and Wj are finite-dimensional C-vector spaces

and where each ψij is a linear map Vi ⊗Hij →Wj.

Morphisms of representations of Q are defined in analogy with morphisms of ordinary

quiver representations (cf. [75]); in particular, a subrepresentation ψ′ of ψ is specified

by choices of subspaces V ′i ⊂ Vi and W ′j ⊂Wj, such that each ψij sends V ′i ⊗Hij to W ′j.

The dimension vector of ψ is the vector d = (dimV1,dimW1, . . . ,dimVk,dimWk).

Write the dimension vector of M =
⊕

j Vj ⊕Wj as d = (d11, d12, . . . , dk1, dk2). Given

a tuple σ = (σ1, . . . , σk) of non-negative rational numbers, not all of which are zero,

define the vector θσ = (θ11, θ12, . . . , θk1, θk2) by setting

θj1 :=
σj∑
i σidi1

, θj2 := − σj∑
i σidi2

.

Then, for any representation M ′ =
⊕

j V
′
j ⊕W ′j , define

θσ(M ′) =
k∑
j=1

(θj1 dimV ′j + θj2 dimW ′j).

Definition 6.4.3. Let M be a Q-representation with dimension vector d. M is said to

be (semi)stable with respect to σ if for all proper subrepresentations M ′ ⊂M , we have

θσ(M ′) < (≤) 0.

Analogously to ordinary quiver representations, every σ-semistable Q-representation

admits a Jordan–Hölder filtration, and hence a Jordan–Hölder associated graded ob-

ject grJH
σ (M). This gives a notion of S-equivalence for σ-semistable representations;

two σ-semistable representations M and M ′ are S-equivalent if and only if grJH
σ (M) ∼=

grJH
σ (M ′).

Fix a dimension vector d. Let R be the vector space

R = Rep(Q, d) =

k⊕
i,j=1

Hom(Cdi1 ⊗Hij ,Cdj2).

Each point of R corresponds to a representation of Q of dimension vector d. There is a

natural linear left action on R by

G̃ =

k∏
j=1

(GL(dj1 ,C)×GL(dj2,C)),
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where G̃ acts by base change automorphisms. Let

∆ =
{

(t · idd11 , . . . , t · iddk2
) ∈ G̃ : t ∈ Gm

}
be the kernel of the representation G̃ → GL(R) and let G = G̃/∆. Given an integral

vector θ = (θj1, θj2, . . . , θk1, θk2) ∈ Z2k, let χθ be the character of G̃ given by

χθ : g 7→
k∏
j=1

(det(gj1)−θj1 · det(gj2)−θj2).

Assume d and θ are chosen so that
∑

j(θj1dj1 + θj2dj2) = 0, so that we may (and do)

view χθ as a character of G. Let Rθ−(s)s ⊂ R denote the GIT (semi)stable loci for the

action of G on R with the linearisation OR(χθ), the trivial bundle on R twisted by the

character χθ, and let p : Rθ−ss → R //θ G denote the resulting good quotient. In this

setting, the results of King [75] concerning moduli of representations of a quiver translate

as follows.

Proposition 6.4.4 ([55], Theorem 5.5). Suppose θ = cθσ for some σ and some positive

integer c, where c is chosen such that θ is integral.

1. A point of R corresponding to a Q-representation M is GIT (semi)stable with

respect to θ if and only if M is (semi)stable with respect to σ.

2. If r1, r2 ∈ Rθ−ss are points corresponding to representations M1 and M2 respec-

tively, then p(r1) = p(r2) if and only if M1 and M2 are S-equivalent as σ-semistable

representations.

6.4.3 The Functorial Approach to Moduli Spaces of Sheaves

Let X be a projective scheme, and fix a stability parameter σ = (L, σ1, . . . , σk) on X (cf.

Section 4.4). Fix a topological type τ of coherent sheaves on X defined with respect to L,

and let Pj(t) be the corresponding Hilbert polynomials. Set Hij = H0(X,L−m1
i ⊗Lm2

j ) =

HomX(L−m2
j , L−m1

i ), where m2 > m1 > 0 are integers to be determined. Let

T =
k⊕
j=1

L−m1
j ⊕ L−m2

j ,

and consider the algebra

A = L⊕H ⊂ EndX(T ),
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where L is generated by the projection operators onto the summands L−m1
i and L−m2

j

of T and where H =
⊕k

i,j=1Hij . T is a left A-module and H is an L-bimodule. The

category of representations of Q is equivalent to the category of finite-dimensional, right

A-modules M ; from now on we identify these two categories.

Given a coherent sheaf E on X, the vector space HomX(T,E) has a natural A-module

structure, given by the decomposition

HomX(T,E) =
k⊕
j=1

H0(E ⊗ Lm1
j )⊕H0(E ⊗ Lm2

j )

together with the multiplication maps H0(E⊗Lm1
i )⊗Hij → H0(E⊗Lm2

j ). This defines

a functor

HomX(T,−) : Coh(X)→mod(A)

to the category of finitely generated A-modules. The functor HomX(T,−) admits a left

adjoint, denoted −⊗A T . If µ : H ⊗L T → T is the left A-module structure map, then

M ⊗A T is the cokernel of the map

1⊗ µ− α⊗ 1 : M ⊗L H ⊗L T →M ⊗L T.

If m2 � m1, by [55, Theorem 3.4] the functor HomX(T,−) is fully faithful on the full

subcategory of (m1, L)-regular coherent sheaves on X of topological type τ .

Now consider the case where X is a scheme which is projective over a finite type

scheme Y . Fix a projective morphism (of finite type) π : X → Y ,7 and replace L with L,

a tuple of π-very ample invertible sheaves L1, . . . ,Lk. Continue to fix a topological type

τ of Y -flat sheaves on X (this time defined with respect to the Li); let P1(t), . . . , Pk(t)

be the associated Hilbert polynomials. Replace Hij with the sheaf π∗(L−m1
i ⊗ Lm2

j ), so

that A is now a sheaf of OY -algebras, acting naturally on T .

Definition 6.4.5. Let g : S → Y be a scheme over Y . A flat family of A-modules over

S consists of a sheaf M of right modules over the sheaf of algebras AS = g∗A, which is

locally free of finite rank as an OS-module.

If S is a Y -scheme and if E is a coherent sheaf on XS = X ×Y S, set

HomX(T,E) := (πS)∗(HomXS (TS , E)) ∈ Coh(S).

7In Section 6.5 this projective morphism will be taken to be the universal family UI → I.
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This is naturally a coherent sheaf of right AS-modules. The functor −⊗A T extends to

give a left adjoint of HomX(T,−).

Remark. In Proposition 6.4.6 and in all of the statements that follow, m2 −m1 can and

should be chosen large enough such that each of the sheaves Hij = π∗(L−m1
i ⊗Lm2

j ) are

locally free and the formation of the pushforwards all commute with base change.

Proposition 6.4.6 ([55] Propositions 5.8, 5.9, [10] Propositions 4.1, 4.2 in the relative

setting). Let m1 be a natural number. Then for m2 � m1, the following holds.

1. For any Y -scheme S, the functor HomX(T,−) is a fully faithful functor from the

full subcategory of S-flat, (m1,L)-regular coherent sheaves on XS of topological

type τ to the full subcategory of mod(AS) consisting of flat families of A-modules

over S.

2. If B is any Y -scheme and ifM is any flat family of A-modules over B of dimension

vector

d = (P1(m1), P1(m2), . . . , Pk(m1), Pk(m2)),

then there exists a unique locally closed subscheme ι : B
[reg]
τ ↪→ B with the following

properties:

(i) ι∗M⊗A T is a B
[reg]
τ -flat, B

[reg]
τ -finitely presented family of (m1,L)-regular

sheaves on X of topological type τ , and the unit map ι∗M→HomX(T, ι∗M⊗A
T ) is an isomorphism.

(ii) If g : S → B is such that there exists an S-flat, S-finitely presented family E of

(m1,L)-regular sheaves on X of topological type τ and an isomorphism g∗M∼=
HomX(T,E), then g factors through ι : B

[reg]
τ ↪→ B and E ∼= g∗M⊗A T .

Proof. This follows from making minor modifications to the proofs of [55, Propositions

5.8 and 5.9], these modifications being analogous to those indicated in [10, Section

6.5].

6.4.4 Comparison of Semistability - Positive Case

Given a coherent sheaf E of topological type τ on a projective scheme X, we have

the notion of multi-Gieseker stability for the sheaf E (cf. Section 4.4) and the notion

of stability for the A-module HomX(T,E), both with respect to a common stability
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parameter σ = (L, σ1, . . . , σk). Provided σ is bounded, the following result relates these

two notions.

Theorem 6.4.7 ([10] Section 5, [55] Theorem 8.1). Let π : X → Y be a projective

morphism, where Y is a scheme of finite type. Let L = (L1, . . . ,Lk) be a tuple of π-very

ample invertible sheaves and let τ be a topological type defined with respect to L. Let

σ = (L, σ1, . . . , σk) be a stability parameter which is bounded with respect to τ . Then for

integers m2 � m1 � m0 � 0, the following holds: let E be a Y -flat coherent sheaf on

X and let y ∈ Y be a geometric point. Then:

1. The sheaf Ey is multi-Gieseker (semi)stable with respect to σ if and only if Ey is

pure, (m0,Ly)-regular and HomXy(Ty, Ey) is a σ-(semi)stable A-module.

2. Suppose in addition that σ is positive, and suppose Ey is σ-semistable. Then

HomXy(Ty, grJH
σ (Ey)) ∼= grJH

σ (HomXy(Ty, Ey)),

where grJH
σ denotes the σ-associated graded object arising from a Jordan–Hölder

filtration of Ey or of HomXy(Ty, Ey) respectively. In particular, HomXy(Ty,−)

preserves S-equivalence with respect to σ.

6.4.5 The GIT Construction - Positive Case

We continue to fix the projective morphism π : X → Y , the π-very ample invertible

sheaves L1, . . . ,Lk and the topological type τ of Y -flat coherent sheaves on X. Choose

natural numbers m0,m1 and m2 such that Proposition 6.4.6 and Theorem 6.4.7 apply.

Set the dimension vector to be

d = (P1(m1), P1(m2), . . . , Pk(m1), Pk(m2)).

If E and F are coherent sheaves on Y with F locally free, let HomY (E,F ) denote the

finite type affine Y -scheme representing the functor assigning to a Y -scheme g : S → Y

the set HomS(g∗E, g∗F ) (such a scheme exists and is affine over Y by, for instance, [127,

Tag 08JY]). With Hij = π∗(L−m1
i ⊗ Lm2

j ), form the Y -scheme

R =

k∏
i,j=1

HomY (Odi1Y ⊗Hij ,O
dj2
Y ).
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Let p : R → Y denote the structure morphism. The scheme R carries a tautological

family M of A-modules. By Proposition 6.4.6, there exists a locally closed subscheme

ι0 : R[reg]
τ ↪→ R

parametrising the modules which appear in the image of the HomX(T,−)-functor on

the full subcategory of all (m1,L)-regular coherent sheaves of topological type τ . Then

ι∗0M⊗AT is a flat, finitely presented family of (m1,L)-regular sheaves of topological type

τ . Let

ι : Q ↪→ R[reg]
τ

denote the open subscheme parametrising those sheaves which are also (m0,L)-regular,

and let F = ι∗M⊗A T . Let

Q[σ−ss] ⊂ Q

denote the open subscheme where the fibres of F are σ-semistable. Under the natural

fibrewise (over Y ) action of G on R, where G =
∏k
j=1(GL(dj1 ,C)×GL(dj2,C))/∆, the

subschemes Q and Q[σ−ss] are invariant. Endow R with the linearisation OR(χθ), where

θ = cθσ for some positive integer c chosen so that θ is integral, and let

Rσ−ss := RG−ss(χθ/Y )

be the corresponding relative GIT semistable locus (cf. Definition 2.4.1). Let Q[σ−ss] be

the closure of Q[σ−ss] in R, and set

(Q[σ−ss])σ−ss := Q[σ−ss] ∩Rσ−ss.

Theorem 6.4.8 ([10] Section 6, [55] Sections 9-10). Suppose σ is a positive stability

parameter which is bounded with respect to τ . Then there is an equality of schemes

(Q[σ−ss])σ−ss := Q[σ−ss]∩Rσ−ss = Q[σ−ss], and there exists a good quotient q : Q[σ−ss] →
Mσ,τ of Y -schemes for the action of G on Q[σ−ss], where

Mσ,τ = Q[σ−ss] //θσ G = Q[σ−ss] // G = ProjY

( ∞⊕
m=0

(p∗(OR(χmθσ)|
Q[σ−ss]))

G

)
.

The scheme Mσ,τ is projective over Y . Moreover, the closed points of Mσ,τ are in 1-1

correspondence with S-equivalence classes of σ-semistable sheaves over geometric fibres

of π : X → Y .
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Proof. Suppose first Y = SpecC is a point (that is, we are working with a fixed fibre

over some geometric point y ∈ Y ). That there is an equality Q[σ−ss] ∩Rσ−ss = Q[σ−ss],

and that there is a good quotient Mσ,τ of Q[σ−ss] given by

Mσ,τ = Proj

( ∞⊕
m=0

H0(Q[σ−ss],OR(χmθσ)|
Q[σ−ss])

G

)
,

both follow from [55, Theorem 10.1]. The projectivity (over SpecC) of Mσ,τ is Theorem

9.6 of loc. cit. (which in turn is proved in the same way as [10, Proposition 6.6], via

establishing that the valuative criterion for properness holds), and the identification of

the closed points of Mσ,τ with S-equivalence classes of semistable sheaves is [55, Theorem

9.4]. This yields the result in the fibrewise setting.

In order to pass from the fibrewise setting to working over the quasi-projective

scheme Y , we apply Proposition 2.4.5. Since the points of the relative semistable lo-

cus Rσ−ss = RG−ss(χθ/Y ) are determined by the fibrewise semistable loci, we have an

equality Q[σ−ss] ∩Rσ−ss = Q[σ−ss]. We also have the existence of a good quotient Mσ,τ

of Q[σ−ss], given by the relative projective spectrum

Q[σ−ss] // G = ProjY

( ∞⊕
m=0

(p∗(OR(χmθσ)|
Q[σ−ss]))

G

)
.

The description of the closed points of Mσ,τ is immediate from the fibrewise case. That

Mσ,τ is proper, and thus projective, over Y follows from the same valuative criterion

argument used in the proof of [10, Proposition 6.6], which carries over to the relative

case, exactly as in Section 6.5 of loc. cit..

6.4.6 The GIT Construction - Degenerate Case

Let π : X → Y , L1, . . . ,Lk and τ be as in Section 6.4.5, and fix a bounded stability

parameter σ = (L, σ1, . . . , σk). Suppose instead that σ is degenerate, that is some σi = 0.

In this case, the second conclusion of Theorem 6.4.7 no-longer applies; we instead proceed

as follows.

For integers m2 � m1 � m0 � 0, the result of Proposition 6.4.6 and the first

conclusion of Theorem 6.4.7 still applies to Y -flat coherent sheaves on X of topological

type τ . Fix such integers mi. Relabelling indices if necessary, we may assume there exists

a positive integer k′ < k with the property that σj > 0 for all j ≤ k′ and σj = 0 for all
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j > k′. Let L′ = (L1, . . . ,Lk′) and σ′ = (L′, σ1, . . . , σk′). Then σ′ is a positive stability

parameter, though with respect to a proper subset of the line bundles L1, . . . ,Lk.
Form a subquiverQ′ of the original quiverQ by taking the full subquiver with vertices

Q′0 = {vi, wj : i, j = 1, . . . , k′}. Let T ′, A′, d′, R′, G′ and Q′ be the objects associated

with the quiver Q′ (with R′ and G′ considered as schemes over Y ), so that if E is a

Y -flat, (m1,L′)-regular sheaf on X of topological type τ then HomX(T ′, E) is a flat

family of A′-modules of dimension vector d′. After possibly increasing the mi, we may

also assume that Proposition 6.4.6 and Theorem 6.4.7 apply to the positive stability

parameter σ′.

The inclusion Q′ ⊂ Q gives rise to a projection

φ′ : R→ R′.

Continue to set

θj1 =
σj∑
i σidi1

, θj2 = − σj∑
i σidi2

for all j = 1, . . . , k. The group G acts on R as G′ × G′′, where G′′ corresponds to the

rows j = k′ + 1, . . . , k of Q. Letting G′′ act on R′ trivially, the projection φ′ : R→ R′ is

G-equivariant. Consider the subschemes

D := Q[σ−ss] ⊂ R, Dσ−ss := D ∩Rσ−ss,

where Q[σ−ss] ⊂ R[reg]
τ is as defined in Section 6.4.5, as well as the subschemes

D′ := (Q′)[σ′−ss] ⊂ R′, (D′)σ
′−ss := D′ ∩ (R′)σ

′−ss.

Proposition 6.4.9 ([56] Proposition 2.3). The projection φ′ : R → R′ induces a G′-

equivariant, G′′-invariant map Dσ−ss → (D′)σ
′−ss, and the induced map φ̂′ : Dσ−ss //

G′′ → (D′)σ
′−ss = (Q′)[σ′−ss] is a G′-equivariant isomorphism.

Proof. In the case Y = SpecC, this is [56, Proposition 2.3]. The result in the relative

setting then follows from the fibrewise setting by invoking Proposition 2.4.5, as in the

proof of Theorem 6.4.8.

Corollary 6.4.10 ([56] Corollary 2.4). Suppose σ is a degenerate bounded stability pa-

rameter. Then there exists a good quotient Mσ,τ := Dσ−ss // G ∼= (D′)σ
′−ss // G′ of

Y -schemes for the action of G on Dσ−ss. The scheme Mσ,τ is projective over Y . More-

over, the closed points of Mσ,τ are in 1-1 correspondence with S-equivalence classes of

σ-semistable sheaves over geometric fibres of π : X → Y .
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6.4.7 The Master Space Construction

Instead of considering a single stability parameter, suppose we have a finite set of

bounded stability parameters S, with each σ ∈ S defined with respect to the invertible

sheaves L1, . . . ,Lk. We allow for some of these stability parameters to be degenerate.

Fix positive integers m2 � m1 � m0 � 0 such that for each stability parameter

σ ∈ S, as well as for any positive stability parameter σ′ obtained by truncating a

degenerate stability condition σ ∈ S, the conclusions of Proposition 6.4.6 and Theorem

6.4.7 all hold; suppose further that m0,m1 and m2 are chosen so that the formation of

the locally free sheaves Hij = π∗(L−m1
i ⊗ Lm2

j ) is always compatible with base change.

Form the affine Y -scheme

Z = ZS :=
⋃
σ∈S

Q[σ−ss]. (6.4.2)

For each σ ∈ S, let

Zσ−ss := Z ∩Rσ−ss.

The schemes Mσ,τ , for σ ∈ S, are all GIT quotients of the master space Z.

Theorem 6.4.11 ([55] Theorem 10.1, [56] Theorem 4.2). For each σ ∈ S, there is an

equality Zσ−ss = (Q[σ−ss])σ−ss = Q[σ−ss] ∩ Rσ−ss. In particular, Mσ,τ is equal to the

good quotient of Y -schemes

Zσ−ss // G = ProjY

( ∞⊕
m=0

(p∗OZ(χmσ ))G

)
, OZ(χmσ ) := OR(χmσ )|Z .

Proof. In the case where Y is a point, this is [55, Theorem 10.1] (when σ is positive)

and [56, Theorem 4.2] (when σ is degenerate). The result in the relative setting then

follows as a consequence of Proposition 2.4.5, as in the proof of Theorem 6.4.8.

6.4.8 Existence of Further Quotients

Assume now that X and Y both admit actions of a reductive linear algebraic group H,

with π an H-equivariant morphism. As in the hypotheses of Proposition 2.4.6, assume

there exists an equivariant open immersion ι : Y ↪→ Y into a projective scheme Y acted

on by H, with an ample H-linearisation L such that (over SpecC)

Y
ss

(L) = Y
s
(L) = Y.
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Assume in addition that L1, . . . ,Lk are H-linearised. Fix a topological type τ , and fix a

finite set of bounded stability parameters S defined with respect to the Li.
As in Section 6.4.5, form the Y -scheme

R =
k∏

i,j=1

HomY (Odi1Y ⊗Hij ,O
dj2
Y ), Hij = π∗(L−m1

i ⊗ Lm2
j ),

with the natural numbers m0,m1 and m2 chosen such that the formation of the locally

free sheaves Hij = π∗(L−m1
i ⊗ Lm2

j ) is always compatible with base change and such

that Theorem 6.4.11 applies for the fibrewise action of G on R, where as before G =∏k
j=1(GL(dj1 ,C) × GL(dj2,C))/∆. For each σ ∈ S, fix a positive integer c = cσ such

that the vector cθσ is integral, and let χσ = χcθσ denote the corresponding character of

G. The actions of H on X, Y and the Li give rise to an induced action of H on the

sheaves Hij lifting the action of H on Y . This in turn gives rise to an H-action on R,

with the natural projection p : R→ Y being H-equivariant; the actions of G and H on

R commute. In particular, we may consider each OR(χσ) as a (G×H)-linearisation on

R.

Let Z = ZS be as in (6.4.2), and let pσ : Zσ−ss →Mσ,τ be the good quotient over Y

given by Theorem 6.4.11; recall this is explicitly given as

Mσ,τ = Zσ−ss // G = ProjY

( ∞⊕
m=0

(p∗OZ(χmσ ))G

)
, OZ(χmσ ) := OR(χmσ )|Z .

Since each OZ(χmσ ) is naturally H-linearised and as the G and H-actions on R commute,

Mσ,τ admits a residual H-action, and the relatively ample twisting sheaf OM (1) on

Mσ,τ admits an induced H-linearisation. If qσ : Mσ,τ → Y denotes the H-equivariant

structure morphism, Proposition 2.4.6 is then applicable to qσ; in particular there exists

a geometric quotient Mσ,τ //H of Mσ,τ and a projective morphism q̂σ : Mσ,τ //H → Y //H

induced by qσ. By Lemma 2.1.3, the composition Zσ−ss → Mσ,τ → Mσ,τ // H is then a

good quotient for the (G×H)-action on Zσ−ss. This proves the following result.

Proposition 6.4.12. Let H be a reductive linear algebraic group. Let π : X → Y

be an equivariant projective morphism between quasi-projective schemes acted on by H.

Assume there exists an equivariant open immersion ι : Y ↪→ Y into a projective scheme

Y acted on by H, with an ample linearisation L such that Y
ss

(L) = Y
s
(L) = Y . Fix

H-linearised, π-very ample invertible sheaves L1, . . . ,Lk, fix a topological type τ of flat
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sheaves on the fibres of π and fix a finite set of bounded stability parameters S, with both

τ and S defined with respect to the Li. Form the subscheme Z = ZS given by Equation

6.4.2. Finally, fix σ ∈ S.

There then exists a projective good quotient Zσ−ss //G×H = Mσ,τ //H of Zσ−ss, and

there exists a natural projective morphism q̂σ : Zσ−ss // G × H → Y // H = Y
s
(L)/H.

If y ∈ Y is a closed point, the fibre of q̂σ over y is isomorphic to the geometric quotient

(Mσ,τ )y/StabH(y).

The good quotient Zσ−ss // G × H can be understood as the quotient of a relative

GIT semistable locus for a G×H-linearisation on Z.

Proposition 6.4.13. There exist positive integers a,N > 0 such that for all σ ∈ S,

there is an equality

Zσ−ss = ZG×H−ss(p∗(LaN |Y )⊗OZ(χNσ )/Y )

of open subschemes of Z.

Proof. Fix σ ∈ S. From the proof of Proposition 2.4.6, for all a� 0, each point of Mσ,τ

is H-stable with respect to the linearisation q∗σ(La|Y ) ⊗ OM (1). By Proposition 2.4.2

some power OM (Nσ) of OM (1) pulls back along the good quotient pσ to OZ(χNσσ )|Zσ−ss ;
we may assume without loss of generality that Nσ = N is the same for each σ ∈ S.

Fixing a > 0 sufficiently large, we have equalities

Zσ−ss = ZG−ss(OZ(χNσ )/Y ) = ZG−ss(p∗(LaN |Y )⊗OZ(χNσ )/Y );

the first equality follows from Zσ−ss = Z ∩ Rσ−ss = Z ∩ RG−ss(OR(χNσ )/Y ) and the

second equality holds since the relative G-semistable locus is determined fibrewise (cf.

Proposition 2.4.5). From this and from the observation that G×H-semistability implies

G-semistability, it suffices to show that there is an inclusion

ZG−ss(p∗(LaN |Y )⊗OZ(χNσ )/Y ) ⊂ ZG×H−ss(p∗(LaN |Y )⊗OZ(χNσ )/Y )

of open subschemes of Z.

If z ∈ ZG−ss(p∗(LaN |Y )⊗OZ(χNσ )/Y ) lies over z ∈Mσ,τ , as z is H-stable there exists

k > 0 and a section f ∈ H0(Mσ,τ , q
∗
σ(LakN |Y )⊗OM (kN))H such that the non-vanishing

locus (Mσ,τ )f is affine and z ∈ (Mσ,τ )f . If f ′ := p∗σ(f), then f ′ is a G × H-invariant

section of p∗(LaNk|Y )⊗OZ(χNkσ ) with affine non-vanishing locus p−1
σ ((Mσ,τ )f ) containing

z. Hence z ∈ ZG×H−ss(p∗(LaN |Y )⊗OZ(χNσ )/Y ).
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6.5 The GIT Construction of the Moduli Spaces

With the setup of the previous section, we are ready to begin proving Theorem 6.1.1.

6.5.1 Setup

Fix a projective variety X and consider the stack of stable maps Mg,n(X,β). Let

πU : UMg,n(X,β)→Mg,n(X,β) denote the universal family over Mg,n(X,β). Fix πU -

ample Q-invertible sheaves L1, . . . ,Lk. For each σ ∈ Σ := (Q≥0)k \{0} let Lσ =
⊗

i L
σi
i ,

and consider the stacks

J ac(σ) := J acssg,n,d,r(X,β)(Lσ) and J (σ) := J ssg,n,d,r(X,β)(Lσ).

Since replacing each Li with Lmi (wherem is a positive integer) does not alter the stability

condition, we assume without loss of generality that each Li is a genuine invertible sheaf

and is relatively very ample.

Lemma 6.5.1. The collection of all degree d, uniform rank r, torsion-free coherent

sheaves E over objects of the stack of stable maps Mg,n(X,β), for which there exists

some σ ∈ Σ such that E is σ-semistable, forms a bounded family.

Proof. Without loss of generality it is enough to consider stability conditions in the

compact convex set Σ′ :=
{
σ ∈ Σ :

∑k
i=1 σi = 1

}
. Since the stable maps in Mg,n(X,β)

vary in a bounded schematic family, there are only finitely many possible topological

types of nodal curves appearing in such a stable map. As such, there exists a constant

µ0 such that if E is a degree d, uniform rank r, torsion-free coherent sheaf lying over a

stable map (C, x, f) in Mg,n(X,β) which is L1-semistable, then

µLi(E) =
χ(E)

r
∑ρ

j=1 degCj L1
≤ µ0;

here Li denotes the pullback of Li to C, and C1, . . . , Cρ are the irreducible components

of C.

Take σ ∈ Σ′, and suppose E is a degree d, uniform rank r, torsion-free coherent sheaf

lying over a stable map (C, x, f) inMg,n(X,β) which is σ-semistable. If E is semistable

with respect to L1 then µ(E) ≤ µ0. Otherwise, let E′ ⊂ E denote the maximally
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destabilising subsheaf of E with respect to L1 (as E is torsion-free, then E′ is of pure

dimension 1). For any t ∈ [0, 1], set

σ(t) := (1− t+ tσ1, tσ2, . . . , tσk) ∈ Σ′.

Since µL1(E′) > µL1(E) and µσ(E′) ≤ µσ(E), by continuity there must exist t0 ∈ [0, 1]

with µσ(t0)(E′) = µσ(t0)(E). This implies

µL1(E′) =
χ(E′)∑

j rj(E
′) degCj L1

=

∑
i,j σ(t0)irj(E

′) degCj Li

r(
∑

j rj(E
′) degCj L1)(

∑
i,j σ(t0)i degCj Li)

χ(E).

(6.5.1)

Since each 0 ≤ rj(E′) ≤ r and are not all zero, since χ(E) is a constant, since the curve

C varies in a bounded family and since the set of stability conditions Σ′ is compact, it

follows from Equation (6.5.1) that there exists a constant µ1 ≥ µ0, depending only on

d, r, g, n,X, β and L, such that the following holds: for any degree d, uniform rank r,

torsion-free coherent sheaf E lying over a stable map (C, x, f) in Mg,n(X,β) which is

σ-semistable for some σ ∈ Σ′,

(i) either E is L1-semistable, and hence µL1(E) ≤ µ1; or

(ii) E is L1-unstable, and the L1-maximally destabilising subsheaf E′ ⊂ E satisfies

µL1(E′) ≤ µ1.

It follows by [69, Theorem 3.3.7] that the collection of all such sheaves E is bounded,

which proves the result.

As in Section 6.4.1, fix an embedding X ⊂ Pb, set OX(1) = OPb(1)|X and consider

the universal family φU : UI → I over the quasi-projective scheme I. Pulling back the

sheaves Li along the forgetful morphism I →Mg,n(X,β) gives φU -very ample invertible

sheaves L′i on UI, which are equivariant with respect to the GL(W )-action on I. Take

τ to be the topological type of degree d, uniform rank r torsion-free sheaves over the

fibres of φU with respect to the L′i (cf. remark in Section 5.2.3). By Theorem 6.4.1,

there exists an equivariant open immersion I ↪→ I and a linearisation L = LmW ,mb,mpts

on I for the induced SL(W )-action for which

I
ss

(L) = I
s
(L) = I,
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with Mg,n(X,β) ∼= I // SL(W ) isomorphic to the resulting geometric GIT quotient. In

particular, the results of Propositions 6.4.12 and 6.4.13 are applicable to the universal

family φU : UI → I and the linearised sheaves L′i.
Fix a finite subset S ⊂ Σ. We now restrict attention to stability parameters σ ∈ S.

As the collection of sheaves in question is bounded (cf. Lemma 6.5.1), we may pick

natural numbers m0, m1 and m2 such that Theorem 6.4.11 applies for the projective

morphism φU : UI → I and the sheaves L′i; from our choice of mi the formation of

the locally free sheaves Hij = (φU )∗((L′i)−m1 ⊗ (L′j)m2) is always compatible with base

change, and any sheaf appearing in J g,n,d,r(X,β) which is semistable with respect to

any σ ∈ S is (m0,L′)-regular.

Form the I-schemes

Z = ZS =
⋃
σ∈S

Q[σ−ss] ⊂ R =

k∏
i,j=1

HomI(O
di1
I ⊗Hij ,O

dj2
I ),

with the dimension vector given by

d = (d11, d12, . . . , dk1, dk2) = (P1(m1), P1(m2), . . . , Pk(m1), Pk(m2)).

We endow R with the usual fibrewise actions of the groups G and G̃, where

G̃ =
k∏
j=1

(GL(dj1 ,C)×GL(dj2,C)), G = G̃/∆.

As in Section 6.4.8, the G̃-action on R extends to an action of G̃ × GL(W ). The

G̃×GL(W )-action naturally descends to an action of G× PGL(W ), since the diagonal

one-parameter subgroups of both G̃ and GL(W ) act trivially.

We now restrict attention further to sheaves of uniform rank r.

Lemma 6.5.2. Let C → S be a flat, projective family of genus g prestable curves.

Let F be an S-flat torsion-free coherent sheaf on C, such that for each geometric point

s ∈ S, the sheaf Fs has Hilbert polynomial P with respect to a fixed choice of an S-ample

invertible on C. Then there exists an open and closed subscheme Sr ⊂ S such that, if

g : T → S is any morphism of schemes, then g factors through Sr ⊂ S if and only if for

all geometric points t ∈ T , the sheaf Fg(t) is of uniform rank r over the curve Cg(t).

Proof. This is essentially the content of [108, Lemma 8.1.1].
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Fix a stability parameter σ ∈ S. If σ is degenerate, let φ′ = φ′σ : R → R′ = R′σ be

the projection map described in Section 6.4.6, and let σ′ be the corresponding positive

stability parameter. By Theorem 6.4.8 and Proposition 6.4.9 we have equalities

Zσ−ss =

{
Q[σ−ss] if σ is positive,

(φ′)−1((Q′)[σ′−ss]) if σ is degenerate.

Both Q[σ−ss] and (Q′)[σ′−ss] parametrise flat families of torsion-free sheaves on prestable

curves, so by Lemma 6.5.2 there are open and closed subschemes, respectively denoted

Q
[σ−ss]
r and (Q′r)

[σ′−ss], parametrising those sheaves in the tautological family F which

are of uniform rank r. Let

Zσ−ssr =

{
Q

[σ−ss]
r if σ is positive,

(φ′)−1((Q′r)
[σ′−ss]) if σ is degenerate.

In both cases, the scheme Zσ−ssr is open and closed in Zσ−ss.

6.5.2 Stacks of σ-semistable Sheaves as Quotient Stacks

In the case where σ is positive, Zσ−ssr = Q
[σ−ss]
r gives a smooth presentation of both

J ac(σ) and J (σ), exhibiting both of these as quotient stacks.

Proposition 6.5.3. Suppose σ ∈ S is positive. Then there is an isomorphism of stacks

over Mg,n(X,β)

J ac(σ) := J acssg,n,d,r(X,β)(Lσ) ∼= [Zσ−ssr /G̃× PGL(W )].

Proof. Let [Zσ−ssr /G̃ × PGL(W )]pre denote the quotient pre-stack associated to the

G̃ × PGL(W )-action on Zσ−ssr = Q
[σ−ss]
r , so that [Zσ−ssr /G̃ × PGL(W )] is the stack

associated to [Zσ−ssr /G̃ × PGL(W )]pre. Given a morphism of schemes S → Zσ−ssr over

I, the pullback of the tautological family over Q
[σ−ss]
r gives rise to a flat family of

uniform rank r, degree d, σ-semistable torsion-free coherent sheaves over the family of

n-pointed genus g stable maps to X embedded in P(W )× Pr, obtained by pulling back

the universal family φU : UI → I to S giving an object of J ac(σ)(S). This defines a

morphism Zσ−ssr → J ac(σ) of stacks overMg,n(X,β) which is invariant with respect to

the action of G̃× PGL(W ), giving a morphism of categories fibred in groupoids

Φ : [Zσ−ssr /G̃× PGL(W )]pre → J ac(σ).
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By the uniqueness of stackifications, it suffices to show that the stackification Φ̃ of Φ is

an equivalence of categories fibred in groupoids.

Φ̃ is fully faithful: Since stackification is fully faithful, it suffices to show that Φ is

fully faithful. Suppose we are given morphisms γi : S → Zσ−ssr (i = 1, 2) such that the

resulting families of semistable sheaves over stable maps

(hi : Ci → S;σi1, . . . , σ
i
n; fi : Ci → X;Fi) ∈ J ac(σ)(S)

are isomorphic. Fix such an isomorphism; that is, fix an isomorphism of S-schemes

g : C1 → C2 which is compatible with the sections σij and the morphisms to X and fix

an isomorphism of coherent sheaves α : F1 → g∗F2.

The isomorphism g induces an isomorphism of invertible sheaves N1
∼= g∗N2, where

Ni = ωCi/S(σi1(S) + · · ·+ σin(S))⊗ f∗i (OX(3)).

Choose a ≥ 10 as in Section 6.4.1. As the restriction of N a
i to a geometric fibre is

non-special, the sheaves (hi)∗(N a
i ) are locally free of rank e − g + 1 = dimW . By the

universal property of I there are invertible sheaves Mi ∈ PicS and isomorphisms

OP(W )(1)⊗OPb(1)⊗OCi ∼= (ωCi/S(σi1(S)+ · · ·+σin(S)))a⊗f∗i (OX(3a+1))⊗OCi⊗h∗iMi

of invertible sheaves on Ci. Pull back these isomorphisms along the projection pW :

P(W )× Pb → P(W ) then push forward to S to obtain isomorphisms

(hi)∗(OP(W )(1)⊗OpW (Ci))
∼= (hi)∗(N a

i )⊗Mi.

As each point of I corresponds (after composing with the projection pW ) to a non-

degenerate curve in P(W ), the natural morphisms

H0(P(W ),OP(W )(1))⊗OS → (hi)∗(OP(W )(1)⊗OpW (Ci))

are both isomorphisms. The sequence of isomorphisms

H0(P(W ),OP(W )(1))⊗OS ∼= (h1)∗(OP(W )(1)⊗OpW (C1))

∼= (h1)∗(N a
1 )⊗M1

∼= (h2)∗(N a
2 )⊗M1

∼= (h2)∗(OP(W )(1)⊗OpW (C2))⊗M1 ⊗M−1
2

∼= H0(P(W ),OP(W )(1))⊗M1 ⊗M−1
2
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yields an automorphism of S × P(W ) sending the curve pW (C1) to pW (C2), along with

a corresponding S-valued point of PGL(W ), depending only on g, γ1 and γ2.

On the other hand, the isomorphism α : F1 → g∗F2 gives rise to an isomorphism

of A-modules HomX(T, F1) ∼= HomX(T, g∗F2). By Proposition 6.4.6, the A-module

HomX(T, F1) is canonically isomorphic to the pullback of the tautological family M|Zσ−ssr

along the morphism γ1, and similarly for the A-module HomX(T, g∗F2), so there is an

induced isomorphism between the (free) A-modules γ∗1(M|Zσ−ssr
) and γ∗2(M|Zσ−ssr

). Such

an isomorphism determines an S-valued point of G̃, depending only on α, γ1 and γ2. It

follows that Φ is fully faithful.

Φ̃ is essentially surjective: Take an object

(h : C → S;σ1, . . . , σn; f : C → X;F ) ∈ J ac(σ)(S). (6.5.2)

Let N be the invertible sheaf

N = ωC/S(σ1(S) + · · ·+ σn(S))⊗ f∗(OX(3)),

and consider the locally free sheaf h∗N a. From our choice of natural numbers mi the

sheaves h∗(F ⊗ (L′i)
m1
S ), h∗(F ⊗ (L′j)

m2
S ) (i, j = 1, . . . , k) appearing in the A-module

HomX(T, F ) are also all locally free OS-modules. Choose an open cover {Si} of S which

simultaneously trivialises the sheaves

h∗N a, h∗(F ⊗ (L′i)
m1
S ), i = 1, . . . , k, h∗(F ⊗ (L′j)

m2
S ), j = 1, . . . , k. (6.5.3)

As J ac(σ) is a stack, it suffices to show that the restriction of the object (6.5.2) to each

Si ⊂ S lies in the essential image of Zσ−ssr → J ac(σ). Without loss of generality, we

may therefore assume that all of the sheaves in (6.5.3) are free OS-modules.

Pick an isomorphism W∨ ⊗OS ∼= h∗N a. Pulling back to C, we obtain a quotient

W∨ ⊗OC ∼= h∗h∗La → La → 0.

This quotient embeds C inside S × P(W ) as a family of non-degenerate curves; in turn

C embeds inside S × P(W ) × Pb via the graph of f : C → X ⊂ Pb. From the universal

property of I we obtain a morphism γ′ : S → I. On the other hand, by Theorem 6.4.7 the

free A-module HomX(T, F ) is (fibrewise) σ-semistable, so from the universal property

of Zσ−ssr = Q
[σ−ss]
r we obtain a morphism γ : S → Zσ−ssr which lifts the morphism

γ′ : S → I. This proves that Φ̃ is essentially surjective, completing the proof of the

result.
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Corollary 6.5.4. Suppose σ ∈ S is positive. Then there is an isomorphism of stacks

over Mg,n(X,β)

J (σ) := J ssg,n,d,r(X,β)(Lσ) ∼= [Zσ−ssr /G× PGL(W )].

In particular, each of the stacks J (σ) is algebraic and of finite type over C.

Proof. Under the isomorphism of Proposition 6.5.3, the diagonal one-parameter sub-

group Gm
∼= ∆ ⊂ G̃ corresponds to the standard central copy of Gm in the automor-

phism groups of the sheaves appearing in J ac(σ). The desired isomorphism is then

obtained by rigidifying the isomorphism of Proposition 6.5.3 with respect to these copies

of Gm.

Remark. We only claim that Zσ−ssr gives a smooth presentation when σ is positive.

However, in the degenerate case the scheme (Q′r)
[σ′−ss] can be used to exhibit J ac(σ)

and J (σ) as quotient stacks, after replacing G̃ and G with G̃′ and G′ respectively.

6.5.3 The Good Moduli Spaces are GIT Quotients

With the notation as above, we now show that the stack J (σ) admits a projective good

moduli space, which is a good quotient of the parameter space Zσ−ssr .

Theorem 6.5.5. Let σ ∈ S be either positive or degenerate. The stack J (σ) admits a

projective good moduli space

J(σ) = J
ss
g,n,d,r(X,β)(Lσ),

which is a tame moduli space if all σ-semistable sheaves appearing in J (σ) are σ-stable.

Moreover, J(σ) is a good quotient of the scheme Zσ−ssr under the action of the group

G× SL(W ):

J(σ) ∼= Zr //θσ G× SL(W ) := Zσ−ssr // G× SL(W ).

This good quotient coincides with the quotient of a relative (over I) GIT semistable locus

for the action of G× SL(W ) on Zr.

Proof. First note that if all σ-semistable sheaves appearing in J (σ) are σ-stable then

J (σ) is a Deligne–Mumford stack (cf. Section 6.3.2), hence any good moduli space is

automatically a coarse/tame moduli space.
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Since I
SL(W )−ss

(L) = I
SL(W−s)

(L) = I, after first replacing Z with the open and

closed subscheme Zr, the results of Propositions 6.4.12 and 6.4.13 are applicable to the

morphism Zr → I. As such, there exists a G × SL(W )-linearisation L̃σ on Zr, an

equality Zσ−ssr = ZG×SL(W )−ss(L̃σ/I) of semistable loci, and a projective good quotient

Zσ−ssr // G× SL(W ) for the action of G× SL(W ) on Zσ−ssr .

Since the group GL(W ) acts on Zσ−ssr through the quotient PGL(W ), there is a

canonical identification of good quotients

Zσ−ssr // G× SL(W ) ≡ Zσ−ssr // G× PGL(W ).

If σ is positive, the isomorphism J(σ) ∼= Zr//θσG×SL(W ) follows by combining Corollary

6.5.4 with Proposition 2.3.6. If instead σ is degenerate, we apply Corollary 6.5.4 with

Proposition 2.3.6 to Zσ
′−ss

r in place of Zσ−ssr and G′ in place of G, then apply Corollary

6.4.10 to obtain an isomorphism of good quotients

Zσ−ssr // G× SL(W ) ∼= Zσ
′−ss

r // G′ × SL(W ) ≡ Zσ′−ssr // G′ × PGL(W ).

This completes the proof.

6.5.4 Closed Points of the Moduli Spaces

Continue to fix the stability condition σ. Let (C, x, f) be a stable map in Mg,n(X,β),

and let [(C, x, f)] be the corresponding point in the coarse moduli space Mg,n(X,β).

Denote the pullback of J (σ) along (C, x, f) : SpecC→Mg,n(X,β) as J (C,x,f)(σ).

Fix a point j0 ∈ I corresponding to an embedded stable map whose underlying stable

map is (C, x, f). If (Zr)
σ−ss
j0

denotes the pullback of the master space Zσ−ssr along j0,

the good quotient (Zr)
σ−ss
j0

// G is isomorphic to the good moduli space J (C,x,f)(σ) of

J (C,x,f)(σ). By Theorem 6.4.8 and Corollary 6.4.10, the closed points of J (C,x,f)(σ) are

in 1-1 correspondence with S-equivalence classes of σ-semistable degree d, uniform rank

r, torsion-free sheaves on the nodal curve C underlying (C, x, f). The automorphism

group Aut(C, x, f) of the stable map (C, x, f) acts on the moduli space J (C,x,f)(σ), with

the action corresponding to taking pullbacks of sheaves.

Proposition 6.5.6. The fibre of the map J(σ) → Mg,n(X,β) over the closed point

[(C, x, f)] ∈Mg,n(X,β) is isomorphic to the geometric quotient J (C,x,f)(σ)/Aut(C, x, f).
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Proof. Applying the final statement of Proposition 6.4.12, it is enough to show that the

image of the stabiliser subgroup StabSL(W )(j0) of the point j0 under the SL(W ) action

on I inside PGL(W ) can be identified with Aut(C, x, f). But this follows by the same

argument used to prove that Φ is fully faithful in the proof of Proposition 6.5.3, taking

the base S to be SpecC.

This yields the following description of the closed points of J(σ), analogous to the

result [108, Theorem 8.2.1].

Proposition 6.5.7. Let (C, x, f) be a stable map in Mg,n(X,β), and let [(C, x, f)] be

the corresponding point in the coarse moduli space Mg,n(X,β). Then the closed points

of J(σ) lying over the closed point [(C, x, f)] are in 1-1 correspondence with equivalence

classes of σ-semistable uniform rank r, degree d, torsion-free sheaves E over C, where

sheaves E and E′ are equivalent if and only if the Jordan–Hölder factors of these sheaves

differ by an automorphism of the stable map (C, x, f).

Remark. As a consequence of Proposition 6.5.7, the open substack J s(σ) ⊂ J (σ)

parametrising σ-stable sheaves is saturated with respect to the good moduli space mor-

phism πσ : J (σ)→ J(σ), in the sense that

J s(σ) = π−1
σ (πσ(J s(σ))).

Therefore J
s
(σ) := πσ(J s(σ)) is an open subscheme of J(σ) which is a coarse/tame

moduli space for J s(σ) (cf. [6, Remark 6.2]).

6.6 Wall and Chamber Decompositions

We now turn to proving Theorem 6.1.2, which concerns what happens as the parameter

σ varies in the space of stability conditions.

6.6.1 Existence of Stability Decompositions

Here we closely follow [55, Section 4]. We keep the notation of Section 6.5. Fix πU -

ample Q-invertible sheaves L1, . . . ,Lk on the universal curve, and denote by Σ′ ={
σ ∈ (Q≥0)k \ {0} :

∑k
i=1 σi = 1

}
the resulting space of stability conditions.

111



Definition 6.6.1. A chamber structure on Σ′ is given by a collection {Wi : i ∈
I} of walls, where each wall is either a real hypersurface in the convex space Σ′R ={
σ ∈ (R≥0)k \ {0} :

∑k
i=1 σi = 1

}
(the proper walls), or all of Σ′R. A subset C ⊂ Σ′R

which is maximally connected with respect to the property that for each i ∈ I, either

C ⊂Wi or C ∩Wi = ∅, is called a chamber. The chamber structure is said to be rational

linear if each proper wall Wj is a rational hyperplane, and proper if all walls are proper.

Consider the collection of sheaves S consisting of all sheaves F for which there exists

σ ∈ Σ′ and a σ-semistable, degree d, uniform rank r, torsion-free coherent sheaf E over

some stable map (C, x, f) in Mg,n(X,β), such that F is a saturated subsheaf of E and

such that for some σ′ ∈ Σ′ (not necessarily equal to σ), one has µσ
′
(F ) ≥ µσ′(E).

Lemma 6.6.2 (cf. [55], Lemma 4.5). The collection S is a bounded family of sheaves.

Proof. Suppose E ⊃ F ∈ S with E σ-semistable and µσ
′
(F ) ≥ µσ′(E). By Lemma 2.11

of loc. cit. there exists j ∈ {1, . . . , k} with µLj (F ) ≥ µσ
′
(E). Since by Lemma 6.5.1

E varies in a bounded family, and since the quotient E/F is torsion-free or zero, the

boundedness of S follows by applying Grothendieck’s lemma [69, Lemma 1.7.9], as in

the proof of [55, Lemma 4.5].

Now suppose E ⊃ F ∈ S is a sheaf over some stable map (C, x, f) in Mg,n(X,β).

Suppose the underlying curve C has irreducible components C1, . . . , Cρ. Set

WF,(C,x,f) :=

σ ∈ Σ′R :

k∑
i=1

σi

rχ(F )

ρ∑
j=1

degCj Li − χ(E)

ρ∑
j=1

rj(F ) degCj Li

 = 0

 .

Each WF,(C,x,f) is empty, the whole of Σ′ or a rational hyperplane in Σ′R. In the first

case the wall WF,(C,x,f) is discarded. As the wall WF,(C,x,f) depends only on the Euler

characteristic and the multirank of F , and as S is bounded, letting F ∈ S vary yields

finitely many possibilities for the proper walls which arise in this way, each of which is a

rational hyperplane. This gives rise to a finite rational linear chamber structure on the

set Σ′.

Lemma 6.6.3. Suppose E is a degree d torsion-free coherent sheaf of uniform rank r

over some stable map (C, x, f), such that E is semistable with respect to some σ ∈ Σ′.

Suppose further that F is a saturated subsheaf of E with F ∈ S. Suppose additionally

that σ′, σ′′ ∈ Σ′ lie in a common chamber C ⊂ Σ′. Then µσ
′
(F ) < (≤) µσ

′
(E) if and

only if µσ
′′
(F ) < (≤) µσ

′′
(E).
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Proof. This proof proceeds on similar lines to the proof of Lemma 4.6 of loc. cit. We

deal with the non-strict inequality case; the strict inequality case follows by essentially

the same argument. Swapping σ′ and σ′′ if necessary, suppose for a contradiction that

µσ
′
(F ) ≤ µσ′(E) and µσ

′′
(F ) > µσ

′′
(E).

Consider the linear function h : Σ′R → R given by

h(σ) =
k∑
i=1

σi

rχ(F )

ρ∑
j=1

degCj Li − χ(E)

ρ∑
j=1

rj(F ) degCj Li

 .

By definition WF,(C,x,f) is the zero set of h. By assumption, we have h(σ′) ≤ 0 and

h(σ′′) > 0. Since σ′ and σ′′ are both contained in the chamber C, it follows that

C ∩WF,(C,x,f) = ∅. On the other hand there exists σ′′′ ∈ Σ′ on the line segment joining

σ′ and σ′′ with h(σ′′′) = 0. As the chamber C is convex, C must contain this line segment,

which implies C ∩WF,(C,x,f) 6= ∅, a contradiction.

Proposition/Definition 6.6.4. There exists a rational linear chamber structure on Σ′

cut out by finitely many walls, such that if σ′, σ′′ ∈ Σ′ belong to the same chamber, then:

1. if E is a degree d, uniform rank r torsion-free coherent sheaf over a stable map in

Mg,n(X,β), then E is σ′-semistable if and only if E is σ′′-semistable; and

2. if E and E′ are degree d, uniform rank r torsion-free coherent sheaves over the

same stable map (C, x, f) in Mg,n(X,β), which are both semistable with respect to

both σ′ and σ′′, then E and E′ are S-equivalent with respect to σ′ if and only if

they are S-equivalent with respect to σ′′.

Moreover, if σ ∈ Σ′ does not lie in any wall then all σ-semistable sheaves are σ-stable.

We refer to this chamber structure on Σ′ as the stability chamber decomposition (with

respect to L1, . . . ,Lk), and to the corresponding chambers as stability chambers.

Proof. The proof of the first two assertions proceeds along very similar lines to the proof

of Proposition 4.2 of loc. cit. Suppose σ′, σ′′ ∈ Σ′ lie in the same chamber. Let E be

a σ′-semistable, degree d, uniform rank r, torsion-free coherent sheaf over a stable map

(C, x, f) in Mg,n(X,β), and let F ⊂ E be a saturated subsheaf. If µσ
′′
(F ) < µσ

′′
(E)

then F does not destabilise E; otherwise E ⊃ F ∈ S and so µσ
′′
(F ) ≤ µσ′′(E) by Lemma

6.6.3. As such, E is also σ′′-semistable; this establishes the first assertion.
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To establish the second assertion, suppose E is strictly σ′-semistable, so that there

exists a saturated subsheaf F ⊂ E with µσ
′
(F ) = µσ

′
(E). By Lemma 6.6.3, for any such

subsheaf F we have µσ
′′
(F ) = µσ

′′
(E). In particular, a maximal length Jordan–Hölder

filtration of E with respect to σ′ must also be a maximal length Jordan–Hölder filtration

of E with respect to σ′′ and vice versa, so grJH
σ′ (E) ∼= grJH

σ′′ (E); this proves the second

assertion.

It remains to show that if σ ∈ Σ′ is not contained in any wall WF,(C,x,f) then all

σ-semistable sheaves are σ-stable. However, if E is a σ-semistable degree d, uniform

rank r torsion-free coherent sheaf over the stable map (C, x, f) then for all saturated

subsheaves F ⊂ E we must have µσ(F ) < µσ(E), which implies that E is σ-stable.

6.6.2 Changing the Stability Condition and VGIT

As a consequence of the master space construction of Section 6.5 and the existence of a

finite stability decomposition on the space of stability conditions Σ′, the moduli spaces

J(σ) are always related by finite sequences of Thaddeus flips (cf. Definition 2.5.5).

Theorem 6.6.5. With the notation as in Section 6.5.1, let σ0, σ1 ∈ Σ′ be stability

parameters defined with respect to the relatively ample Q-invertible sheaves L1, . . . ,Lk.

Let σ(t) = (1 − t)σ0 + tσ1 for t ∈ Q ∩ [0, 1]. Then the good moduli spaces J(σ0) and

J(σ1) are related by a finite number of Thaddeus flips of the form

J(σ(ti)) J(σ(ti+1))

J(σ(t′i))

(6.6.1)

for some ti, t
′
i ∈ Q∩ [0, 1]. In particular, J(σ0) and J(σ1) are related by a finite number

of Thaddeus flips through moduli spaces of rank r, degree d, torsion-free coherent sheaves

over stable maps in Mg,n(X,β).

Proof. The proof proceeds along similar lines to that of [56, Theorem 5.2]. If σ0 and σ1

define the same stability condition then there is nothing to prove. Suppose instead that

σ0 and σ1 lie in different stability chambers. As per usual, without loss of generality

we may assume that the Li are genuine relatively very ample invertible sheaves. Let

S ⊂ Σ′ ∩ {σ(t) : t ∈ Q ∩ [0, 1]} be a set of representative stability conditions for each of
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the stability chambers the line segment σ(t) intersects, with exactly one representative

in S for each such chamber; for the chambers containing σ0 and σ1, we choose these

stability conditions as representatives. As the stability decomposition is cut out by

finitely many walls, the set S is finite.

As in Section 6.5.1 form the master space Z = ZS; the moduli spaces J(σt) obtained

as t ∈ [0, 1] varies are all GIT quotients of this master space. Every time a wall Wi

separating chambers Ci and Ci+1 with respective representative stability conditions σ(ti)

and σ(ti+1) is crossed by σ(t), taking limits in the inequalities (5.2.5) give inclusions

Zσ(ti)−ss
r ⊂ Zσ(t′i)−ss

r ⊃ Zσ(ti+1)−ss
r .

Here σ(t′i) is the stability condition between σ(ti) and σ(ti+1) lying on the wall Wi. The

moduli spaces J(σ(ti)) and J(σ(ti+1)) are then related by the Thaddeus flip8 (6.6.1)

through the moduli space J(σ(t′i)). As there are finitely many wall crossings between

σ0 and σ1, the good moduli spaces J(σ0) and J(σ1) are related by a finite number of

Thaddeus flips.

6.7 Singularities of the Moduli Spaces over M g,n

In this final part of Chapter 6 we prove Theorem 6.1.3, which extends [31, Theorem A]

to the case where there are n > 0 marked points. Evidently, as far as stability conditions

are concerned it is enough to work with a single relatively (very) ample invertible sheaf

L on the universal curve over Mg,n. As such, we will prove the following theorem.

Theorem 6.7.1. Fix a relatively very ample invertible sheaf L on the universal curve

overMg,n. Assume g ≥ 4. Then the good moduli space J
ss
g,n,d,1(SpecC, 0)(L) has canon-

ical singularities.

This section closely follows the papers [30] and [31].

6.7.1 An Alternative GIT Construction of Compactified Universal Ja-
cobians

The construction presented in Section 6.5 was carried out in such a way as to be able to

relate changes in stability conditions to variation of GIT (cf. Theorem 6.1.2). However,

8This is a Thaddeus flip in the sense of Definition 2.5.5, since the above loci are relative GIT semistable
loci, cf. Theorem 6.5.5.
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in order to be able to prove Theorem 6.7.1, it will be helpful to instead work with

an alternative GIT construction of the good moduli space J
ss
g,n,d,r(X,β)(L), based on

Simpson’s construction (cf. Section 4.2); this construction is similar to the construction

given by Pandharipande in [108].

Fix a relatively very ample invertible sheaf L on the universal curve overMg,n(X,β).

Once again, consider the universal family (φU : UI → I; τ1, . . . , τn) from Section 6.4.1,

and let Lcurve = LmW ,mb,mpts , with the triple (mW ,mb,mpts) as in the statement of

Theorem 6.4.1, so that we have I
SL(W )−ss

(Lcurve) = I
SL(W )−s

(Lcurve) = I.

This time, we apply Simpson’s construction to the projective morphism φU : UI → I,

along with the pullback LI of L to UI. For M � N � 0, this yields an open subscheme

R′ = RN of QN = QuotUI/I(VN ⊗L−NI , P̃ ), where P̃ is the Hilbert polynomial of degree

d, uniform rank r torsion-free sheaves over the fibres of the universal curve φU with

respect to LI . We also obtain a fibrewise action of GL(V ) = GL(VN ) (which factors

through the quotient PGL(VN )) and a relatively ample (with respect to the structure

morphism R′ → I) linearisation Lsheaf = LN,M on R′, the closure of R′ in QN , for which

R′
SL(V )−ss

(Lsheaf) = R′. By Lemma 6.5.2, there exists an open and closed subscheme

R′r ⊂ R′ parametrising those points of R′ whose underlying coherent sheaf is of uniform

rank r. The schemes R′ and R′r admit actions by the product group GL(V )×GL(W );

both actions factor through the quotient PGL(V )× PGL(W ).

Proposition 6.7.2. There are isomorphisms of stacks over Mg,n(X,β)

J acssg,n,d,r(X,β)(L) ∼= [R′r/GL(V )× PGL(W )]

and

J ssg,n,d,r(X,β)(L) ∼= [R′r/PGL(V )× PGL(W )].

Moreover, there is a projective good quotient R′d // SL(V ) × SL(W ) = R′d // PGL(V ) ×
PGL(W ), and this is isomorphic to the good moduli space J

ss
g,n,d,r(X,β)(L) of both

J acssg,n,d,r(X,β)(L) and J ssg,n,d,r(X,β)(L).

Proof. After making the necessary modifications to take into account the use of Simp-

son’s construction, the argument used to prove the first assertion proceeds along the

same lines as the ones used to prove Proposition 6.5.3 and Corollary 6.5.4. That is,
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there is an equivariant morphism R′r → J acssg,n,d,r(X,β)(L), inducing a morphism of

categories fibred in groupoids

Φ : [R′r/GL(V )× PGL(W )]pre → J acssg,n,d,r(X,β)(L).

This morphism is fully faithful, hence so is its stackification Φ̃. The morphism Φ̃ is then

an isomorphism of algebraic stacks [R′r/GL(V )×PGL(W )]
'→ J acssg,n,d,r(X,β)(L). The

Gm-rigidification of this morphism yields an isomorphism [R′r/PGL(V )× PGL(W )]
'→

J ssg,n,d,r(X,β)(L).

That there exists a projective good quotient R′d //SL(V )×SL(W ) = R′d //PGL(V )×
PGL(W ) isomorphic to the good moduli space J

ss
g,n,d,r(X,β)(L) now follows from Propo-

sition 2.3.6 (which asserts that if a quotient stack [Y/G] has a schematic good moduli

space M then M is a good quotient of Y by G) and the uniqueness of good moduli

spaces.

The existence of a projective good quotient R′d //SL(V )×SL(W ) can also be proved

using relative GIT, in a way similar to Pandharipande’s construction [108]. The exis-

tence of a relatively projective good quotient of R′d over I with respect to the fibrewise

SL(V ) action is given by Theorem 4.2.5. The formation of the quotient with respect

to the residual SL(W )-action can then be carried out using Proposition 2.4.6. The

resulting good quotient coincides with the quotient of a relative GIT semistable locus

R
′SL(V )×SL(W )−ss
r (L̃/I) for some ample SL(V ) × SL(W )-linearisation L̃ on the closure

R
′
r of Rr, analogously to the result of Proposition 6.4.13. Since each point of I is

SL(W )-stable, each point of R′r is (relatively) stable under the action of SL(W ).

Lemma 6.7.3. Let p ∈ R′r be a point corresponding to a L-semistable sheaf F over the

stable map (C, x, f). Then the point p is SL(V )× SL(W )-polystable if and only if F is

a polystable sheaf (with respect to L).

Proof. The point p is polystable if and only if π−1(π(p)) equals the SL(V )×SL(W )-orbit

of p in R′r (as opposed to the orbit closure), where π : R′r → R′r//SL(V )×SL(W ) denotes

the GIT quotient. Since the SL(W )-quotient R′r // SL(V )→ (R′r // SL(V )) // SL(W ) =

R′r //SL(V )×SL(W ) is a geometric quotient, and in particular an orbit space morphism,

this is true if and only if (π′)−1(π′(p)) = SL(V )·p where π′ : R′r → R′r//SL(V ) is the GIT

quotient with respect to SL(V ), i.e. p is SL(V )-polystable. But p is SL(V )-polystable

if and only if F is L-polystable, by Theorem 4.2.5.
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For the rest of this chapter, we restrict attention to the setting of considering torsion-

free uniform rank r = 1 sheaves over marked stable curves (C, x) ∈ Mg,n which are

(fibrewise) semistable with respect to the choice of relatively (very) ample invertible

sheaf L. As such, for the rest of this chapter we introduce the following shorthand

notation.

Notation 6.7.4. We denote J g,n := J ssg,n,d,1(SpecC, 0)(L), and denote its good moduli

space as Jg,n.

6.7.2 Deformation Functors

Before we can begin proving Theorem 6.7.1, we first need to study the deformation theory

of torsion-free rank 1 sheaves on marked stable curves. The content of this section closely

follows [30, Section 3].

Let (C, x) be a marked curve (not necessarily complete), and let F be a coherent

sheaf on C. Let A be a local C-algebra with residue field C.

Definition 6.7.5. A deformation of (C, x, F ) over A is a quintuple (CA, xA, FA, i, j)

where:

1. CA is a flat A-scheme, and xA is a tuple of sections xk,A : SpecA → CA (for

k = 1, . . . , n);

2. FA is an A-flat coherent sheaf on CA of finite presentation;

3. i is an isomorphism CA ⊗A C '→ C, compatible with the sections x and xA; and

4. j : i∗(FA ⊗A C)
'→ F is an isomorphism of OC-modules.

The trivial deformation of (C, x, F ) over A is the quintuple (C ⊗C A, x ⊗C A,F ⊗C

A, ican, jcan), where ican and jcan are the canonical maps.

If (C ′A, x
′
A, F

′
A, i
′, j′) is a second deformation of (C, x, F ) over A, then an isomor-

phism of deformations from (CA, xA, FA, i, j) to (C ′A, x
′
A, F

′
A, i
′, j′) is a pair (η, λ), where:

1. η is an isomorphism of A-schemes CA
'→ C ′A, compatible with the sections xA and

x′A, such that i′ ◦ (η ⊗ 1) = i; and

2. λ is an isomorphism of OC′A-modules η∗(FA)
'→ F ′A such that j′ ◦ i′∗(λ⊗ 1) = j.
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A deformation of (C, x) over A is defined by omitting the data of FA and j from the

definition of a deformation of a triple (C, x, F ); the trivial deformation of (C, x) over A

and isomorphisms of deformations of (C, x) over A are defined analogously.

A deformation of F over A is a pair (FA, j) such that (C ⊗C A, x ⊗C A,FA, ican, j)

is a deformation of (C, x, F ) over A. The trivial deformation of F over A is the pair

(F ⊗C A, jcan). If (F ′A, j
′) is a second deformation of F over A, an isomorphism of

deformations from (FA, j) to (F ′A, j
′) is an isomorphism λ : FA

'→ F ′A such that j =

j′ ◦ (λ⊗ 1).

Definition 6.7.6. The functor Def(C,x,F ) : ArtC → Set is defined by setting Def(C,x,F )(A)

to be the set of all isomorphism classes of deformations of (C, x, F ) over A. The functors

Def(C,x) and DefF are defined analogously.

Recall from Section 6.3.1 that an automorphism of the triple (C, x, F ) is a pair (σ, τ),

where σ ∈ Aut(C, x) and τ is an isomorphism of OC-modules σ∗F
'→ F . The group

Aut(C, x, F ) acts in a natural way on Def(C,x,F ), via

(σ, τ) : (CA, xA, FA, i, j) 7→ (CA, xA, FA, σ ◦ i, τ ◦ σ∗(j)). (6.7.1)

In a similar manner, there are actions of Aut(C, x) on Def(C,x) and Aut(F ) on DefF .

Notation 6.7.7. Given a marked prestable curve (C, x), a local C-algebra A with residue

field C and a deformation (CA, xA) of (C, x) over A, we denote9

L(CA,xA) := ω10
CA/A

(
10

(
n∑
i=1

xi,A

))
.

We also denote L(C,x) := L(CC,xC) = ω10
C (10(x1 + · · ·+ xn)).

We now introduce the deformation functors arising from the parameter scheme

Q := QN = QuotUI/I(VN ⊗ L−NI , P̃ ),

where V = VN is a finite dimensional C-vector space. Suppose we are given a quotient

q : V ⊗ L−N(C,x) → F and a closed embedding p : (C, x) → P(W ) × P(W )×n which on C

restricts to a 10-log-canonical10 non-degenerate closed embedding C → P(W ).

9From now on we fix a = 10.
10That is, the pullback of OP(W )(1) to C is isomorphic to L(C,x) = ω10

C (10(x1 + · · ·+ xn)).
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Definition 6.7.8. A deformation of the pair (p, q) over A is a septuple of the form

(CA, xA, FA, i, j, pA, qA) such that:

1. (CA, xA, FA, i, j) is a deformation of (C, x, F ) over A;

2. pA : (CA, xA) → PA(W ) × PA(W )×n is a closed embedding such that OCA(1) and

ω10
CA/A

(10xA) are isomorphic and such that pA ⊗ 1 = p ◦ i; and

3. qA : V ⊗ L−N(CA,xA) → FA is a quotient with q = j ◦ i∗(qA ⊗ 1).

Given a second deformation (p′, q′) over A, an isomorphism of deformations from (p, q)

to (p′, q′) is given by an isomorphism (η, λ) of the underlying deformations of (C, x, F )

with the additional properties that:

1. λ ◦ η∗(qA) = q′A; and

2. pA = p′A ◦ η.

A deformation of the triple (C, x, q) over A is a sextuple (CA, xA, FA, i, j, qA), where

qA : V ⊗ L−N(CA,xA) → FA is a quotient such that:

1. (CA, xA, FA, i, j) is a deformation of (C, x, F ) over A; and

2. q = j ◦ i∗(qA ⊗ 1).

Given a second deformation (C ′A, x
′
A, F

′
A, i
′, j′, q′A) over A, an isomorphism of deforma-

tions from (CA, xA, FA, i, j, qA) to (C ′A, x
′
A, F

′
A, i
′, j′, q′A) is given by an isomorphism (η, λ)

of the underlying deformations of (C, x, F ) with the additional property that λ◦η∗(qA) =

q′A.

We define the functor Def(p,q) : ArtC → Set (resp. Def(C,x,q) : ArtC → Set) by

assigning to A the set of all isomorphism classes of deformations of (p, q) (resp. (C, x, q))

over A.

6.7.3 Miniversal Deformation Rings

We require an explicit miniversal deformation ring for the functor Def(C,x,F ). In order

to obtain such a ring, we first give an explicit description for the miniversal deformation

ring for the local model (O0, F0). Here we continue to follow [30, Section 3].
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Definition 6.7.9. The standard node is the complete local C-algebra O0 = C[[x, y]]/(x, y).

Denote the normalisation of O0 by Õ0; as a subring of Frac(O0), this is the ring

O0[x/(x + y)]. We additionally denote by F0 the ideal (x, y) ⊂ O0, considered as an

O0-module.

The module F0 is the unique torsion-free uniform rank 1 O0-module (cf. [45, Chapter

III]), and admits the following descriptions:

(i) F0 = Õ0, considered as an O0-module; and

(ii) the O0-module with presentation 〈e, f : y · e = x · f = 0〉.

It is a standard result that a miniversal deformation space for the standard node

arises from the family of curves SpecC[[x, y, t]]/(xy − t) → SpecC[[t]], realising C[[t]]

as a miniversal deformation ring for DefO0 (see for instance [63, Example 14.0.1]). The

deformation functor Def(O0,F0) similarly admits an explicit miniversal deformation ring.

Definition 6.7.10. Define a deformation (OS , FS , i, j) of (O0, F0) over the ring S :=

C[[u, v, t]]/(uv − t) by setting:

1. OS = S[[x, y]]/(xy − t);

2. FS to be the OS-module with presentation 〈ẽ, f̃ : y · ẽ = −u · f̃ , x · f̃ = −v · ẽ〉;

3. i : OS ⊗S C '→ O0 to be the isomorphism which is the identity on x and y; and

4. j : i∗(FS ⊗S C)
'→ F0 to be the isomorphism defined by ẽ⊗ 1 7→ e and f̃ ⊗ 1 7→ f .

Lemma 6.7.11 ([30], Lemma 3.14). The deformation (OS , FS , i, j) defines a morphism

Spf(S)→ Def(O0,F0) which realises S = C[[u, v, t]]/(uv − t) as a miniversal deformation

ring for Def(O0,F0).

6.7.4 Deformations of Stable Curves

Before continuing, we collect a couple of standard results concerning the deformation

theory of marked stable curves.

Proposition 6.7.12. Let (C, x) be an n-marked stable curve of genus g.
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1. The tangent space to Def(C,x) is isomorphic to Ext1
C(ΩC(x),OC); the dimension

of this vector space is 3g − 3 + n.

2. There exists a local universal deformation of (C, x) over a smooth pointed scheme

(B, b0) whose Kodaira–Spencer map Tb0B → TDef(C,x)
∼= Ext1

C(ΩC(x),OC) is an

isomorphism.

Proof. See for instance [12, Pages 182-186].

6.7.5 Global-to-Local Transformations

Suppose (C, x, F ) is a triple consisting of a torsion-free uniform rank 1 coherent sheaf F

over a stable curve (C, x). Let ∆ = ∆(C,F ) denote the set of nodes of C where F fails to

be locally free. For a node e ∈ ∆, let Ce = Spec ÔC,e and let Fe denote the pullback of

F to Ce. We have global-to-local transformations of deformation functors:

Def(C,x,F ) →
∏
e∈∆

Def(Ce,Fe), DefF →
∏
e∈∆

DefFe , Def(C,x) →
∏
e∈∆

DefCe .

Proposition 6.7.13. All of these transformations are formally smooth. Moreover, the

deformation functors
∏
e∈∆ DefCe and

∏
e∈∆ Def(Ce,Fe) are both unobstructed.

Proof. The formal smoothness of Def(C,x) →
∏
e∈∆ DefCe follows from the same argu-

ment given in [39, Proposition 1.5], after first replacing ΩC with ΩC(x) and making

use of the isomorphism TDef(C,x)
∼= Ext1

C(ΩC(x),OC). The formal smoothness of the

middle transformation is a special case of [49, Proposition B.1]. From Proposition A.3

and Remark A.4 of loc. cit., the functors
∏
e∈∆ DefCe and

∏
e∈∆ Def(Ce,Fe) are both

unobstructed.

Using the same argument used to prove Proposition A.1 and Lemma A.2 of loc. cit.,

the canonical map

Def(C,x,F ) → Def(C,x) ×∏
e∈∆ DefCe

(∏
e∈∆

Def(Ce,Fe)

)

is formally smooth. As such, Def(C,x,F ) →
∏
e∈∆ Def(Ce,Fe) is a composition of formally

smooth functors, whence formally smooth.
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Define Def∆−loc
(C,x,F ) = Def∆−loc

(C,F ) :=
∏
e∈∆ Def(Ce,Fe), and define Def∆−loc

F and Def∆−loc
(C,x) =

Def∆−loc
C analogously. Set Def∆−lt

(C,x,F ) to be the kernel of Def(C,x,F ) → Def∆−loc
(C,x,F ), and

define Def∆−lt
F and Def∆−lt

(C,x) analogously. We have a commutative diagram

Def∆−lt
(C,x,F ) Def(C,x,F ) Def∆−loc

(C,x,F )

Def∆−lt
(C,x) Def(C,x) Def∆−loc

(C,x)

Π∆−lt Π Π∆−loc (6.7.2)

where the vertical maps correspond to forgetting the sheaves. At the level of tangent

spaces, we have the following diagram with exact rows (the exactness of the two rows is

a consequence of Proposition 6.7.13):

0 TDef∆−lt
(C,x,F ) TDef(C,x,F ) TDef∆−loc

(C,x,F ) 0

0 TDef∆−lt
(C,x) TDef(C,x) TDef∆−loc

(C,x) 0

TΠ∆−lt TΠ TΠ∆−loc

(6.7.3)

Since F is invertible away from the nodes in ∆, the map TΠ∆−lt is surjective. By

[30, Lemma 3.16], the kernel of TΠ∆−lt is isomorphic to the tangent space TDefL =

H1(C̃∆,O∗C̃∆
), where L is any invertible sheaf on the partial normalisation C̃∆ of C with

respect to ∆ whose push-forward is F . In particular, the vector space TDef∆−lt
(C,x,F ), and

hence TDef(C,x,F ), is finite dimensional. Exactly as in [23, Proposition 2.19] (which in

turn relies on the application of Schlessinger’s theorem given in [120, Theorem 3.3.11]),

it follows that Def(C,x,F ) admits a miniversal deformation ring.

Denote by R(C,x,F ) the ring C[T∨Def(C,x,F )]; the miniversal deformation ring of

Def(C,x,F ) can be identified with the power series ring R̂(C,x,F ), obtained by completing

at the maximal ideal generated by T∨Def(C,x,F ). In particular, there is a formally smooth

morphism Φ : Spf(R̂(C,x,F )) → Def(C,x,F ) whose derivative TΦ is an isomorphism, real-

ising R̂(C,x,F ) as the miniversal deformation ring. After choosing identifications of each

(Ce, Fe) with (O0, F0) and choosing a splitting of the first row of (6.7.3), by Lemma
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6.7.11 there is an isomorphism

R(C,x,F )
∼= C[T∨Def∆−loc

(C,x,F )]⊗C C[T∨Def∆−lt
(C,x,F )] =

⊗
e∈∆

C[te, ue, ve]

(ueve − te)
⊗C C[T∨Def∆−lt

(C,x,F )].

(6.7.4)

Here the variable te is the coordinate parametrising the smoothing of the node e.

We also introduce the ring R(C,x) := C[T∨Def(C,x)], whose completion is the miniver-

sal deformation ring for Def(C,x); analogously to Φ, we have a formally smooth morphism

Φ : Spf(R̂(C,x)) → Def(C,x) whose derivative is an isomorphism. After choosing a split-

ting of the second row of (6.7.3) compatible with the splitting of the first row, we have

R(C,x)
∼= C[T∨Def∆−loc

(C,x) ]⊗C C[T∨Def∆−lt
(C,x)] =

⊗
e∈∆

C[te]⊗C C[T∨Def∆−lt
(C,x)], (6.7.5)

where as in (6.7.4), te is the coordinate parametrising the smoothing of the node e.

There is an evident injection of C-algebras R(C,x) ↪→ R(C,x,F ). By taking completions

followed by formal spectra, we obtain a diagram

Spf(R̂(C,x,F )) Def(C,x,F )

Spf(R̂(C,x)) Def(C,F )

Π

Φ

Φ

(6.7.6)

6.7.6 Actions of Automorphism Groups

Let (C, x, F ) be a triple consisting of a torsion-free uniform rank 1 coherent sheaf F over

a stable curve (C, x). There is an exact sequence of groups

1→ Aut(F )→ Aut(C, x, F )→ Stab(C,x)(F )→ 1,

where Stab(C,x)(F ) is the subgroup of Aut(C, x) consisting of automorphisms with σ∗F =

F ; since (C, x) is stable, this group is finite.

As given by Equation (6.7.1), Aut(C, x, F ) acts naturally on Def(C,x,F ), and so acts

naturally on the tangent space TDef(C,x,F ), in such a way as to preserve the top row

of (6.7.3). This implies that Aut(C, x, F ) acts in a natural way on the ring R(C,x,F ),

preserving the decomposition (6.7.4). Similarly, Aut(C, x) acts in a natural way on the

ring R(C,x), preserving the decomposition (6.7.5). These actions lift to unique actions

on the miniversal deformation rings R̂(C,x,F ) and R̂(C,x).
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Proposition 6.7.14. Let (C, x, F ) consist of a triple of a torsion-free uniform rank 1

sheaf F over a stable curve (C, x).

1. There is a unique action of Aut(F0) on the miniversal deformation ring S =

C[[u, v, t]]/(uv − t) with the properties that the map Spf(S)→ Def(O0,F0) is equiv-

ariant, and that the subgroup 1 + (x, y)O0 ⊂ Aut(F0) acts trivially on S.

2. There exists a unique action of Aut(C, x, F ) on the miniversal deformation ring

R̂(C,x,F ) which makes the morphism Φ : Spf(R̂(C,x,F ))→ Def(C,x,F ) equivariant.

3. There exists a unique action of Aut(C, x) on the miniversal deformation ring R̂(C,x)

which makes the morphism Φ : Spf(R̂(C,x))→ Def(C,x) equivariant.

Moreover, the actions in (2) and (3) are such that the two vertical maps in Diagram

(6.7.6) are equivariant with respect to the homomorphism Aut(C, x, F )→ Aut(C, x).

Proof. The same argument as used in the proof of [30, Fact 5.4], which is based on

applying [111, Theorem on Page 225], carries over.

Via the inclusion Aut(F ) ⊂ Aut(C, x, F ), the group Aut(F ) acts on the deformation

ring R(C,x,F ). Let Γ := ΓC(∆) be the dual graph of the curve obtained from C by

smoothing the nodes not in ∆. It follows from [30, Remark 5.9] that Aut(F ) is a torus,

isomorphic to TΓ :=
∏
v∈V (Γ) Gm.

Lemma 6.7.15. Let Aut(F ) act on R(C,x,F ) via the inclusion Aut(F ) ⊂ Aut(C, x, F ).

Then, with respect to the decomposition (6.7.4):

1. Aut(F ) acts trivially on C[T∨Def∆−lt
(C,x,F )].

2. Given an element λ = (λv)v∈V (Γ) ∈ Aut(F ), we have

λ · ue = λt(e)λ
−1
h(e)ue, λ · ve = λ−1

t(e)λh(e)ve, λ · te = te.

Proof. By the same argument used to prove Lemma 5.3 of loc. cit., the subgroup

Aut(F ) acts trivially on the deformation functor Def∆−lt
(C,x,F ), and hence acts trivially

on C[T∨Def∆−lt
(C,x,F )]. The second statement is proved in the same way as Theorem 5.10

(ii) of loc. cit.

We introduce the following notation.
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Definition 6.7.16. Let Γ be the dual graph of a connected nodal curve.

1. The ring B(Γ) is the C-algebra
⊗

e∈E(Γ)
C[te,ue,ve]
(ueve−te) .

2. The ring U(Γ) is the algebra of TΓ-invariants of B(Γ), for the action of TΓ defined

by specifying that for λ = (λv)v∈V (Γ),

λ · ue = λt(e)λ
−1
h(e)ue, λ · ve = λ−1

t(e)λh(e)ve, λ · te = te.

Corollary 6.7.17. In the situation of Lemma 6.7.15, we have an isomorphism

R
Aut(F )
(C,x,F )

∼= U(Γ)⊗C C[T∨Def∆−lt
(C,x,F )].

We have the following important result of Casalaina-Martin–Kass–Viviani concerning

the singularities of the affine scheme SpecU(Γ).

Proposition 6.7.18 (Casalaina-Martin–Kass–Viviani). The ring U(Γ) is a finitely gen-

erated integrally closed C-algebra, and the singularities of SpecU(Γ) are Gorenstein,

rational and terminal.

Proof. In light of [31, Theorem 6.2], this is Theorem B of loc. cit.

6.7.7 Completed Local Rings of the Moduli Spaces

We now relate the complete local rings of the good moduli space Jg,n to completed rings

of invariants of the form R̂
Aut(C,x,F )
(C,x,F ) . Here we closely follow [30, Section 6].

Lemma 6.7.19 (cf. [30], Lemma 6.3). Suppose (C, x, F ) is a triple consisting of a

torsion-free uniform rank 1 coherent sheaf F over a stable curve (C, x). Suppose in

addition that we are given a quotient q : V ⊗ L−N(C,x) → F and a closed embedding

p : (C, x)→ P(W )×P(W )×n which on C is a 10-log-canonical non-degenerate closed em-

bedding. If H1(C,F ⊗LN(C,x)) = 0 then the forgetful transformation Def(p,q) → Def(C,x,F )

is formally smooth.

Proof. Suppose we are given a surjection B → A of Artinian local C-algebras, a de-

formation (CB, xB, FB, iB, jB) over B and a deformation (CA, xA, FA, iA, jA, pA, qA) of

(p, q) over A such that the associated deformation of (C, x, F ) is isomorphic to (CB ⊗B
A, xB ⊗B A,FB ⊗B A, iB ⊗ 1, jB ⊗ 1). We must show there exists a deformation of

the form (CB, xB, FB, iB, jB, pB, qB) of (p, q) over B extending the given deformation
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(CA, xA, FA, iA, jA, pA, qA) and inducing the deformation (CB ⊗B A, xB ⊗B A,FB ⊗B
A, iB ⊗ 1, jB ⊗ 1).

Assume first B → A is a small extension with kernel κ = εB, i.e. ε ∈ mB is

annihilated by the maximal ideal mB of B. CA → CB is then a closed embedding

defined by the square-zero ideal sheaf π∗κ, where π : CB → SpecB is the structure

morphism; the flatness of FB over B implies that there is a short exact sequence of

OCB -modules

0→ π∗κ⊗ FB ⊗ LN(CB ,xB) → FB ⊗ LN(CB ,xB) → FA ⊗ LN(CA,xA) → 0,

obtained by twisting the ideal sequence of CA ⊂ CB. The vanishing of the cohomology

group H1(C,F⊗LN(C,x)) implies that H1(CB, π
∗κ⊗FB⊗LN(CB ,xB)) = 0, so the restriction

morphism H0(CB, FB ⊗ LN(CB ,xB)) → H0(CA, FA ⊗ LN(CA,xA)) is surjective. Similarly,

H0(CB, ω
10
CB/B

(10xB))→ H0(CA, ω
10
CA/A

(10xA)) is surjective.

In the case where B → A is not a small extension, by factoring the morphism

B → A as a sequence of small extensions we again obtain that the maps H0(CB, FB ⊗
LN(CB ,xB))→ H0(CA, FA⊗LN(CA,xA)) andH0(CB, ω

10
CB/B

(10xB))→ H0(CA, ω
10
CA/A

(10xA))

are both surjective.

We first attempt to lift the quotient qA. Fix a basis e1, . . . , eM for V , and let

s1, . . . , sM ∈ H0(CA, FA⊗LN(CA,xA)) be the images of the ei under the quotient V⊗OCA →
FA⊗LN(CA,xA). Pick lifts s′i ∈ H0(CB, FB⊗LN(CB ,xB)) of the si. This defines a morphism of

OCB -modules V ⊗OCB → FB⊗LN(CB ,xB). Let qB be the induced map V ⊗L−N(CB ,xB) → FB;

by construction the morphism qB is surjective.

We next attempt to lift the embedding pA : (CA, xA) → PA(W ) × PA(W )n. Fix a

basis e1, . . . , eK for W∨. The given embedding CA → PA(W ) corresponds to a homo-

morphism W∨ ⊗C A→ H0(CA, ω
10
CA/A

(10xA)) of A-modules such that, if ti is the image

of ei ⊗ 1, then the ti generate ω10
CA/A

(10xA), each open set (CA)ti is affine, and for each

i the morphism A[y1, . . . , ŷi, . . . , yK ]→ H0((CA)ti ,O(CA)ti
) sending yj 7→ tj/ti is surjec-

tive. Pick lifts t′i ∈ H0(CB, ω
10
CB/B

(10xB)), and define a homomorphism W∨ ⊗C B →
H0(CB, ω

10
CB/B

(10xB)) by sending ei ⊗ 1 7→ t′i; this defines a morphism CB → PB(W )

which is a 10-log-canonical closed embedding. Letting pB : (CB, xB) → PB(W ) ×
PB(W )×n be the induced morphism, the deformation (CB, xB, FB, iB, jB, pB, qB) of (p, q)

over B has the desired properties. This completes the proof of the lemma.
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We now return to working with the parameter spaces introduced in Section 6.7.1.

Recall that we denote V = VN and Q = QN = QuotUI/I(VN ⊗ L−NI , P̃ ).

Lemma 6.7.20 (cf. [30], Lemma 6.4). Suppose (C, x, F ) is a triple consisting of a

torsion-free uniform rank 1 coherent sheaf F over a stable curve (C, x). Suppose in

addition that we are given a point ỹ ∈ Q, corresponding to a quotient q : V ⊗L−N(C,x) → F

and a closed embedding p : (C, x) → P(W ) × P(W )×n which on C is a 10-log-canonical

non-degenerate closed embedding. Assume further that H1(C,F ⊗ LN(C,x)) = 0, and

that the induced maps V → H0(C,F ⊗ LN(C,x)) and W∨ → H0(C,ω10
C (10x)) are both

isomorphisms.

If Z is a slice through ỹ for the action of G = SL(V )× PGL(W ) in some invariant

affine open neighbourhood ỹ ∈ U ⊂ Q, then the completed local ring ÔZ,ỹ is a miniversal

deformation ring for Def(C,x,F ).

Proof. From the universal property of Q, the complete local ring ÔU,ỹ pro-represents

Def(p,q). Let D be the deformation functor pro-represented by ÔZ,ỹ. We will show that

the restriction Def(p,q) → Def(C,x,F ) to D is formally smooth and an isomorphism on the

level of tangent spaces, which will establish the lemma. Since Def(p,q) → Def(C,x,F ) is

formally smooth, it suffices to show the following:

(i) D(C[ε])→ Def(C,x,F )(C[ε]) is injective, where C[ε] is the ring of dual numbers; and

(ii) for any A ∈ ArtC, the map D(A) → Def(C,x,F )(A) has the same image as

Def(p,q)(A)→ Def(C,x,F )(A).

Let H = StabSL(V )×PGL(W )(ỹ). Let g (resp. h) be the deformation functor pro-

represented by the completion of the local ring of G (resp. H) at the identity. The

infinitesimal action of g on the trivial deformation of (p, q) defines a natural transforma-

tion g/h→ Def(p,q). By choosing a local inverse of Z ×H (SL(V )×PGL(W ))→ U , the

existence of the slice Z implies the existence of a morphism Def(p,q) → g/h, admitting

g/h → Def(p,q) as a section, with the property that for any A ∈ ArtC, the preimage of

0 ∈ (g/h)(A) is D(A) ⊂ Def(p,q)(A). Via utilising the morphism Def(p,q) → g/h, the fact

that the map D(A)→ Def(C,x,F )(A) has the same image as Def(p,q)(A)→ Def(C,x,F )(A)

is deduced in exactly the same way as in the proof of [30, Lemma 6.4].
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The image of (g/h)(C[ε])→ Def(p,q)(C[ε]) is easily seen to be contained in the kernel

of Def(p,q)(C[ε]) → Def(C,x,F )(C[ε]); we claim this inclusion is in fact an equality. Tak-

ing A = C[ε], let (CA, xA, FA, i, j, pA, qA) be a first-order deformation of (p, q), where

(CA, xA, FA, i, j) is the trivial first-order deformation. pA and qA induce morphisms of

A-modules

V ⊗C A
p′A→ H0(CA, FA ⊗ LN(CA,xA)), W∨ ⊗C A

q′A→ H0(CA, ω
10
CA/A

(10xA))

which restrict to isomorphisms over C. Pick bases for the vector spaces H0(C,F ⊗
LN(C,x)) and H0(C,ω10

C (10x)); via the identifications i and j, we obtain induced bases for

H0(CA, FA⊗LN(CA,xA)) and H0(CA, ω
10
CA/A

(10xA)) over A. After picking compatible bases

of V and W∨, we may represent p′A (resp. q′A) by a matrix [p′A] (resp. [q′A]) which reduces

to the identity modulo ε. By arguing as in the penultimate paragraph of the proof of

Lemma 6.4 of loc. cit., we obtain that the kernel of Def(p,q)(C[ε]) → Def(C,x,F )(C[ε]) is

contained in the image of the orbit map. This proves the claim.

By exactly the same argument as in the final paragraph of the proof of Lemma 6.4 of

loc. cit., the image of the orbit map has trivial intersection with D(C[ε]). This implies

that D(C[ε])→ Def(C,x,F )(C[ε]) is injective, which finishes the proof of the lemma.

Let ỹ ∈ Q be as in the statement of Lemma 6.7.20, and assume in addition that

F is semistable with respect to the chosen (universal) stability condition L. Let H :=

StabSL(V )×PGL(W )(ỹ). There is a natural homomorphism

α : H → Aut(C, x, F ), h = (hV , hW ) 7→ α(h) = (α1(h), α2(h)).

Here α(h) is the unique element of Aut(C, x, F ) such that p ◦ α1(h) = hW ◦ p and

α2(h) ◦ α1(h)∗(q) = q ◦ h−1
V .

Lemma 6.7.21 (cf. [30], Lemma 6.6). The natural homomorphism α is injective, and

has image equal to the subgroup Aut1(C, x, F ) of automorphisms (σ, τ) ∈ Aut(C, x, F )

such that the composition

H0(C,F ⊗ LN(C,x)) H0(C, σ∗F ⊗ LN(C,x)) H0(C,F ⊗ LN(C,x))
σ τ

has determinant 1.
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Proof. Taking the target X to be a point and the curve class β to be zero, recall from

Proposition 6.7.2 that we have an isomorphism

J acssg,n,d,r(L) ∼= [R′1/GL(V )× PGL(W )],

where R′1 is an open subscheme of Q = QuotUI/I(VN ⊗ L−NI , P̃ ). As F is assumed

to be semistable then ỹ ∈ R′1. The restriction of the induced isomorphism of groups

α′ : StabGL(V )×PGL(W )(ỹ)
'→ Aut(C, x, F ) to H coincides with α, and has image equal

to Aut1(C, x, F ).

We are now in a position to be able to relate the completed local rings of Jg,n with

the miniversal deformation rings R̂(C,x,F ).

Proposition 6.7.22 (cf. [30], Theorem 6.1 and [31], Theorem 8.1). Suppose (C, x, F )

is a triple consisting of an L-semistable torsion-free uniform rank 1 coherent sheaf F

over a stable curve (C, x), corresponding to a closed point of the stack J g,n. Suppose in

addition that F is polystable (with respect to L). Then there is an isomorphism

ÔJg,n,[(C,x,F )]
∼= R̂

Aut(C,x,F )
(C,x,F ) ,

where the action of Aut(C, x, F ) on R̂(C,x,F ) is the one arising from Proposition 6.7.14,

namely the unique action on R̂(C,x,F ) making Φ : Spf(R̂(C,x,F ))→ Def(C,x,F ) equivariant.

Remark. The isomorphism ÔJg,n,[(C,x,F )]
∼= R̂

Aut(C,x,F )
(C,x,F ) is non-canonical, but this is nec-

essarily so, as R̂(C,x,F ) itself is only defined up to a non-canonical isomorphism.

Proof. Pick a lift ỹ ∈ R′1 ⊂ Q of (C, x, F ). Since F is polystable, by Lemma 6.7.3 the

point ỹ is GIT polystable. In particular, we can find an invariant open affine subscheme U

ofR′1 containing ỹ, for which the orbit of ỹ in U is closed. As such, we may apply the Luna

Slice Theorem (Theorem 2.5.3) to prove the existence of a slice Z through ỹ in U ⊂ R′1.

In particular, there is an isomorphism of complete local rings ÔJg,n,[(C,x,F )]
∼= ÔZ//H,[ỹ].

By Lemma 6.7.20, ÔZ,ỹ is a miniversal deformation ring for Def(C,x,F ). Moreover,

the natural transformation Spf(ÔZ,ỹ) → Def(C,x,F ) is equivariant with respect to the

natural homomorphism H = StabSL(V )×PGL(W )(ỹ) → Aut(C, x, F ). Consequently, by

Proposition 6.7.14 the identification ÔZ,ỹ ∼= R̂(C,x,F ) is H ∼= Aut1(C, x, F )-equivariant,

whence

(ÔZ,ỹ)H ∼= (R̂(C,x,F ))
Aut1(C,x,F ).
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By Matsushima’s criterion (Proposition 2.5.1), the group Aut1(C, x, F ) is reductive.

Similarly, the group Aut(C, x, F ) is also reductive. Invoking [30, Lemma 6.7], which as-

serts that taking the invariants of a (linearly) reductive group action on a local ring

commutes with taking completions, we have an isomorphism (R̂(C,x,F ))
Aut1(C,x,F ) ∼=

(R
Aut1(C,x,F )
(C,x,F ) )∧.

From the explicit description of the action on R(C,x,F ) (cf. Lemma 6.7.15), the

natural action of Aut(C, x, F ) factors through Aut(C, x, F )/Gm, which is the surjective

image of Aut1(C, x, F ). This implies that R
Aut1(C,x,F )
(C,x,F ) = R

Aut(C,x,F )
(C,x,F ) , so R̂

Aut(C,x,F )
(C,x,F )

∼=
R̂

Aut1(C,x,F )
(C,x,F ) . On the other hand, we have isomorphisms

ÔJg,n,[(C,x,F )]
∼= ÔZ//H,[ỹ]

∼= (ÔZ,ỹ)H ,

with the second isomorphism arising from taking invariants of the reductive group H.

This proves the result.

6.7.8 Singularities of M g,n

Next, we require some results concerning marked stable curves (C, x) for which there

exists σ ∈ Aut(C, x) which acts on the local deformation ring as a quasi-reflection,11

or for which the quotient of the local deformation ring by 〈σ〉 fails to have canonical

singularities.

Let (C, x) be an n-marked stable curve of genus g; recall that there is an isomor-

phism TDef(C,x)
∼= Ext1

C(ΩC(x),OC) ∼= C3g−3+n, and that there exists a local universal

deformation of (C, x) over a smooth pointed scheme. Let R̂(C,x) = C[[t1, . . . , t3g−3+n]]

be the miniversal deformation ring for (C, x).

Proposition 6.7.23. Suppose g ≥ 4, and suppose σ ∈ Aut(C, x) is such that σ acts

as a quasi-reflection on Spec R̂(C,x) or such that Spec R̂(C,x)/〈σ〉 fails to have canonical

singularities. Then:

1. C has an elliptic tail E (i.e. a component of arithmetic genus 1 which meets the

rest of C at a single node p), and E contains none of the markings of C.

2. σ is an elliptic tail automorphism: σ|
C\E = id. The restriction of σ to E is an

automorphism of order o ∈ {2, 3, 4, 6} which fixes p.

11An invertible n × n matrix g is said to be a quasi-reflection if 1 is an eigenvalue of g of geometric
multiplicity n− 1.

131



3. If o = 4 then E is smooth with j-invariant 1728, and if o = 3 or 6 then E is smooth

with j-invariant 0.

4. If E is a singular curve with internal node q, then o = 2, and the action on E is

given by z 7→ −z on Ẽ ∼= P1, where the fixed point ∞ lies above p and ±1 lie above

q.

Proof. In the unpointed case, this is [61, Theorem 2]. That the result in the unpointed

case implies the result holds when n > 0 follows from the proof of [83, Theorem 2.5]; the

deformation space H0(C,ΩC⊗ωC) of the unpointed curve C embeds into the deformation

space H0(C,ΩC⊗ωC(x)) of the pointed curve, and contracting any P1-components of C

(when performing stable reduction after omitting the markings) does not alter the action

of σ on H0(C,ΩC ⊗ ωC). Hence the Reid–Tai–Shepherd-Barron age of σ viewed as an

automorphism of (C, x) is as least as large as the age of σ, viewed as an automorphism

of C. As such, by the Reid–Tai–Shepherd-Barron criterion (cf. [97, Theorem 2.3])

and the result in the unpointed case, if σ acts as a quasi-reflection on Spec R̂(C,x) or

such that Spec R̂(C,x)/〈σ〉 fails to have canonical singularities then σ is an elliptic tail

automorphism of C with respect to some elliptic tail E. E cannot contain any marking

xi, since the restriction of ΩC ⊗ ωC(x) to E is the same as it would be if another

component was attached at xi, contradicting the result in the unpointed case. As such,

the remaining statements follow from the unpointed case.

Suppose g ≥ 4, and suppose σ ∈ Aut(C, x) is such that σ acts as a quasi-reflection

on Spec R̂(C,x) or such that Spec R̂(C,x)/〈σ〉 fails to have canonical singularities. We wish

to understand the action of σ on R̂(C,x) in suitable coordinates.

Lemma 6.7.24 (cf. [84], Proposition 3.2.9). For each irreducible component Ci ⊂ C,

let νi : C̃i → C be its normalisation, let Di ⊂ C̃i be the divisor corresponding to the

preimages of the nodes of C lying on Ci, and let Pi ⊂ C̃i be the divisor corresponding to

the preimages of the marked points of C lying on Ci. Let Θ(C,x) = HomC(ΩC(x),OC).

Suppose in addition that C has δ-many nodes. Then it is possible to choose coordi-

nates t′1, . . . , t
′
3g−3+n of TDef(C,x)

∼= Ext1
C(ΩC(x),OC) as follows:

1. For each i = 1, . . . , δ, t′i = 0 corresponds to the locus where the ith node is pre-

served, and the one-dimensional subspace {t′j = 0 : j 6= i} corresponds to the

smoothing of the ith node.
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2. For each irreducible component Ci of C, there is a subset I = ICi ⊂ {δ+1, . . . , 3g−
3+n} such that {t′j = 0 : j 6∈ I} corresponds to the image of H0(C̃i, ω

2
C̃i

(Di+Pi))
∨

in H1(C,Θ(C,x)) ⊂ Ext1
C(ΩC(x),OC) under the isomorphism H1(C,Θ(C,x)) ∼=⊕

j H
0(C̃j , ω

2
C̃j

(Dj + Pj))
∨.

Proof. From the local-to-global Ext spectral sequence

Ep,q2 = Hp(C, ExtqC(ΩC(x),OC))⇒ Extp+qC (ΩC(x),OC),

there is a short exact sequence

0→ H1(C,Θ(C,x))→ Ext1
C(ΩC(x),OC)→ H0(C, Ext1C(ΩC(x),OC))→ 0.

The sheaf Ext1C(ΩC(x),OC) is supported at the nodes of C; if s ∈ C is a node, then

Ext1C(ΩC(x),OC)s = Ext1
OC,s(ΩC,s,OC,s) ∼= Cs

parametrises the smoothing of the node s (cf. [12, Page 181]). On the other hand, if

ν : C̃ → C is the normalisation of C and if D ⊂ C̃ (resp. P ⊂ C̃) is the divisor of the

preimages of the nodes (resp. markings) of C, then Θ(C,x) can be identified with the

pushforward of T
C̃

(−D − P ) (cf. Page 186 of loc. cit.), whence

H1(C,Θ(C,x)) ∼= H1(C̃, T
C̃

(−D − P )) ∼=
⊕
j

H0(C̃j , ω
2
C̃j

(Dj + Pj))
∨,

where the last isomorphism is given by Serre duality.

Corollary 6.7.25. With (C, x) as above, it is possible to choose coordinates t1, . . . , t3g−3+n

of TDef(C,x)
∼= Ext1

C(ΩC(x),OC) such that:

1. t1 corresponds to the smoothing of the node p.

2. If E is singular, then t2 corresponds to the smoothing of the node q; otherwise, t2

is a coordinate for TDef(E,p)
∼= C.

3. The remaining coordinates t3, . . . , t3g−3+n correspond to nodes and components

where σ is the identity.
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Proof. If E is smooth, we choose t2 such that {ti = 0 : i 6= 2} corresponds to the image

of the one-dimensional subspace H1(E, TE(−p)) = H0(E,ω2
E(p))∨ = H0(E,OE(p))∨ of

H1(C,Θ(C,x)) in Ext1
C(ΩC(x),OC). Since we have H1(E, TE(−p)) = Ext1

E(ΩE(p),OE),

this subspace is the tangent space TDef(E,p). Relabelling the remaining t′i-coordinates as

t3, . . . , t3g−3+n, by Lemma 6.7.24 these all correspond to nodes and components where

σ is the identity.

If instead E is singular, the component E does not contribute to H1(C,Θ(C,x)), since

H0(Ẽ, ω2(p + ν−1(q))) = H0(P1,OP1(−1)) = 0. As such, after choosing t1 and t2, the

remaining coordinates once again correspond to nodes and components where σ is the

identity.

We are now ready to state the extension of [84, Proposition 4.2.5] we require.

Proposition 6.7.26. Let ρ = eπi/3. With the coordinates t1, . . . , t3g−3+n of TDef(C,x)

chosen as in Corollary 6.7.25, the action of σ on TDef(C,x) is given by the matrix M(σ),

where

M(σ) =



−1

1

id

 o = 2,

±i −1

id

 o = 4,

ρ
2

ρ4

id

 or

ρ
4

ρ2

id

 o = 3,

ρ
5

ρ4

id

 or

ρ ρ2

id

 o = 6.

In particular, σ is a quasi-reflection if and only if o = 2.

Proof. The component E contains none of the markings of C, and the additional coor-

dinates t3, . . . , t3g−3+n correspond to nodes and components where σ is the identity, so

that σ : ti 7→ ti on TDef(C,x). As such, the necessary analysis reduces to the unmarked

case, which is [84, Proposition 4.2.5].
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6.7.9 The Moduli Space has Canonical Singularities

We are now ready to prove the generalisation of [31, Theorem A] to the case when there

are n > 0 marked points.

Proof of Theorem 6.7.1. The proof closely follows that of Theorem 8.4 of loc. cit. Since

the property of having canonical singularities can be checked by passing to an analytic

neighbourhood, by Proposition 6.7.22 it is enough to show that for any triple (C, x, F )

consisting of a polystable torsion-free uniform rank 1 coherent sheaf F over a stable

curve (C, x), the affine scheme SpecR
Aut(C,x,F )
(C,x,F ) has canonical singularities. From the

exact sequence

1→ Aut(F )→ Aut(C, x, F )→ Stab(C,x)(F )→ 1

and the fact that Stab(C,x)(F ) is a finite group, we have

SpecR
Aut(C,x,F )
(C,x,F ) = Spec

(
RAutF

(C,x,F )

)Stab(C,x)(F )
= SpecRAutF

(C,x,F )/ Stab(C,x)(F ).

By Proposition 6.7.18, the scheme SpecRAutF
(C,x,F ) is a normal scheme of finite type over

C. As such, by applying Theorem A.11 of loc. cit., it suffices to show that for every

σ ∈ Stab(C,x)(F ), the scheme SpecRAutF
(C,x,F )/〈σ〉 has canonical singularities.

Pick an invertible sheaf L on the partial normalisation C̃∆ whose push-forward is F ,

so that the kernel of TΠ∆−lt : T Def∆−lt
(C,x,F ) → T Def∆−lt

(C,x) is isomorphic to T DefL, whence

C[T∨Def∆−lt
(C,x,F )]

∼= C[T∨Def∆−lt
(C,x)]⊗C C[T∨DefL].

We now split into cases depending on the automorphism σ.

Case 1: The automorphism σ does not act as a quasi-reflection on SpecR(C,x) and

SpecR(C,x)/〈σ〉 has canonical singularities.

The inclusion R(C,x) ↪→ R
Aut(F )
(C,x,F ) gives rise to the following diagram:

SpecR
Aut(F )
(C,x,F ) SpecR(C,x) × SpecC[T∨DefL]

SpecU(Γ)⊗ C[T∨Def∆−lt
(C,x)]⊗ C[T∨DefL] Spec

⊗
e∈∆ C[te]⊗ C[T∨Def∆−lt

(C,x)]⊗ C[T∨DefL]

∼= ∼=

Ψ

Here the bottom horizontal map is the map induced by the map
⊗

e∈∆ C[te]→ U(Γ) =

B(Γ)TΓ together with the identity on the other two factors. The vertical isomorphisms
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can be chosen in a way which is compatible with the action of 〈σ〉 on the domain and

codomain of the 〈σ〉-equivariant morphism Ψ. As such, the argument used in Case 1

of Theorem 8.4 of loc. cit. carries over, yielding that SpecRAutF
(C,x,F )/〈σ〉 has canonical

singularities.

Case 2: σ acts as a quasi-reflection on SpecR(C,x), or SpecR(C,x)/〈σ〉 does not have

canonical singularities.

In this case, by Proposition 6.7.23 C must have an elliptic tail (E, p), E contains

none of the markings of C, and σ must be an elliptic tail automorphism.

As in Case 2 of the proof of Theorem 8.4 of loc. cit., we split into two subcases:

(i) Case 2-I: F is not locally free at p.

(ii) Case 2-II: F is locally free at p.

Letting ΓE (resp. ΓEc) denote the dual graph of E (resp. Ec), we have as in Case 2 of

Theorem 8.4 of loc. cit. an identification

SpecR
Aut(F )
(C,x,F )/〈σ〉 =

SpecU(ΓEc)× Spec
(
U(ΓE)⊗ C[tp]⊗ C[T∨Def∆−lt

(C,x,F )]
)
/〈σ〉 2-I,

SpecU(ΓEc)× Spec
(
U(ΓE)⊗ C[T∨Def∆−lt

(C,x,F )]
)
/〈σ〉 2-II.

As SpecU(ΓEc) has terminal singularities by Proposition 6.7.18, it suffices to show

that the remaining factor, namely Spec
(
U(ΓE)⊗ C[tp]⊗ C[T∨Def∆−lt

(C,x,F )]
)
/〈σ〉 and

Spec
(
U(ΓE)⊗ C[T∨Def∆−lt

(C,x,F )]
)
/〈σ〉 as appropriate, has canonical singularities.

We make use of the decomposition C[T∨Def∆−lt
(C,x,F )]

∼= C[T∨Def∆−lt
(C,x)]⊗CC[T∨DefL].

Let VE denote the vector space

VE :=

{
TU(ΓE)⊕ TC[tp]⊕ T Def∆−lt

(C,x)⊕T DefL 2-I,

TU(ΓE)⊕ T Def∆−lt
(C,x)⊕T DefL 2-II.

We compute the matrix R(σ) for the action of σ on VE , with respect to a suitable

basis. Comparing with the situation of Proposition 6.7.26, in Case 2-I we may take the

coordinate t1, corresponding to the smoothing of the node p, as a coordinate of TC[tp],

and in Case 2-II we may take t1 as one of the coordinates of T Def∆−lt
(C,x). If o = ord(σ) > 2

(in which case E is smooth), we may take the coordinate t2 as one of the coordinates of

T Def∆−lt
(C,x). It follows that in both 2-I and 2-II, the upper left 2× 2-block of the matrix

M(σ) of Proposition 6.7.26 will appear as a block factor of R(σ).
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Denoting by Ẽ∆ (resp. Ẽc∆) the partial normalisation of E (resp. Ec) at the nodes

of E (resp. Ec) belonging to ∆, as in the proof of Theorem 8.4 of loc. cit. we have a

decomposition

T DefL ∼= T DefL|
Ẽ∆
⊕T DefL|

Ẽc
∆

.

Since σ is an elliptic tail automorphism, the action of σ on T DefL|
Ẽc

∆

is trivial. Therefore,

as in the unmarked case, we obtain that in Case 2, the upper left 2×2-block of the matrix

M(σ) of Proposition 6.7.26 appears as a block factor of R(σ), and the action on T DefL

is determined by the action on T DefL|
Ẽ∆

∼= TL|
Ẽ∆

Pic(Ẽ∆).

At this point, the rest of the argument for Case 2 involves analysing the action of σ

on T DefL|
Ẽ∆

. But E does not contain any markings of C; as such, the argument given

in the remainder of Case 2 of Theorem 8.4 of loc. cit. carries over word-for-word to

the marked setting, making use of the Reid–Shepherd-Barron–Tai criterion for quotient

singularities. This yields that SpecRAutF
(C,x,F )/〈σ〉 has canonical singularities, completing

the proof of the theorem.
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Chapter 7

Moduli Spaces of Hyperplanar
Admissible Flags in Projective
Space

7.1 Introduction

In this chapter we construct using non-reductive GIT quasi-projective coarse moduli

spaces which parametrise certain classes of varying flags of subschemes X0 ⊂ X1 ⊂
· · · ⊂ Xn of a fixed projective space P(V ) up to the action of the group PGL(V ) of

projective automorphisms.

One of the key motivations behind Mumford’s development of GIT was the construc-

tion of quasi-projective moduli spaces of projective schemes. Classical examples of such

GIT moduli spaces include non-singular hypersurfaces in projective space [101], stable

curves [54] [100], canonically polarised surfaces of general type [53] and canonically po-

larised varieties with canonical singularities of any dimension [128]. The first three of

these constructions involve using the Hilbert–Mumford criterion to establish GIT sta-

bility. However, when working with higher dimensional schemes other approaches to

constructing moduli spaces, involving GIT or otherwise, are often necessary; amongst

other issues, it is not known how to directly implement the Hilbert–Mumford criterion

to test for the GIT stability of subschemes X of projective space with dimX ≥ 3, even

when X is smooth (Viehweg’s construction relies on establishing deep positivity results

to directly produce invariant sections of the linearisations on the Hilbert scheme he

considers).
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Related to the problem of moduli of schemes is the moduli of flags of schemes, such

as pairs of schemes with a divisor. The main result of the chapter is that non-reductive

GIT yields constructions of examples of non-empty quasi-projective coarse moduli spaces

of flags of schemes, namely when the schemes are subschemes of a projective space P(V )

and the flag X : X0 ⊂ X1 ⊂ · · · ⊂ Xn is obtained by intersecting an n-dimensional

variety Xn ⊂ P(V ) with a flag of linear subspaces Z : Z0 ⊂ · · · ⊂ Zn = P(V ) with

Zi ⊂ P(V ), of codimension n − i; here the flags X and Z are allowed to vary in P(V )

and V respectively.

Summary of Results

The objects of interest to us are known as hyperplanar admissible flags of subschemes of

P(V ),1 which are flags X0 ⊂ X1 ⊂ · · · ⊂ Xn where Xn is an n-dimensional subscheme

of P(V ), and where each Xi is an i-dimensional subscheme obtained by intersecting Xn

with a linear subspace P(Zi) ⊂ P(V ) of codimension i, with Z0 ⊂ Z1 ⊂ · · · ⊂ Zn = V .

The degree of this flag is given by the common degree of the subschemes Xi ⊂ P(V ),

and the Hilbert type is given by the Hilbert polynomials of the Xi. Such a flag is said

to be non-degenerate if each Xi ⊂ P(Zi) is non-degenerate (i.e. not contained in a

hyperplane in P(Zi)), non-singular if X0 is a disjoint union of reduced points and if the

remaining Xi are smooth connected varieties, and stable if X0 is a Chow stable length

0 subscheme of P(Z0) (for more details, see Section 7.3.1). Given any non-singular

non-degenerate subvariety Xn ⊂ P(V ) then, provided the degree of Xn is sufficiently

large, the intersection of Xn with a generic choice of a flag of linear subspaces P(Z0) ⊂
· · · ⊂ P(Zn) = P(V ) of the appropriate dimensions is a non-degenerate, non-singular

and stable hyperplanar admissible flag (see the discussion following Definition 7.3.1).

The main result of this chapter is that there are quasi-projective coarse moduli spaces

parametrising non-degenerate, non-singular and stable hyperplanar admissible flags of

subschemes of P(V ):

Theorem 7.1.1. Let n, d be positive integers, and let V be a finite dimensional complex

vector space. Assume n + 1 < dimV and d > dimV − n, and in addition assume

d 6∈
{

dimV−n−1+i
n+1−i : i = 1, . . . , n

}
. Let Φ = (Φ0, . . . ,Φn) be a tuple of Hilbert polynomials

1The terminology here is inspired by that of [82]. The hyperplanar admissible flags of interest to us
are admissible flags in the sense of Lazarsfeld–Mustaţă, with the exception that we allow multiple points
in dimension 0, not just one.
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of subschemes of P(V ), where Φi(t) = d
i! t
i +O(ti−1) for each i. Let FP(V )

n,d,Φ be the moduli

functor parametrising (projective) equivalence classes of families of non-degenerate, non-

singular and stable (complete) hyperplanar admissible flags of subschemes of P(V ) of

length n, degree d and Hilbert type Φ (cf. Definition 7.3.4).

Then there exists a quasi-projective coarse moduli space M
P(V )
n,d,Φ for the moduli functor

FP(V )
n,d,Φ, which admits a non-reductive GIT construction.

In Section 7.5, we explain how Theorem 7.1.1 can be extended in various ways, such as

incorporating weightings to the points of X0, or by instead considering non-degenerate

and non-singular hyperplanar admissible flags of the form X1 ⊂ · · · ⊂ Xn, where in

addition X1 ⊂ P(Z1) is required to be GIT stable.

Summary of the Proof of the Main Result

The proof of Theorem 7.1.1 proceeds as follows. In order to have a notion of a family of

hyperplanar admissible flags, as part of the objects of the moduli problem we record the

flag of linear subspaces P(Z0) ⊂ · · · ⊂ P(Zn), before imposing the equivalence relation

of two flags being projectively equivalent. As such, we consider the diagonal action of

SL(V ) on the product

S :=
n∏
i=0

Hilb(P(V ),Φi)×
n∏
j=0

Grj(V ),

where Grj(V ) is the Grassmannian of codimension n−j linear subspaces of V (see Section

7.3.2). There exists an SL(V )-invariant locally closed subscheme S ′ ⊂ S whose closed

points correspond to non-degenerate, non-singular and stable hyperplanar admissible

flags of subschemes of P(V ) of length n, together with the data of the closed embeddings

Xi ⊂ P(V ) and the subspaces Zi ⊂ V . The moduli spaceM
P(V )
n,d,Φ is given by the geometric

quotient of S ′ by SL(V ).

A priori this is a problem in reductive GIT. However, since each of the subvarieties

Xi ⊂ P(V ) for i < n are degenerate, the Hilbert points [Xi ⊂ P(V )] ∈ Hilb(P(V ),Φi)

are unstable. The subvariety Xn ⊂ P(V ) is non-degenerate; however, beyond the case

of curves of degree d and genus g in Pd−g [22], in higher dimensions there is no complete

algebraic classification of when Xn ⊂ P(V ) has a stable or unstable Hilbert point with

respect to either the Hilbert or Chow linearisations on Hilb(P(V ),Φn). Thirdly, the

flag of subspaces Z0 ⊂ · · · ⊂ Zn−1 ⊂ Zn = V defines an SL(V )-unstable point of
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∏n
j=0 Grj(V ); if LGri is the ample generator of Pic(Gri(V )) ∼= Z (for i < n), then

for any choice of weights w0, . . . , wn−1 ∈ Z>0 the flag of subspaces is GIT unstable

for the diagonal SL(V )-action on
∏n−1
j=0 Grj(V ) with respect to the ample linearisation

�n−1
j=0L

wj
Grj

(as seen by applying [40, Theorem 11.1] with W = P(Zn−1)).

To rectify these issues, we instead pass to the case of looking at the action of the

parabolic subgroup P ⊂ SL(V ) preserving a fixed flag of subspaces Z0 ⊂ Z1 ⊂ · · · ⊂
Zn = V (where codimZi = n − i), yielding a locally closed subscheme S ′0 ⊂ S ′ with

S ′ ∼= SL(V )×P S ′0, and use NRGIT to form a geometric quotient of S ′0 by P ; this quotient

by P coincides with the geometric quotient of S ′ by SL(V ). Rather than applying

the Û -Theorem to form this quotient in one go, we instead adopt the quotienting-in-

stages procedure described in Section 3.3. We apply quotienting-in-stages directly, by

verifying directly that at each stage the Û -Theorem can be applied, since this is more

straightforward than determining whether the quotienting-in-stages assumptions of [66]

hold.

There are two key features of our quotienting-in-stages approach. The first is that,

since all grading 1PS involved have only two distinct weights, it is relatively straightfor-

ward to check that the necessary weight and stabiliser conditions needed to apply the

Û -Theorem at each stage hold, at least for the objects of interest. The key observation

is that the flat limit of Xk ⊂ P(Zk) under any of these grading 1PS is given by Xk

itself, or by the join J of Xj with a complementary linear subspace to P(Zj) ⊂ P(Zk),

where j < k (cf. Lemmas 7.2.5 and 7.4.2). The geometry of these joins is what allows

us to verify that the desired conditions on unipotent stabilisers hold. Since we elect to

work with the Chow linearisations on the Hilbert schemes Hilb(P(V ),Φi), the Hilbert–

Mumford weight of J with respect to any of the grading 1PS can be explicitly computed

(cf. Lemma 7.2.7); this allows us to verify the necessary minimality conditions for the

weights of the grading 1PS (cf. Lemma 7.4.4).

Secondly, since we are working with complete flags X0 ⊂ · · · ⊂ Xn, we only ever

have to consider the (reductive) GIT stability of subschemes of P(V ) of dimension 0,

which is classically understood.

Remark. If one imposes the additional constraint that the top-dimensional subvariety

Xn ⊂ P(V ) is GIT stable (for either the Chow or Hilbert linearisations), the construc-

tion of the coarse moduli space of hyperplanar flags X0 ⊂ · · · ⊂ Xn ⊂ P(V ) can be

carried out using reductive GIT, by making use of 7.4.1 to ensure that a point of S
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is SL(V )-stable if [Xn ⊂ P(V )] ∈ Hilb(P(V ),Φn) is GIT stable. If Xn ⊂ P(V ) is a

smooth hypersurface of degree d > 2, it is classically known that the corresponding

point of P(H0(P(V ),OP(V )(d))) is GIT stable. Another plentiful source of GIT sta-

ble subvarieties arises from a result of Donaldson [42], which states that if (X,L) is

a smooth polarised manifold with discrete automorphism group for which there exist

constant scalar curvature metrics in c1(L), then (X,L) is asymptotically Chow stable

(i.e. X ⊂ P(H0(X,Lk)∨) is Chow stable for all k � 0). By work of Yau [129] (and

independently in the canonically polarised case by Aubin [14]), this includes canonically

polarised smooth varieties and arbitrarily-polarised smooth Calabi–Yau varieties. More

generally, Viehweg [128] proves that any canonically polarised variety with canonical

singularities is asymptotically stable (with respect to linearisations arising as variants of

the Hodge bundle), extending prior results for curves [101] [100] and surfaces [53]. Other

examples of Chow stable subvarieties of projective space arise from work by Morrison

[98] and Miranda [96].

Relation to Previous Work

As mentioned above, the results of this chapter rely heavily on Hoskins–Jackson’s non-

reductive quotienting-in-stages construction [66]. This work was also motivated in part

by work of Ross [112] and Ross–Thomas [113] on the study of the Hilbert–Mumford

criterion for polarised projective varieties. 1PS with two distinct weights feature promi-

nently in these latter pieces of work, and are used to define notions of slope stability for

polarised varieties, in analogy with Gieseker stability for coherent sheaves on a projective

scheme (in turn, Gieseker stability is governed by 1PS with two distinct weights, as is

explained in [112, Section 3.2]). Ross and Ross–Thomas prove that K-stable polarised

varieties are slope stable and that asymptotically Chow stable polarised varieties are

Chow-slope stable, and use slope stability to give a geometric proof of the asymptotic

Chow/K-stability of smooth curves.

The relationship between [112] [113] and this chapter is as follows. If X ⊂ P(V )

is a non-degenerate subvariety and λ a 1PS of GL(V ) with two distinct weights (for

instance, the lift λ[i] of the grading 1PS λi considered in non-reductive quotienting-in-

stages), the action of λ on X ⊂ P(V ) defines a test configuration (X ,L = OP(V )×A1(1)|X )

of (X,OP(V )(1)|X) whose central fibre is given by the flat limit X0 ⊂ P(V ) of X under λ.

As explained in [113, Page 8] as well as in [100, Section 3 of the proof of Theorem 2.9], up
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to rescaling the λ(Gm)-action the test configuration (X ,L) is equivariantly dominated

by a test configuration with total space BlI(X ×A1), where I ⊂ OX [t] is an ideal of the

form I = IZ+(t), with Z ⊂ X given by the repulsive fixed-point locus for λ. The blowup

BlI(X × A1) coincides with the total space for the deformation to the normal cone of

Z ⊂ X. The notion of slope stability (resp. Chow-slope stability) of a polarised variety

(X ′, L′) arises from K-stability (resp. Chow stability) restricted to test configurations

arising from deformations to normal cones of subschemes Z ′ ⊂ X ′; when L′ is very ample

and has no higher cohomology, so that X ′ ⊂ P(H0(X ′, L′)∨), by [113, Proposition 3.7]

the test configuration of (X ′, L′) given by the deformation to the normal cone of Z ′ ⊂ X ′

determines a 1PS of GL(H0(X ′, L′)) with two distinct weights.

In favourable circumstances (cf. proof of Lemma 7.2.5), the geometry of the defor-

mation to the normal cone can be used to fully determine the flat limit X0, in terms

of the join of the repulsive locus Z with a complementary linear subspace. In turn, the

simple form taken by the homogeneous ideal of such a join allows for the λ(Gm)-weight

of H0(X0,OX0(k)) (with k � 0) to be easily computed in terms of the degree and dimen-

sion of Z (cf. proof of Lemma 7.2.7), with the computations being more straightforward

than those of Section 4 of loc. cit. (which apply for the deformation to the normal cone

in general).

Motivation

This work was motivated by an attempt to construct, using GIT, a non-empty coarse

moduli space of stable maps to a varying target subvariety X, with X allowed to vary

inside a fixed projective space P(V ), without any further conditions on the invertible

sheaf OX(1) = OP(V )(1)|X beyond its amplitude, and with the image curve in X corre-

sponding to the intersection of X with a linear subspace L of P(V ) of the appropriate

codimension (chosen so that, at least if X is smooth and non-degenerate, the intersection

of X with a generic such L is a smooth curve). This goal in turn arose as part of the

more general aim of constructing moduli spaces of varieties together with morphisms

from curves, as described in Chapter 1.

The attempted construction involved appending to the Baldwin–Swinarski construc-

tion of the moduli space of stable maps Mg,n(P(V ), β) (cf. Section 6.4.1) an additional

Hilbert scheme factor, parametrising the subscheme X ⊂ P(V ), followed by attempt-

ing to form a geometric GIT quotient for the diagonal action of SL(V ) on the enlarged
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parameter space. The hope was that the Baldwin–Swinarski construction could be lever-

aged to show that the desired moduli space existed, without having to resort to imple-

menting (in full) the Hilbert–Mumford criterion for the SL(V )-action on Hilb(P(V )).

The existence of this desired moduli space is closely related to the existence of a coarse

moduli space parametrising partial flags X1 ⊂ Xn of P(V ). In the case n = 2 a coarse

moduli space can be constructed provided X1 ⊂ P(Z1) is assumed to be a non-degenerate

curve of genus g and degree d > 2(2g − 2) (see Section 7.5.2), however the analogous

construction for n ≥ 3 has the problem that in the resulting NRGIT setup, the condition

([R]0) no-longer holds.

Future Directions

One natural follow-up question concerns the existence of natural modular compactifica-

tions of the coarse moduli spaces M
P(V )
n,d,Φ. At least if one wished to utilise non-reductive

GIT to construct such a compactification, this does not appear to be a feasible prob-

lem; one key feature of the setup behind Theorem 7.1.1 is that all of the flat limits

appearing in the quotienting-in-stages construction can be described in terms of joins.

It is not clear whether this result extends to all points in the closure of the locus S ′

in
∏n
i=0 Hilb(P(V ),Φi) ×

∏n
j=0 Grj(V ) (in particular, with points in the closure corre-

sponding to flags where not all of the schemes are reduced). As such, it is not clear

whether in the closure of S ′ all points satisfy the necessary weight minimality condi-

tions for the various grading 1PS involved, nor whether the appropriate conditions on

unipotent stabilisers carry over to points in the closure. Without these conditions, the

quotienting-in-stages procedure used to prove Theorem 7.1.1 breaks down.

Another, arguably more pertinent, follow-up question is whether a version of Theo-

rem 7.1.1 can be established for partial flags of subschemes of P(V ), i.e. the existence of a

quasi-projective coarse moduli space parametrising flags of subschemes of P(V ) obtained

by intersecting a varying non-degenerate smooth subvariety Xn ⊂ P(V ) by a partial flag

of projective subspaces of P(V ). The analogous NRGIT approach requires being able

to implement the Hilbert–Mumford criterion to determine the GIT stability of smooth

non-degenerate subvarieties Y ⊂ P(Z) under the action of subgroups SL(Z ′) ⊂ SL(Z)

with dimZ ′ ≥ 2. Even if this is understood, another issue is that limits of points under

the grading 1PS can have positive-dimensional stabilisers for the action of the semisim-

ple part of the Levi subgroup, so that the NRGIT condition ([R]0) fails to hold; this
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prevents us from being able to ascertain the reductive GIT stability of the images of

points under taking quotients by unipotent radicals. This latter issue arises for partial

flags of the form X1 ⊂ Xn with n ≥ 3.

Notation and Conventions

In addition to the conventions specified in the introduction to this thesis, in this chapter

we adopt the following notation and conventions:

• Given a set of points S of a projective space P(V ), their linear span in P(V ) is

denoted 〈S〉. If X ⊂ P(V ) is a closed subscheme of P(V ) with ideal sheaf IX ,

we define I(X) :=
⊕

d≥0H
0(P(V ), IX(d)) (we also use the notation IP(V )(X) if

we wish to emphasise the projective space P(V ) containing X). TpX denotes the

projective tangent space to X ⊂ P(V ) at a point p ∈ X.

• A closed subscheme X of P(V ) is said to be non-degenerate if X is not contained

in any hyperplane in P(V ), in other words if H0(P(V ), IX(1)) = 0, and is said to

be degenerate otherwise.

Remark. Sections 7.2 to 7.4 (inclusive) of this chapter have been adapted from the

contents of the preprint [38].

7.2 Preliminaries

7.2.1 The Chow Linearisation on Hilbert Schemes

Let Hilb(P(V ),Φ) be the Hilbert scheme parametrising subschemes of P(V ) with Hilbert

polynomial Φ, where

Φ(t) =
d

n!
tn +O(tn−1).

Let Chown,d(P(V )) be the Chow scheme of Angéniol [11] parametrising families of cycles

in P(V ) of dimension n and degree d. The Chow scheme has the following properties

(cf. [11, Sections 6-7] and [116, Paper IV, Sections 9, 16 and 17]):

(i) There is a natural proper GL(V )-equivariant morphism ΨHC : Hilb(P(V ),Φ) →
Chown,d(P(V )), known as the Hilbert–Chow morphism. The restriction of ΨHC

to the open subscheme Hilbsmth(P(V ),Φ) parametrising non-singular closed sub-

schemes of P(V ) is an open immersion.

145



(ii) ΨHC is a local immersion over the locus parametrising equidimensional and reduced

subschemes.

(iii) The underlying reduced scheme Chown,d(P(V ))red is the Chow variety, as intro-

duced by Chow and van der Waerden in [34].

(iv) Let Divn,d(P(V )) be the projective space of multidegree (d, . . . , d) divisors in

P(V ∨)×(n+1). Then there is a GL(V )-equivariant map ΞChow : Chown,d(P(V )) →
Divn,d(P(V )) whose restriction to Chown,d(P(V ))red is a closed immersion; the

composite ΞHC = ΞChow◦ΨHC assigns to a subvariety X ⊂ P(V ) its Chow form ΞX .

The morphism ΞChow is finite, and so LChown,d(P(V )) := Ξ∗ChowODivn,d(P(V ))(1) is an

ample linearisation for the GL(V )-action on the projective scheme Chown,d(P(V )),

known as the Chow linearisation.

(v) As the Chow form ΞX of a subvariety X ⊂ P(V ) uniquely determines X, all points

of the fibres Ξ−1
HC(ΞX) and Ξ−1

Chow(ΞX) have underlying reduced scheme X.

The following diagram summarises the relationship between the Hilbert and Chow

schemes:

Hilb(P(V ),Φ) Chown,d(P(V )) Divn,d(P(V ))

Hilbsmth(P(V ),Φ) Chown,d(P(V ))red = ChowVarn,d(P(V ))

p p

ΞChowΨHC

◦ ◦

ΞHC

Suppose λ : Gm → SL(V ) is a 1PS, and X ⊂ P(V ) is a subvariety fixed by the action

of λ. Let R(X) = Sym•(V ∨)/I(X) =
⊕

mR(X)m be the homogeneous coordinate ring

of X. Let w([X]m, λ) be the λ-weight of the vector space R(X)m.2

Proposition 7.2.1 ([100], Proposition 2.11). For large m, w([X]m, λ) is is given by a

polynomial of the form −aX
(n+1)!m

n+1 + O(mn). The Hilbert–Mumford weight of ΨHC(X)

is given by

µ
LChown,d(P(V ))(ΨHC(X), λ) = µ

ODivn,d(P(V ))(1)
(ΞHC(X), λ) = aX .

2If W =
⊕

i∈ZWi is the weight space decomposition of a finite dimensional Gm-representation W ,
the weight of W is given by

∑
i idimWi.
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In the case where Hilb(P(V ), d) is the Hilbert scheme of 0-dimensional length d

subschemes of P(V ), ΞHC factors through the natural morphism

ΞHC : Hilb(P(V ), d)→ Symd(P(V )) =
∏
d

P(V )/Sd,

and this restricts to an open immersion on the open subscheme parametrising d disjoint

unordered reduced points in P(V ).

Proposition 7.2.2. Fix a splitting V = W ⊕W ′, so that we may regard SL(W ) as a

subgroup of SL(V ) by declaring that SL(W ) acts trivially on vectors in W ′. Suppose Y ∈
Hilb(P(V ), d) corresponds to a set of distinct unordered points ΞHC(Y ) = {p1, . . . , pd},
with each pi ∈ P(W ). Then ΨHC(Y ) ∈ Chow0,d(P(V )) is SL(W )-(semi)stable with

respect to the Chow linearisation if and only if for all proper linear subspaces Z ⊂ P(W ),

#(Y ∩ Z)

d
< (≤)

dimZ + 1

dimW
. (7.2.1)

Proof. There is an SL(W )-equivariant closed immersion of Chow schemes

Chow0,d(P(W )) ↪→ Chow0,d(P(V )),

under which the Chow linearisation on Chow0,d(P(V )) pulls back to the Chow lineari-

sation on Chow0,d(P(W )). As such, we may work instead with the SL(W )-action on

Chow0,d(P(W )). The result then follows from [99, Proposition 7.27].

In the case where λ is a 1PS of SL(V ) with two distinct weights and where Y ⊂ P(V )

is a closed subvariety contained entirely within a single weight space, the Chow weight

of Y can be computed in a very straightforward manner.

Lemma 7.2.3. Suppose we are given a decomposition V = U ⊕W , and let Y ⊂ P(W )

be a closed subvariety of dimension r and degree d. Let λ : Gm → SL(V ) be the 1PS

defined by declaring that each u ∈ U has weight a and each w ∈ W has weight b, where

a dimU + bdimW = 0 and where neither a nor b are zero. Then the Hilbert–Mumford

weight of the point ΨHC(Y ) (where Y is considered as a closed subvariety of P(V )) is

equal to bd(r + 1).

Proof. Pick bases x1, . . . , xn and y1, . . . , ym for U∨ and W∨ respectively, and let IY =

IP(W )(Y ) ⊂ Sym•W∨ = C[y1, . . . , ym]. The homogeneous ideal of Y ⊂ P(V ) is given by

IP(V )(Y ) = (IY , x1, . . . , xn) ·R ⊂ R := C[x1, . . . , xn, y1, . . . , ym],
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so for all k sufficiently large we have

H0(Y,OP(V )(k)|Y ) =
Rk

IP(V )(Y )k
=

C[y1, . . . , ym]k
(IY )k

, h0(Y,OP(V )(k)|Y ) =
d

r!
kr+O(kr−1).

All elements of C[y1, . . . , ym]k/(IY )k have weight −kb, so for all k sufficiently large

w([Y ]k, λ) = −kbh0(Y,OP(V )(k)|Y ) =
−bd(r + 1)

(r + 1)!
kr+1 +O(kr).

Applying Proposition 7.2.1 completes the proof of the lemma.

7.2.2 Joins of Varieties with Linear Subspaces

We recall the definition of the join of a subvariety Y ⊂ P(V ) with a complementary

linear subspace L ⊂ P(V ).

Definition 7.2.4. Let Y ⊂ P(V ) be a subvariety and let L ⊂ P(V ) be a linear subspace

with the property that Y ∩L = ∅. The join of Y and L is the subvariety of P(V ) obtained

as the union of all lines joining points of Y with points of L:

J(Y,L) =
⋃
y∈Y
q∈L

〈y, q〉.

Suppose Y is contained in a linear subspace L′ = P(W ) ⊂ P(V ) disjoint from L

with the property that P(V ) = 〈L,L′〉. The following facts are all standard (see for

instance [60, Examples 3.1 and 6.18, Proposition 11.36 and Exercise 16.14]) and/or are

straightforward to check.

(i) There is an equality IP(V )(J(Y,L)) = IP(W )(Y ) ·R of ideals of R = Sym•(V ∨).

(ii) For each q ∈ L, TqJ(Y,L) = P(V ).

(iii) Suppose p ∈ J(Y,L) \L lies on the line joining y ∈ Y to q ∈ L. Then TpJ(Y, L) =

〈L,TyY 〉. If y ∈ Y is a non-singular point then dimTpJ(Y, L) = dimy Y +dimL+1.

Let X ⊂ P(V ) be a closed subscheme, and suppose V = U⊕W for non-zero subspaces

U,W ⊂ V . Assume that X 6⊂ P(W ). Define a 1PS λ of GL(V ) by declaring that all

vectors u ∈ U have weight a and all vectors w ∈ W have weight b, where a < b. Let

Y = X ∩ P(W ), and let X0 = limt→0 λ(t) ·X ⊂ P(V ) be the flat limit of X under λ.
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Lemma 7.2.5. In the above situation, assume in addition that the rational map prP(U) :

X 99K P(U) is dominant, that Y is reduced and that the closed immersion Y ↪→ X is

regular. Then the flat limit X0 is given by the join J(Y,P(U)).

Before we give the proof of Lemma 7.2.5, we require the following lemma.

Lemma 7.2.6. Let f : Y → Z be a morphism between schemes which are flat over A1.

Let f0 : Y0 → Z0 be the base change of f along SpecC 0→ A1. Then there is an equality

of schemes im(f0) = im(f)0, where im denotes the scheme-theoretic image.

Proof. We have an immersion of schemes im(f0) ⊂ im(f)0, which we claim is an iso-

morphism. Without loss of generality we may assume Y = SpecA and Z = SpecB are

affine, with f corresponding to a homomorphism of C[t]-algebras ψ : B → A. Since

im(ψ) ⊂ A contains no t-torsion, we have Tor
C[t]
1 (im(ψ),C[t]/t) = 0. As such, applying

−⊗C[t] C[t]/t to the short exact sequence 0→ kerψ → B → im(ψ)→ 0 gives the short

exact sequence

0→ kerψ

t kerψ
→ B

tB
→ im(ψ)

t im(ψ)
→ 0.

In turn, there is a monomorphism kerψ/t kerψ ↪→ kerψ ⊂ B/tB. This induces a

surjection
B/tB

kerψ
�

B/tB

kerψ/t kerψ
=

im(ψ)

t im(ψ)
=

B/ kerψ

t(B/ kerψ)
.

It follows that there is a closed immersion im(f)0 ↪→ im(f0), which by construction is

inverse to im(f0) ⊂ im(f)0.

Proof of Lemma 7.2.5. Consider the rational map

Λ′ : X × A1 99K P(V )× A1, ([u+ w], t) 7→ ([u+ tb−aw], t),

and let I ⊂ OX×A1 = OX [t] denote the ideal sheaf of the base locus of Λ′. Blowing up

I, we have a diagram

B = BlI(X × A1)

X × A1 P(V )× A1

Λ

Λ′
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Since X × A1 is flat over A1, the same is true of B (cf. [51, Appendix B6.7]). By [100,

Lemma 2.13], the scheme-theoretic image im(Λ) ⊂ P(V ) × A1 is flat over A1, and the

flat limit X0 is given by the fibre of im(Λ) over 0 ∈ A1. By Lemma 7.2.6, this coincides

with the scheme-theoretic image of B0.

Without loss of generality, we may assume that b − a = 1 (rescaling the weights of

λ will not change the flat limit as a subscheme of P(V ), only the induced λ(Gm)-action

on it). We have an equality

I = IY + (t)

of ideals of OX [t], where IY is the ideal sheaf of Y ⊂ X. As such, B = BlI(X × A1) =

BlY×0(X × A1) is the total space for the deformation to the normal cone of Y ⊂ X (cf.

[51, Chapter 5]). The fibre of B over 0 ∈ A1 is given by

B0 = BlYX ∪EYX PY (NY⊂X ⊕OY ),

noting that since Y ⊂ X is a regular immersion, the normal cone CY⊂X = NY⊂X

coincides with the normal bundle, and is a (geometric) vector bundle. Here BlYX and

PY (NY⊂X ⊕OY ) intersect along the exceptional divisor EYX and the section at infinity

respectively. Since X and Y are reduced, the scheme B0 is also reduced, and so X0 must

also be reduced (as scheme-theoretic images of reduced schemes are reduced). In other

words, the scheme structure on X0 coincides with the reduced induced scheme structure

on the underlying space |X0|.
On the other hand, since Λ0 is the identity on Y ⊂ B0, since Λ0 is equivariant with

respect to the Gm-actions on X0 and PY (NY⊂X ⊕OY ), and since Λ0 coincides with the

dominant morphism prP(U) on BlYX \EYX = X \Y , we must have |X0| = |J(Y,P(U))|.
It follows that X0 = J(Y,P(U)) as subschemes of P(V ), completing the proof of the

lemma.

We now calculate the Hilbert–Mumford weight of the Chow point of a join J(Y,P(U)),

using Proposition 7.2.1.

Lemma 7.2.7. Suppose V = U ⊕ W , and let Y ⊂ P(W ) be a closed subvariety of

dimension r and degree d. Let J = J(Y,P(U)) be the join of Y and P(U) in P(V ).

Let λ : Gm → SL(V ) be the 1PS defined by declaring that each u ∈ U has weight a

and each w ∈W has weight b, where adimU+bdimW = 0 and where neither a nor b are
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zero. If dimY = dimP(U), assume further that a+ bd 6= 0. Then the Hilbert–Mumford

weight of the point ΨHC(J) with respect to λ is equal to
a(dimP(U) + 1) if dimY < dimP(U),

bd(dimY + 1) if dimY > dimP(U),

(a+ bd)(dimY + 1) if dimY = dimP(U).

Proof. It is possible to use [113, Theorem 4.8] to prove this result, however we elect give

a more direct, albeit similar calculation of the Hilbert–Mumford weight. As in the proof

of Lemma 7.2.3, pick bases x1, . . . , xn and y1, . . . , ym for U∨ and W∨ respectively. Let

IY = IP(W )(Y ) ⊂ Sym•W∨ = C[y1, . . . , ym], and set

IJ := IP(V )(J) = IY ·R ⊂ R := C[x1, . . . , xn, y1, . . . , ym].

For all k sufficiently large, we have

H0(J,OP(V )(k)|J) =
Rk

(IJ)k
∼=
⊕
i+j=k

C[x1, . . . , xn]i ⊗C
C[y1, . . . , ym]j

(IY )j
(7.2.2)

Elements of C[x1, . . . , xn]i all have weight −ia and elements of C[y1, . . . , ym]j/(IY )j all

have weight −jb. As such, by Equation (7.2.2) we have

w([J ]k, λ) = −
k∑
i=0

(
ia

(
n+ i− 1

i

)
+ (k − i)bψY (k − i)

)

= −
k∑
i=1

i

(
a

(
n+ i− 1

i

)
+ bψY (i)

)
,

where ψY (i) := dimC(C[y1, . . . , ym]i/(IY )i). For all sufficiently large k, we have

ψY (k) = h0(Y,OP(W )(k)|Y ) =
d

r!
kr +O(kr−1).

Therefore, for k � 0,

w([J ]k, λ) = −
k∑
i=1

i

(
a

(
n+ i− 1

i

)
+ b

(
d

r!
ir +O(ir−1)

))
+O(1)

= −
k∑
i=1

ia

(
n+ i− 1

i

)
− b d

r!(r + 2)
kr+2 +O(kr+1)

=
−bd(r + 1)

(r + 2)!
kr+2 −

k∑
i=1

ia

(
n+ i− 1

i

)
+O(kr+1),

where in the second line we used
∑k

i=1 i
p = kp+1

p+1 + O(kp). On the other hand we

have
∑k

i=1 ia
(
n+i−1

i

)
= an

(n+1)!k
n+1 + O(kn). The lemma then follows from Proposition

7.2.1.
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7.3 Moduli of Hyperplanar Admissible Flags

7.3.1 The Moduli Functor

Fix a finite dimensional vector space V and positive integers d, n > 0.

Definition 7.3.1. A (complete) hyperplanar admissible flag (X,Z) of subschemes of

P(V ) (of length n and degree d) is a tuple X = (X0, X1, . . . , Xn) of closed subschemes

X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 ⊂ Xn of P(V ), together with a tuple Z = (Z0, Z1, . . . , Zn) of

linear subspaces Z0 ⊂ Z1 ⊂ · · · ⊂ Zn−1 ⊂ Zn = V such that:

(i) dimXi = i for all i = 0, 1, . . . , n;

(ii) codimV Z
i = n− i for each i = 0, 1, . . . , n;

(iii) degXn = d; and

(iv) Xi = Xn ∩ P(Zi) for each i = 0, 1, . . . , n.3

The flag (X,Z) is non-degenerate if each Xi is not contained in a proper linear subspace

of Zi. The flag (X,Z) is non-singular if each of X1, . . . , Xn is a non-singular connected

projective variety, and if X0 is the disjoint union of d reduced points. The flag (X,Z)

is stable if X0 ⊂ P(Z0) is Chow stable, in the sense that for each proper linear subspace

Z ⊂ P(Z0), Inequality (7.2.1) holds strictly, with W taken to be Z0 and Y to be X0.

Remark. If (X,Z) is non-degenerate, the linear subspace Zi can be recovered from X by

taking the linear span of Xi in P(V ). In addition, each inclusion Xi ⊂ Xi+1 is a regular

embedding.

Of course, length n hyperplanar admissible flags of subschemes of P(V ) make sense

only when dimP(V ) ≥ n, and if n = dimP(V ) then the only possibilities are complete

flags of linear subspaces, which are all projectively equivalent. As such, whenever we

discuss length n hyperplanar admissible flags of subschemes of P(V ), we assume that

n + 1 < dimV . A necessary condition for there to exist non-degenerate, non-singular

and stable hyperplanar admissible flags of degree d is that d > dimZ0 = dimV − n.

Indeed, if k of the points of a Chow stable configuration X0 ⊂ P(Z0) have a projective

linear span of dimension ` ≤ k − 1, Inequality 7.2.1 implies that d > k
`+1 dimZ0.

3In particular, degXi = d for all i = 0, . . . , n.
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On the other hand, if d > dimZ0 then a generic configuration of points X0 ⊂ P(Z0)

obtained by intersecting a non-degenerate curve X1 ⊂ P(Z1) of degree d with a generic

hyperplane P(Z0) ⊂ P(Z1) will be Chow stable, as such a generic intersection will satisfy

the property that any subset of X0 of size dimP(Z0) spans a hyperplane in P(Z0) by

the so-called general position theorem of [13, Chapter III, §1]. The non-triviality of

the moduli of non-degenerate, non-singular and stable hyperplane admissible flags for

such degrees is then implied by Bertini’s theorem (cf. [62, Theorem II.8.18]), together

with the non-degenericity of generic hyperplane sections of irreducible non-degenerate

projective subvarieties of dimension at least 2 (cf. [60, Proposition 18.10]).

Definition 7.3.2. The Hilbert type Φ = (Φ0, . . . ,Φn) of the flag (X,Z) is the tuple

whose entries are the Hilbert polynomials of the Xi:

Φi(t) = χ(Xi,OP(V )(t)|Xi).

In order to have a moduli functor, we need to specify what is meant by a family of

hyperplanar admissible flags, and when two families are considered to be equivalent.

Definition 7.3.3. Let S be a scheme. A family of hyperplanar admissible flags (X ,Z, L)

of subschemes of P(V ) (of length n, degree d and Hilbert type Φ) parametrised by S is

given by the following data:

1. an invertible sheaf L on S;

2. a tuple X = (X 0, . . . ,X n) of closed subschemes X 0 ⊂ · · · ⊂ X n ⊂ PS(V ⊗L) which

are flat and finitely presented over S; and

3. a tuple Z = (Z0, . . . ,Zn) of locally free subsheaves Z0 ⊂ · · · ⊂ Zn = V ⊗ L,

such that the following properties hold:

(i) each Z i is of corank n− i; and

(ii) for each geometric point s ∈ S, the fibre (X ,Z)s = (X s,Zs) is a hyperplanar

admissible flag of subschemes of P(V ⊗ Ls) ∼= P(V ) of length n, degree d and

Hilbert type Φ, as in Definition 7.3.1.

The family (X ,Z, L) is said to be non-degenerate (resp. non-singular, stable) if for each

geometric point s ∈ S, the flag (X ,Z)s is non-degenerate (resp. non-singular, stable).

153



Definition 7.3.4. Let (X ,Z, L) and (X ′,Z ′, L′) be families of hyperplanar admissible

flags of subschemes of P(V ) over a common base scheme S. These families are said to be

(projectively) equivalent if there exists an isomorphism of invertible sheaves φ : L→ L′

and an element g ∈ GL(V ) such that:

(i) g ⊗ φ : V ⊗ L ∼→ V ⊗ L′ sends Z i to (Z i)′ for all i = 0, . . . , n, and

(ii) PS(g ⊗ φ) : PS(V ⊗ L)
∼→ PS(V ⊗ L′) sends X i to (X i)′ for all i = 0, . . . , n.

Given a morphism of schemes T → S, the pullback of a family of hyperplanar

admissible flags (X ,Z, L) parametrised by S is a family of hyperplanar admissible flags

parametrised by T , and projectively equivalent families over S pull back to projectively

equivalent families over T . As such, there is a well-defined moduli functor

FP(V )
n,d,Φ : Schop → Set

which associates to a scheme S the set of all equivalence classes of families of non-

degenerate, non-singular and stable hyperplanar admissible flags of subschemes of P(V )

of length n, degree d and Hilbert type Φ parametrised by S.

Remark. Suppose (X,Z), (X ′, Z ′) are non-degenerate hyperplanar admissible flags of

subschemes of P(V ) with the closed embeddings Xn, (X ′)n ⊂ P(V ) being linearly normal,

i.e. H1(P(V ), IXn(1)) = H1(P(V ), I(X′)n(1)) = 0, so that the restriction maps V ∨ →
H0(Xn,OXn(1)) and V ∨ → H0((X ′)n,OX′n(1)) are both isomorphisms. Then there

exists an isomorphism of polarised varieties (Xn,OP(V )(1)|Xn) ∼= ((X ′)n,OP(V )(1)|(X′)n)

taking each Xi to (X ′)i if and only if (X,Z) and (X ′, Z ′) are projectively equivalent.

Indeed, any such isomorphism (Xn,OP(V )(1)|Xn) ∼= ((X ′)n,OP(V )(1)|(X′)n) gives rise to

an automorphism of the overlying projective space P(V ), by considering the induced

isomorphism on global sections.

7.3.2 The Local Universal Property

Let n, d be positive integers and let V be a complex vector space of finite dimension;

assume dimV > n+ 1 and d > dimV − n. We now exhibit a family which has the local

universal property for the moduli functor F = FP(V )
n,d,Φ.
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Let Hi = Hilb(P(V ),Φi) be the Hilbert scheme parametrising closed subschemes of

P(V ) with Hilbert polynomial Φi, and let Gri = Gri(V ) be the Grassmannian parametris-

ing subspaces of V of codimension n− i. Let

S :=

n∏
i=0

Hi ×
n∏
j=0

Grj .

We endow S with the diagonal action of GL(V ) induced by the natural GL(V )-actions

on the Hi and Grj .
4 Over H are the following universal objects:

(i) S-flat, S-finitely presented closed subschemes Y i ⊂ P(V )×S for each i = 0, . . . , n,

with Y i given by the pullback of the universal family over Hi.

(ii) Corank n− j locally free subsheaves Wj ⊂ V ⊗OS for each j = 0, . . . , n, with Wj

given by the pullback of the universal subbundle over Grj .

Lemma 7.3.5. There exists a locally closed, GL(V )-invariant subscheme S ′ ⊂ S with

the following universal property: suppose S is a scheme and S → S is a morphism,

corresponding to the closed subschemes Y iS ⊂ P(V ) × S and the locally free subsheaves

Wj
S ⊂ V ⊗ OS. Then S → S factors through S ′ if and only if for each geometric point

s ∈ S:

1. Y0
s ⊂ · · · ⊂ Yns as subschemes of P(V ), and W0

s ⊂ · · · ⊂ Wn
s = V as subspaces of

V ;

2. Y is = Yns ∩ P(W i
s) for all i = 0, . . . , n;

3. dimY is = i for all i = 0, . . . , n;

4. degY is = d for all i = 0, . . . , n;

5. Y is ⊂ P(W i
s) is a non-degenerate, non-singular, connected projective subvariety for

each i = 1, . . . , n; and

6. Y0
s ⊂ P(W0

s ) is non-degenerate, Y0
s is the disjoint union of d reduced points and

Y0
s is Chow stable.

4Note that the action of GL(V ) factors through the quotient PGL(V ).
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Proof. The first two conditions are incidence correspondences; these conditions cut out

a closed subscheme of S. After first imposing the first two conditions, the remaining

conditions are all open in flat families, so define an open subscheme S ′ of this closed

subscheme.

Let (Y ′,W ′) be the restriction of (Y,W) to S ′ ⊂ S. Note that (Y ′,W ′,OS′) is a family

of non-degenerate, non-singular and stable hyperplanar admissible flags of subschemes

of P(V ) of length n, degree d and Hilbert type Φ over S ′.

Lemma 7.3.6. The family (Y ′,W ′,OH′) has the local universal property for the moduli

functor F = FP(V )
n,d,Φ.

Proof. Given a family (X ,Z, L) over a scheme S and a point s ∈ S, by passing to

an open neighbourhood U ⊂ S of s where L is trivial we may assume without loss of

generality that L = OS . The result then follows from Lemma 7.3.5 together with the

universal properties of the schemes Hi and Grj .

Corollary 7.3.7. The moduli functor F is corepresentable if and only if there exists a

categorical quotient q : S ′ → S ′ //SL(V ) of S ′ by SL(V ), and that a coarse moduli space

of F exists if and only if q is an orbit space morphism.

Proof. If s0, s1 are points of S ′ and if (Y0,W0), (Y1,W1) are the restrictions of the

universal family (Y,W) to s0 and s1 respectively, the flags (Y0,W0) and (Y1,W1) are

equivalent if and only if s0 and s1 lie in the same SL(V )-orbit in S ′. The result then

follows by Proposition 2.3.3.

7.4 Proof of the Main Result

Let n, d be positive integers and let V be a complex vector space of dimension n+ 1 <

dimV . Assume in addition that d > dimV−n and that d 6∈
{

dimV−n−1+i
n+1−i : i = 1, . . . , n

}
.

Let Φ = (Φ0, . . . ,Φn) be a tuple of Hilbert polynomials of subschemes of P(V ), where

Φi(t) = d
i! t
i + O(ti−1) for each i = 0, 1, . . . , n. We will construct a categorical quotient

for the action of the group G = SL(V ) on the subscheme S ′ ⊂
∏n
i=0Hi ×

∏n
j=0 Grj .
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7.4.1 Reduction to a Parabolic Action

Fix a decomposition

V = W ⊕ Cv1 ⊕ · · · ⊕ Cvn

where W ⊂ V is a subspace of codimension n. For each i = 0, 1, . . . , n set Zi =

W ⊕
⊕

j≤iCvj . Let p0 be the point of
∏n
i=0 Gri corresponding to (Z0, . . . , Zn), and let

P = StabG(p0) be the parabolic subgroup of G preserving the flag Z0 ⊂ · · · ⊂ Zn. With

respect to a basis of V compatible with the flag Z0 ⊂ · · · ⊂ Zn we have

P =




A1,1 A1,2 · · · A1,n A1,n+1

0 a2,2 · · · a2,n a2,n+1
...

...
. . .

...
...

0 0 · · · an,n an,n+1

0 0 · · · 0 an+1,n+1

 ∈ SL(V ) :

A11, ∈ CdimW×dimW ,

A1,i ∈ CdimW for i = 2, . . . , n+ 1,

ai,j ∈ C for i, j > 1


.

In particular, in the notation of Section 3.3 we have P = P (λ̃), where λ̃ is any 1PS of G

with decreasing weights β1 > β2 > · · · > βn+1 whose multiplicities are (dimW, 1, . . . , 1).

Let S ′0 ⊂ S ′ be the preimage of p0. Then S ′ = G · S ′0, so by Lemma 2.1.6 we have

S ′ ∼= G×P S ′0.

It follows that a categorical quotient of S ′ by G exists (and is an orbit space morphism)

if and only if a categorical quotient of S ′0 by P exists (and is an orbit space morphism).

Indeed, if a categorical P -quotient S ′0 //P exists, then the action morphism G×S ′0 → S ′

induces an isomorphism of categorical quotients S ′ // G ∼= S ′0 // P .

7.4.2 Linearising the Parabolic Action

From now on, we regard S ′0 as a locally closed P -invariant subscheme of H :=
∏n
i=0Hi

in the obvious way. For each i = 0, . . . , n, let

Ψi : Hilb(P(V ),Φi)→ Chi := Chowi,d(P(V ))

be the corresponding Hilbert–Chow morphism. Let

Ψ =
n∏
i=0

Ψi : H → Ch :=
n∏
i=0

Chi

be the product of the Ψi. Given a tuple of positive integers a = (a0, . . . , an), let LaCh :=

�ni=0L
ai
Chi

, where LChi is the Chow linearisation on the Chow scheme Chi.
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In the notation of Section 3.3 we have R′1 = R
′(1) = SL(W ) and R

′(i) = {e} for all

i > 1. We choose a to be of the form a = (a′0m,m, . . . ,m) for some sufficiently large

integers m > 0 and a′0 > 0, where m is chosen such that each LmChi
is very ample, and

a′0 is chosen according to the following result (where the reductive group K is taken to

be R
′(1) = SL(W )):

Lemma 7.4.1. Let K be a reductive linear algebraic group acting on a product of pro-

jective schemes
∏n
i=0 Yi, where each Yi is endowed with a very ample K-linearisation

Li. Then there exists a positive integer a′ > 0 such that for all a′0 > a′, for every point

p = (p0, . . . , pn) ∈
∏n
i=0 Yi, if p0 is K-stable with respect to the linearisation L0 then p

is K-stable with respect to the linearisation L
a′0
0 � L1 � · · ·� Ln.

Proof. By using each Li to embed Yi inside a projective space, we may assume each Yi

is a projective space P(Wi). The lemma now follows from [118, Proposition 1.7.3.1].

7.4.3 Upstairs Stabilisers and Weights

Fix integers β1 > 0 > β2 > · · · > βn+1 with β1 dimW +
∑n+1

i=2 βi = 0.5 Define a 1PS

λ : Gm → SL(V ) by setting

λ(t) · v =

{
tβ1v if v ∈W,
tβi+1v if v = vi.

P is the parabolic subgroup of SL(V ) associated to λ, and λ grades the unipotent radical

of the parabolic P . We will freely make use of the notation of Section 3.3 as it applies

to the parabolic group P . In particular, by averaging the weights of λ we obtain length

two 1PS λ[1], . . . , λ[n]. We also obtain unipotent groups U [1], . . . , U [n] by considering the

row filtration of the unipotent radical of P , with U [i] graded by λ[i]. The 1PS λ[i] has

weight space decomposition V = Zi−1 ⊕ V i−1 where V j =
⊕

k>j Cvk; vectors in Zi−1

have λ[i]-weight β≤i and vectors in V i−1 have λ[i]-weight β>i.

Fix a point p of S ′0 corresponding to a hyperplanar admissible flag (X0, X1, . . . , Xn)

with Xi = Xn ∩ P(Zi) and 〈Xi〉 = P(Zi) = P
(
W ⊕

⊕
j≤iCvj

)
for all i. For all

1 ≤ i ≤ j ≤ n, let V i,j =
⊕j

k=iCvk; we also set p[i](x) := limt→0 λ
[i](t) · x for a point

x ∈ H.

5For the purposes of this chapter, the specific choices of the βi’s doesn’t matter; what matters is that
they satisfy the given constraints.
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Lemma 7.4.2. The following statements hold:

1. For each i = 1, . . . , n, the point p[i](p) ∈ H is given by the flag

p[i](p) = (X0, . . . , Xi−1, J(Xi−1,P(V i,i)), J(Xi−1,P(V i,i+1)), . . . , J(Xi−1,P(V i,n))).

2. For all j ≤ i we have p[j](p[i](p)) = p[j](p).

Proof. λ[i] fixes pointwise the subschemes X0, . . . , Xi−1. On the other hand, for each

k ≥ i the projection Xk 99K P(V i,k) is dominant, since Xk ⊂ P(Zk) is non-degenerate.

The first assertion now follows from Lemma 7.2.5. For the second assertion, note that

Zj−1 ∩ V i,k = 0 for all k ≥ i, so

J(Xi−1,P(V i,k)) ∩ P(Zj−1) = Xi−1 ∩ P(Zj−1) = Xj−1.

The second assertion then follows from a second application of Lemma 7.2.5.

Lemma 7.4.3. For all i = 1, . . . , n, we have StabU [i](p[i](p)) = {e}.

Proof. If k ≥ i, then any projective automorphism of P(V ) arising from the unipotent

group U [i] which preserves J(Xi−1,P(V i,k)) must preserve P(V i,k), as seen by considering

dimensions of projective tangent spaces; points of P(V i,k) have projective tangent space

equal to all of P(V ), whereas points of J(Xi−1,P(V i,k)) off P(V i,k) have projective

tangent spaces of dimension (i− 1) + (k − i) + 1 = k < dimP(V ).

It follows that any element u = (Apq)
n+1
p,q=1 ∈ StabU [i](p[i](p)) must preserve each

of P(V i,i), . . . ,P(V i,n), which implies that if p 6= q then Apq = 0 whenever p ≤ i and

q > i. On the other hand u ∈ U [i], so for p 6= q we have Apq = 0 if q ≤ i or if p > i.

Consequently u = e must be the identity matrix.

Lemma 7.4.4. For each i = 1, . . . , n, the Hilbert–Mumford weight µL
a
Ch(Ψ(p), λ[i]) is

the same for all points p ∈ S ′0.

Proof. First of all, since d > dimV − n = dimW , since β2, . . . , βn+1 < 0 and since

d 6∈
{

dimW+i−1
n+1−i : i = 1, . . . , n

}
then for each i = 1, . . . , n we have

β>i + dβ≤i =

(
1

n+ 1− i
− d

dimW + i− 1

)
(βi+1 + · · ·+ βn+1) 6= 0.

Therefore Lemma 7.2.7 is applicable.
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Choose a basis W∨ and let xi ∈ V ∨ be dual to vi. For a point p ∈ S ′0, up to a positive

scalar multiple the Hilbert–Mumford weight of Ψ(p) is given by

µL
a
Ch(Ψ(p), λ[i]) = a′0µ

LCh1 (Ψ0(X0), λ[i])

+

i−1∑
j=1

µ
LChj (Ψj(X

j), λ[i]) +

n∑
j=i

µ
LChj (Ψj(J(Xi−1,P(V i,j))), λ[i]).

The contribution µ
LChj (Ψj(X

j), λ[i]) coming from Xj (where j < i) is equal to

β≤id(j + 1) by Lemma 7.2.3. For the contribution of the join Jj := J(Xi−1,P(V i,j))

(where j ≥ i), we have that the homogeneous ideal of Jj ⊂ P(V ) is given by

IP(V )(Jj) = 〈IP(Zj)(Jj), xj+1, . . . , xn〉,

so the homogeneous coordinate ring of Jj ⊂ P(V ) is the same as that for Jj ⊂ P(Zj).

Applying Lemma 7.2.7 then gives

µ
LChj (Ψj(Jj), λ

[i]) =


β>i(j − i+ 1) if j > 2i− 1,

β≤idi if j < 2i− 1,

i(β>i + dβ≤i) if j = 2i− 1.

It is now clear that the resulting expression for µL
a
Ch(Ψ(p), λ[i]) is the same for all

points p ∈ S ′0.

7.4.4 The Quotienting-in-Stages Procedure

We now construct a quotient of S ′0 in stages, by implementing Construction 3.3.1. After

n stages, we will obtain a quotient for the action of P , the parabolic group in Section

7.4.1.

For the base step of the quotienting-in-stages procedure, as Ψ restricts to an isomor-

phism S ′0
'→ Ψ(S ′0), we can regard S ′0 ⊂ Ch. Let Q1 be the projective scheme obtained

by taking the closure of S ′0 in Ch. For some s0 > 0, the GL(V )-linearisation Ls0aCh is

very ample; let L1 be the restriction of this linearisation to Q1, twisted by a suitable

character ε1χ1 (to ensure that the corresponding Ĥ1-linearisation is adapted). As per

Construction 3.3.1, we need to consider the action Ĥ1 = U1 o (SL(W )×λ1(Gm)) � Q1.

Fix a point p of S ′0 corresponding to a hyperplanar admissible flag (X0, X1, . . . , Xn)

with Xi = Xn∩P(Zi) and 〈Xi〉 = P(Zi) = P
(
W ⊕

⊕
j≤iCvj

)
for all i. Let x = Ψ(p) ∈

Q1. We introduce the following notation:
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1. Set Q(1) := (Q1)Ĥ1−vs
min .

2. For all i = 1, . . . , n, set Q[i]
1 := Q1(λ[i])min and set Z

[i]
1 := Z(Q1, λ

[i])min.

3. Denote p[i] the λ[i]-retraction p[i] : Q[i]
1 → Z

[i]
1 .

Lemma 7.4.5. The following statements hold:

1. the point x lies in Q(1), and for all i ≥ 1 we have x ∈ Q[i]
1 ;

2. for all i > 1, we have p[i](x) ∈ Q(1); and

3. for all i ≥ 1, we have p[i](x) ∈ Z [i]
1 .

In particular, for the action Ĥ1 � Q1 linearised by L1, Theorem 3.2.9 is applicable.

Proof. We begin by considering the third statement. From Lemma 7.4.4, the Hilbert–

Mumford weight of p[i](x) with respect to the linearisation L1 and the 1PS λ[i] is constant

across the dense open subscheme S ′0 ≡ Ψ(S ′0) ⊂ Q1. This common weight must be the

minimal weight, and so p[i](x) ∈ Z [i]
1 as claimed.

Let us now show that the points x, p[2](x), . . . , p[n](x) are in Q(1) = (Q1)Ĥ1−vs
min ; this

involves establishing the following for all elements y ∈ {x, p[2](x), . . . , p[n](x)}:

(i) y ∈ Q[1]
1 = Q1(λ[1])min, that is p[1](y) has minimal λ[1]-weight.

(ii) p[1](y) has trivial U [1]-stabiliser and is stable under the action of R′1 = R
′(1) =

SL(W ) on Z
[1]
1 .

(iii) y is not contained in the U [1]-sweep of Z
[1]
1 .

However, by Lemma 7.4.2 we have for all such points y that

p[1](y) = p[1](x) = Ψ(X0, J(X0,P(V 1,1)), . . . , J(X0,P(V 1,n))).

We have already shown that this point has minimal λ[1]-weight, so each such point y

is in Q[1]
1 . By Lemma 7.4.1, the Chow stability of X0 ⊂ P(Z0) together with Proposition

7.2.2 implies that the point p[1](x) is SL(W )-stable with respect to L1. Lemma 7.4.3

implies that StabU [1](p[1](x)) is trivial. Finally, points in U [1]Z
[1]
1 are fixed by the retrac-

tion p[1], whereas no point y ∈ {x, p[2](x), . . . , p[n](x)} is fixed by p[1], as the dimension 1

component of a flag corresponding to such a point y (namely, X1) does not coincide with

that of p[1](y). Consequently each such point y cannot lie in U [1]Z
[1]
1 . This completes

the proof of the Lemma.
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We now consider the induction step of Construction 3.3.1. Suppose 1 ≤ i < `−1 = n,

and suppose we have constructed successive quotients qj of the form

(Qj)
Ĥj−vs
min (Qj)

Ĥj−vs
min /Ĥj

Qj Qj+1

P(H0(Qj , L
sj
j )∨) P((H0(Qj , L

sj
j )Ĥj )∨)

qj

◦ ◦

p p
qj

H0(Qj ,L
sj
j )Ĥj⊂H0(Qj ,L

sj
j )

for each j = 1, . . . , i, where the top horizontal arrow is a geometric Ĥj-quotient, where

Qj+1 is the closure of the locally closed subscheme

(Qj)
Ĥj−vs
min /Ĥj ⊂ P((H0(Qj , L

sj
j )Ĥj )∨),

and where each Qj is endowed with the very ample linearisation Lj obtained by re-

stricting the O(1) of P((H0(Qj−1, L
sj−1

j−1 )Ĥj−1)∨) to Qj and then twisting by a suitable

character εjχj of Ĥj to ensure adaptedness.

The very ample invertible sheaf Li+1 on the projective scheme Qi+1 carries a lineari-

sation for a residual action of P/Ĥ(i), and in particular for Ĥi+1. By twisting Li+1 by

a character of Ĥi+1 of the form εi+1χi+1 if necessary, we may assume that this Ĥi+1-

linearisation is adapted.

For the induction step, we need to show that Theorem 3.2.9 can be applied to this

linearised action of Ĥi+1. In order to establish this, we introduce the following notation:

1. For j = 1, . . . , i, set

q(j) := qj ◦ qj−1 ◦ · · · ◦ q1 : Q1 99K Qj+1.

2. We inductively define open subschemes Q(j) ⊂ Q1 for j = 1, . . . , i + 1 by setting

Q(1) := (Q1)Ĥ1−vs
min (as before) and setting for j > 1

Q(j) := Q(j−1) ∩ q−1
(j−1)((Qj)

Ĥj−vs
min ),

so that for each j, the morphism q(j) : Q(j) → q(j)(Q(j)) = Q(j)/Ĥ
(j) ⊂ Qj+1 is a

well-defined geometric Ĥ(j)-quotient.
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3. For all k = 1, . . . , i + 1 and for all k ≤ j < ` = n + 1, let Q[j]
k = Qk(λ

[j]
k )min, let

Z
[j]
k = Z(Qk, λ

[j]
k )min, and let p

[j]
k : Q[j]

k → Z
[j]
k be the retraction under λ

[j]
k . As

a special case of the above, we continue to denote p[j] = p
[j]
1 for the λ

[j]
1 = λ[j]

retraction on Q1.

4. Set Q(0) := Q1 and q(0) := idQ1 .

Lemma 7.4.6. For each j = 0, 1, . . . , i, the following statements hold:

1. x ∈ Q(j+1), and for all k ≥ j + 1 we have q(j)(x) ∈ Q[k]
j+1;

2. for all j + 1 < k ≤ n, we have p[k](x) = p
[k]
1 (x) ∈ Q(j+1); and

3. for all j + 1 ≤ k ≤ n, q(j)(p
[k](x)) ∈ Z [k]

j+1.

Proof. We argue by induction on j, noting that the base case is Lemma 7.4.5. Assume

that the assertions of Lemma 7.4.6 holds for each j = 0, . . . , r − 1, where r ≤ i. We

first show that for each k ≥ r + 1, the point q(r)(p
[k](x)) = p

[k]
r+1(q(r)(x)) is contained

in Z
[k]
r+1. For each k ≥ r + 1, the induction hypothesis implies that q(r−1)(p

[k](x)) =

p
[k]
r (q(r−1)(x)) ∈ Z [k]

r ∩ (Qr)Ĥr−vsmin . In particular, we have Z
[k]
r ∩ (Qr)Ĥr−vsmin 6= ∅. From

Construction 3.3.1 the map qr : Qr 99K Qr+1 is given by the projection corresponding

to the inclusion B := H0(Qr, Lsrr )Ĥr ⊂ A := H0(Qr, Lsrr ), and the twist of Lr+1 by the

character −εr+1χr+1 pulls back under qr to give Lsrr . As such, the arguments given in

the proof of [66, Lemma 5.4] carry over to the map qr : Qr 99K Qr+1. Namely, that

Z
[k]
r ∩ (Qr)Ĥr−vsmin 6= ∅ implies that the maximal weights for λ

[k]
r (Gm) acting on both A

and B coincide, so we may choose a basis BA for A of the form

BA = {αι, α′κ, βµ, β′ν},

where the αι, α
′
κ are a basis for B and the αι, βµ are a basis for the maximal weight space

for λ
[k]
r (Gm) in A. With respect to this basis, the morphism qr corresponds to projecting

onto the αι, α
′
κ-coordinates, and the retraction p

[k]
r on Qr corresponds to projecting

onto the αι, βµ-coordinates. Setting z := q(r−1)(p
[k](x)), since z ∈ Z [k]

r then all α′κ, β
′
ν-

coordinates of z vanish, and since z ∈ (Qr)Ĥr−vsmin then at least one αι-coordinate of z

does not vanish. Applying qr to z (that is, projecting onto the αι-coordinates), we obtain
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that the point qr(z) = q(r)(p
[k](x)) ∈ Qr+1 is fixed by λ

[k]
r+1 and has all coordinates in the

maximal weight space, whence z ∈ Z [k]
r+1. Consequently, we find that for all k ≥ r + 1,

p
[k]
r+1(q(r)(x)) = q(r)(p

[k](x)) = qr(q(r−1)(p
[k](x))) ∈ Z [k]

r+1.

In turn this implies that q(r)(x) ∈ Q[k]
r+1 for all k ≥ r + 1.

Let us now show that the points x, p[r+2](x), . . . , p[n](x) lie in Q(r+1), that is their

images under q(r) lie in (Qr+1)
Ĥr+1−vs
min . Note that the semisimple part R′r+1 of the Levi

subgroup Rr+1 of Ĥr+1 is trivial, so R′r+1-stability is vacuous. As such, it suffices to

establish the following for any point y ∈ {q(r)(x), q(r)(p
[r+2](x)), . . . , q(r)(p

[n](x))}:

(i) p
[r+1]
r+1 (y) ∈ Z [r+1]

r+1 .

(ii) p
[r+1]
r+1 (y) has trivial Ur+1-stabiliser.

(iii) y is not contained in the Ur+1-sweep of Z
[r+1]
r+1 .

By Lemma 7.4.2 we have for all such points y

p
[r+1]
r+1 (y) = p

[r+1]
r+1 (q(r)(x)) = q(r)(p

[r+1](x)),

which is represented by the Ĥ(r)-orbit of the configuration

p[r+1](p) = (X0, . . . , Xr, J(Xr,P(V r+1,r+1)), . . . , J(Xr,P(V r+1,n))).

of subschemes of P(V ). We have already established that q(r)(p
[r+1](x)) is in Z

[r+1]
r+1 .

Combining Lemma 7.4.3 with [66, Lemma 5.12], the triviality of StabU [r+1](p[r+1](p))

implies that q(r)(p
[r+1](x)) has trivial Ur+1-stabiliser. Any point in q(r)(Q(r))∩Ur+1Z

[r+1]
r+1

is fixed under the retraction p
[r+1]
r+1 . However none of the points y are fixed by p

[r+1]
r+1 ,

as they are all represented by configurations whose dimension (r + 1) component is the

non-singular variety Xr+1, whereas p
[r+1]
r+1 (y) is represented in dimension (r + 1) by the

singular variety J(Xr,P(V r+1,r+1)).

Consequently none of these points y can lie in Ur+1Z
[r+1]
r+1 . It follows that each

y ∈ {q(r)(x), q(r)(p
[r+2](x)), . . . , q(r)(p

[n](x))} lies in (Qr+1)
Ĥr+1−vs
min . This concludes the

induction step and in turn concludes the proof of the lemma.

Corollary 7.4.7. For the action Ĥi+1 � Qi+1 linearised by Li+1, Theorem 3.2.9 is

applicable.
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Proof. This immediately follows from Lemma 7.4.6.

Arguing by induction on i, it follows that Construction 3.3.1 can be carried out in

full, yielding a diagram of the form

Q1 Q2 · · · Qn Qn+1

(Q1)Ĥ1−vs
min (Q2)Ĥ2−vs

min · · · (Qn)Ĥn−vsmin

◦ ◦ ◦

q1 q2 qn−1 qn

qnq2q1

where for each i the restriction qi : (Qi)Ĥi−vsmin → qi((Qi)Ĥi−vsmin ) = (Qi)Ĥi−vsmin /Ĥi is a

geometric Ĥi-quotient. With

q(n) := qn ◦ qn−1 ◦ · · · ◦ q1 : Q1 99K Qn+1

and

Q(n) := Q(n−1) ∩ q−1
(n−1)((Qn)Ĥn−vsmin ),

the morphism q(n) : Q(n) → q(n)(Q(n)) ⊂ Qn+1 is a well-defined geometric Ĥ(n)-quotient

of Q(n). If x is a point of S ′0 ≡ Ψ(S ′0), by iterating Lemma 7.4.6 one has x ∈ Q(n).

7.4.5 Completing the Proof

By tying everything together, we complete the proof of Theorem 7.1.1.

Proof of Theorem 7.1.1. By Corollary 7.3.7, the moduli functor FP(V )
n,d,Φ admits a coarse

moduli space if and only if the scheme S ′ admits a categorical quotient for the action

of SL(V ) which is an orbit space morphism. From Section 7.4.1, this is equivalent to

S ′0 ≡ Ψ(S ′0) admitting a categorical quotient for the action of P which is an orbit space

morphism.

From Section 7.4.4, the schemeQ(n) admits a quasi-projective geometric Ĥ(n)-quotient.

Invoking Proposition 3.3.2, it follows that Q(n) admits a quasi-projective geometric P -

quotient. There is an inclusion Ψ(S ′0) ⊂ Q(n) of open subschemes of Q(1). A geo-

metric P -quotient of S ′0 can then be obtained by restricting the geometric P -quotient

q(n) : Q(n) → q(n)(Q(n)) ⊂ Qn+1, by applying Lemma 2.1.5 to the Ui-quotients (which

are all Zariski-locally trivial) and Lemma 2.1.4 to the quotients by the λi(Gm) and by

R′1 = SL(W ) (which all have the property of being geometric quotients). In particular,
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S ′0 ≡ Ψ(S ′0) admits a categorical quotient for the action of P which is an orbit space

morphism. This completes the proof of Theorem 7.1.1.

7.5 Extending the Main Result

To conclude this chapter, we consider a couple of ways in which Theorem 7.1.1 can be

extended.

7.5.1 Weighting the Points

The construction presented above treats X0 as an unordered collection of points in the

linear subspace Z0 ⊂ P(V ). It is possible to consider a modified setup, where we instead

consider X0 to be an ordered collection of d points in Z0, by replacing the Hilbert

scheme Hilb(P(V ), d) of 0-dimensional length d subschemes of P(V ) with the d-fold

product P(V )×d. In place of the Chow linearisation LCh0 , one may take the linearisation

OP(V )(w) := �di=1OP(V )(wi), w = (w1, . . . , wd) ∈ (Z>0)d.

With respect to the induced action of SL(W ) arising from a given decomposition V =

W ⊕W ′, it follows from [40, Theorem 11.1] that if p = (p1, . . . , pd) ∈ P(W )×n ⊂ P(V )×n

then p is SL(W )-(semi)stable with respect to the linearisation OP(V )(w) if and only if

for all proper linear subspaces Z ⊂ P(W ),∑
pi∈Z wi∑d
i=1wi

< (≤)
dimZ + 1

dimW
(7.5.1)

Applying the same quotienting-in-stages construction used to prove Theorem 7.1.1 with

this modified setup, one obtains (for each w ∈ (Z≥0)d) a coarse moduli space parametris-

ing all non-degenerate, non-singular and stable hyperplanar admissible flags (X,Z) to-

gether with a labelling of the points of X0, where the appropriate notion of stability is

given by requiring that the labelled points in X0 ⊂ P(Z0) satisfy Inequality 7.5.1 strictly.

7.5.2 Omitting the Points

Another variant of Theorem 7.1.1 can be obtained in which the flags being parametrised

are of the form

X1 ⊂ · · · ⊂ Xn−1 ⊂ Xn, Z1 ⊂ · · · ⊂ Zn−1 ⊂ Zn = V (7.5.2)
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where X1 ⊂ P(Z1) is a smooth, non-degenerate connected projective curve which is now

required to be GIT stable with respect to the Chow linearisation on Hilb(P(Z1),Φ1)

(and all other subvarieties Xi ⊂ P(Zi) are non-degenerate, smooth and connected).

As above, the construction proceeds along very similar lines to the quotienting-in-stages

construction used to prove Theorem 7.1.1; the locus S ′ being quotiented is taken to be the

analogously-defined locally closed subscheme of
∏n
i=1Hi×

∏n
j=1 Grj , and the group P is

taken to be the parabolic subgroup of SL(V ) preserving the flag Z1 ⊂ · · · ⊂ Zn = V . In

the base step of the quotienting-in-stages procedure (cf. Lemma 7.4.5), the GIT stability

of X1 ⊂ P(Z1) is used to argue that the points p[1](y), y ∈ {x, p[2](x), . . . , p[n−1](x)}
are all stable with respect to the reductive linear algebraic group R′1; otherwise the

quotienting-in-stages construction proceeds as in Section 7.4.4.

From the results of [22], it is known that if g ≥ 2 and if d > 2(2g − 2) then smooth

non-degenerate connected projective curves in Pd−g of degree d and genus g are Chow

stable; in particular, the Chow stable locus of the corresponding Hilbert scheme of curves

is non-empty. Imposing the requirement that the degree and genus of X1 satisfy these

constraints imposes constraints on the higher-dimensional Xi fitting into a flag of the

form (7.5.2). Indeed, fixing k ∈ {2, . . . , n}, it follows from the Hirzebruch–Riemann–

Roch theorem (as applied in [51, Example 18.3.5]) that if H ⊂ Xk is the hyperplane

class then

1− g = χ(X1,OX1)

=

∫
Xk

(
k−1∏
i=1

(1− exp(−H)) ∩ Td(Xk)

)

=

∫
Xk

(
Hk−1 ·

(
−KXk

2

)
− k − 1

2
Hk

)
= −k − 1

2
· d− KXk ·X1

2
.

Here Td(Xk) = 1− 1
2KXk + · · · is the Todd class of Xk. The inequality d > 2(2g − 2)

implies that if g ≥ 2 then

KXk ·X1 < −(2k − 3)(2g − 2) ≤ 0.

In particular, each canonical divisor KXk cannot be nef or numerically trivial.
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For similar reasons to when k = 1, it is also possible to obtain a variant of Theorem

7.1.1 concerning flags of the form

Xk ⊂ · · · ⊂ Xn−1 ⊂ Xn, Zk ⊂ · · · ⊂ Zn−1 ⊂ Zn = V

where Xk ⊂ P(Zk) is a smooth, non-degenerate, Chow stable subvariety of P(Zk).
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Chapter 8

Moduli Spaces of Unstable Rank
1 Torsion-Free Sheaves on
Reducible Curves

8.1 Introduction

In this chapter, we study the moduli of Gieseker unstable rank 1 torsion-free sheaves on

reducible curves. The main result that we prove is the existence of quasi-projective fine

moduli spaces of simple unstable torsion-free uniform rank 1 sheaves on certain reduced,

connected, projective, reducible curves C; in many cases these fine moduli spaces are

projective. In particular, this gives the first examples of projective moduli spaces of

unstable sheaves on projective schemes which admit fully modular descriptions, without

any restriction on the Harder–Narasimhan length.

As explained in Chapter 4, GIT gives a method to construct projective moduli spaces

of semistable sheaves on a projective scheme X. Conversely, no such general approach

is known to exist for the analogous problem of constructing moduli spaces of unstable

sheaves on X of a given Harder–Narasimhan type. Even though this is a problem in

non-reductive GIT (cf. Section 4.3.2), the Û -Theorem of Bérczi–Doran–Hawes–Kirwan

can only be applied in certain cases. The most well-behaved case concerns the moduli

of unstable sheaves F of Harder–Narasimhan length 2 on a projective scheme X whose

Harder–Narasimhan filtration is non-split, whose Harder–Narasimhan subquotients are

Gieseker stable and with fixed dim EndX(F ); the Û -Theorem can be used to construct a

quasi-projective coarse moduli space parametrising all such sheaves, as shown by Jackson

[70].
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For Harder–Narasimhan lengths ` > 2, there are two current NRGIT approaches to

constructing moduli spaces of unstable sheaves F of Harder–Narasimhan length `, whose

Harder–Narasimhan filtration is non-split and whose Harder–Narasimhan subquotients

are stable. The first approach is the non-reductive quotienting-in-stages procedure of

Hoskins and Jackson [66] (cf. Section 3.3); this involves fixing, in addition to fixing the

Harder–Narasimhan type, the quantities

dim HomX(F/F i, F i), dim HomX(F/F i, F i−1),

for all i, where 0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F ` = F is the Harder–Narasimhan filtration

of F . The second approach of Qiao [110] involves choosing a sequence s0, . . . , sN of

non-increasing functions {1, . . . , `} → {0, . . . , ` − 1}, and fixing the dimensions of the

spaces

EndX(F )sk :=
{
φ ∈ EndX(F ) : φ(F i) ⊂ F sk(i) for all i = 1, . . . , `

}
, k = 1, . . . , N.

With either approach, the resulting moduli spaces parametrise sheaves of a fixed re-

fined Harder–Narasimhan type (though the respective notions of refinements are differ-

ent); for either approach to work, there must exist an unstable sheaf F whose Harder–

Narasimhan associated graded has the same refined Harder–Narasimhan type as F .

Hoskins–Jackson can only provide examples of such sheaves whose Harder–Narasimhan

length is 2 (and this case is covered by Jackson’s Harder–Narasimhan length 2 result),

whereas Qiao is able to use his approach to construct quasi-projective coarse moduli

spaces of unstable locally free sheaves on a smooth projective curve of genus g which,

in addition to having fixed dim EndX(F )sk for all k = 0, . . . , N (for a chosen sequence

s0, . . . , sN ), are required to satisfy µi − µi+2 > 2g − 2 for all i, where µ1 > · · · > µ` are

the slopes of the Harder–Narasimhan subquotients.

A separate non-GIT construction exists of the moduli space of unstable vector bun-

dles F on X of fixed Harder–Narasimhan type τ of length 2 whose Harder–Narasimhan

filtration is non-split, whose Harder–Narasimhan subquotients are stable and with fixed

dim EndX(F ); this construction is due to Brambila-Paz and Rios Sierra [25]. If τ =

((r1, d1), (r2, d2)) is the Harder–Narasimhan type, the moduli space is constructed from

the fine moduli spaces Mi = M s
X(ri, di) (i = 1, 2) of stable locally free sheaves on X

of ranks ri and degrees di by passing to an appropriate union of strata of a flattening

stratification of M1 ×M2 for a relative Ext1-sheaf defined using the universal bundles
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on the Mi, and then taking the projective bundle associated to this sheaf over the union

of the strata.

As is shown in this chapter, an adaptation of the construction of Brambila-Paz–Rios

Sierra can be used to prove the existence of quasi-projective schematic fine moduli spaces

of simple unstable torsion-free coherent sheaves of uniform rank 1 on certain reducible

curves C, building on from the existence of fine moduli spaces of simple semistable rank

1 torsion-free sheaves supported along given subcurves D ⊂ C, i.e. the fine compactified

Jacobians of the subcurves D. This is a setting where all unstable sheaves F have

the property that both F and the Harder–Narasimhan associated graded of F have

the same Hoskins–Jackson refined Harder–Narasimhan type (cf. remark after Definition

8.2.2), and so an alternative proof of the quasi-projectivity of the open subscheme where

the Harder–Narasimhan subquotients are stable can be given using non-reductive GIT.

However, non-reductive GIT reveals much less about the geometry of the fine moduli

spaces of unstable sheaves on C compared to the approach taken in this chapter.

Summary of Results

Let C be a reduced connected projective curve. Fix a polarisation ν = (α, φ) on C.

Let τ = (θi, υi)
`
i=1 be a Harder–Narasimhan type for simple torsion-free sheaves on C

of Euler characteristic χ and uniform rank 1, defined with respect to ν (cf. Definition

8.2.1). Let J
τ
C ⊂ JχC be the fine schematic moduli space parametrising those sheaves F

on C of Harder–Narasimhan type τ ; the existence of such a subscheme is a consequence

of Proposition 4.3.4. The space J
τ
C decomposes as a disjoint union of open and closed

subschemes of the form J
τ0
C , where τ0 = (θi, υi, Di)

`
i=1 is a (support-) refined Harder–

Narasimhan type refining τ ; J
τ0
C parametrises those sheaves F ∈ JτC such that, if 0 =

F 0 ⊂ F 1 ⊂ · · · ⊂ F ` = F is the ν-Harder–Narasimhan filtration of F , then supp(Fi) is

equal to the subcurve Di ⊂ C. In turn, there is an open subscheme J
τ0−sp
C of J

τ0
C which

parametrises those sheaves F ∈ Jτ0C which are τ0-simple, meaning that:

(i) each sheaf Fi is simple (viewed as a sheaf on Di); and

(ii) each inclusion F i ⊂ F i+1 is non-split.

In order to ensure that J
τ0−sp
C is non-empty, we assume that the subcurves Di are

all connected and that Di ∩Di+1 6= ∅ for all i = 1, . . . , `− 1. Let J i = J
χi,ss
Di (νDi) be the
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fine compactified Jacobian parametrising simple νDi-semistable sheaves on Di of Euler

characteristic χi = θi − φDi . There is a map

gr : J
τ0
C 99K

∏̀
i=1

J i

which associates to an unstable sheaf F its Harder–Narasimhan subquotients Fi =

F i/F i−1. This restricts to a well-defined morphism gr : J
τ0−sp
C →

∏`
i=1 J i. We may

now state the main result of this chapter.

Theorem 8.1.1. Assume that for all i 6= j, any point p ∈ Di ∩ Dj is a locally planar

singularity of C. Then there exists a diagram

J
τ0−sp
C P `

P `−1

...

P 2

P 1 =
∏`
i=1 J i

π`

π2

'

gr

where each πi : P i → P i−1 is a Zariski-locally trivial projective bundle.

The projective bundles πi : P i → P i−1 are constructed from universal spaces of

extensions, as described in the following subsection.

By combining Theorem 8.1.1 with the properties of fine compactified Jacobians given

in Section 5.3, we have the following immediate corollary.

Corollary 8.1.2. The morphism gr : J
τ0−sp
C →

∏`
i=1 J i is projective (in particular

proper), surjective and smooth. In particular, if C has locally planar singularities then

the scheme J
τ0−sp
C is reduced, has lci singularities, and the smooth locus coincides with

the locus in J
τ0−sp
C where all subquotients Fi are invertible.

Moreover, the open subscheme J
τ0−s
C ⊂ J

τ0−sp
C parametrising those sheaves F ∈

J
τ0−sp
C whose Harder–Narasimhan subquotients Fi = F i/F i−1 are all stable is a quasi-

projective scheme. In particular, if J
χi,ss
Di (νDi) = J

χi,s
Di (νDi) for all i = 1, . . . , `, then the

fine moduli space J
τ0−sp
C is a projective scheme.
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In addition to presenting the proof of Theorem 8.1.1, we also compute in this chapter

the relative dimension of the associated graded morphism gr : J
τ0−sp
C →

∏`
i=1 J i in terms

of the Harder–Narasimhan length ` and the subcurves Di of C in the case where each

point p ∈ Di ∩Dj is a node of C (cf. Corollary 8.4.3). We conclude by indicating how

Theorem 8.1.1 can be generalised to the relative setting.

Summary of the Proof of the Main Result

The proof proceeds along similar lines to the construction of Brambila-Paz–Rios Sierra

[25]. Suppose F ∈ Jτ0−spC is an unstable sheaf of refined Harder–Narasimhan type τ0,

with Harder–Narasimhan filtration 0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F ` = F and subquotients

Fi = F i/F i−1 ∈ J i. We may reconstruct F from the subquotients Fi by taking a

successive sequence of non-split extensions

0 F i−1 F i Fi 0.

The space of such extensions, up to equivalence of extensions and up to scalar multi-

plication, is given by the projective space P(Ext1
C(Fi, F

i−1)). Recalling that we have

universal sheaves Ui on Di × J i ⊂ C × J i, this suggests that the moduli space J
τ0−sp
C

can be constructed from the fine moduli spaces J i by taking iterated (relative) moduli

spaces of nowhere-split extensions of the Ui. This approach is the one used to prove

Theorem 8.1.1.

The space P 2 is constructed from P 1 by taking a projective bundle Q2 over J1 × J2

and setting P 2 = Q2×
∏`
i=3 J i (with the morphism P 2 → P 1 being given by the identity

on the factor
∏`
i=3 J i). The fibre of Q2 over the point (F1, F2) ∈ J1 × J2 is given by

P(Ext1
C(F2, F1)). The projective bundle Q2 is a fine moduli space for nowhere-split

(twisted) extensions of U2 by U1, up to a suitable notion of equivalence. In particular,

Q2 carries a universal sheaf U2, the middle term of the universal short exact sequence

parametrised by Q2.

In order to show that such a fine moduli space exists and is a projective bundle over

J1 × J2, we make use of results of Lange [80] concerning universal spaces of extensions

of coherent sheaves. Letting p12, p13 and p23 be the projections from C × J1 × J2 onto

C × J1, C × J2 and J1 × J2 respectively, we set

Q2 = PJ1×J2

(
Ext1p23

(p∗13U2, p
∗
12U1)

)
.
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The relative Ext sheaf Ext1p23
(p∗13U2, p

∗
12U1) is locally trivial; the proof of this uses the

base change results presented in loc. cit. together with the fibrewise vanishing of

Exti(p∗13U2, p
∗
12U1) for i = 0, 2. The local triviality of the relative Ext sheaf is also

used to show that Q2 has the desired universal properties.

The space P 3 is constructed from P 2 in a similar manner, by taking the projective

bundle

Q3 = PQ2×J3

(
Ext1p23

(p∗13U3, p
∗
12U2)

)
over Q2×J3 and setting P 3 = Q3×

∏`
i=4 J i. As with Q2, the space Q3 carries a universal

short exact sequence with middle term U3, which is used to construct P 4 = Q4×
∏`
i=5 J i

from Q3 and J4.

The construction continues inductively, terminating after `− 1 stages with the con-

struction of the projective bundle

P ` = Q` = PQ`−1×J`

(
Ext1p23

(p∗13U`, p∗12U `−1)
)

over P `−1 = Q`−1 × J `; the space P ` is a fine moduli space for nowhere-split (twisted)

extensions of U` by U `−1, up to equivalence. The universal properties of J
τ0−sp
C and P `

are then used to define explicit inverse morphisms J
τ0−sp
C → P ` and P ` → J

τ0−sp
C .

A priori, each scheme Qi parametrises nowhere-split extensions of coherent sheaves,

up to a suitable notion of equivalence. However, the notion of τ0-simplicity has the

important consequence that any τ0-simple sheaf F with Harder–Narasimhan filtration

0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F ` = F has the property that each sheaf F i is simple. This is used

to show that each scheme Qi parametrises (isomorphism classes of) coherent sheaves on

the nose; in effect, each extension equivalence class in each Qi is uniquely determined

by the isomorphism class of the middle term (see Corollary 8.3.5). This is crucial to

proving the existence of an isomorphism P ` ∼= J
τ0−sp
C , since J

τ0−sp
C is a moduli space of

coherent sheaves (as opposed to a moduli space of sequences of extensions of coherent

sheaves).

Future Directions

There are two main ways in which one could potentially generalise Theorem 8.1.1 (in the

non-relative setting). The first is to allow for some of the inclusions F i ⊂ F i+1 in the

Harder–Narasimhan filtration to be split, as opposed to asking that all such inclusions
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are non-split. The second is to possibly allow for unstable sheaves with multiranks other

than (1, . . . , 1); for instance, if each subcurve Di in a given refined Harder–Narasimhan

type is non-singular, one can make use of the existence of universal sheaves on the moduli

spaces of stable locally free sheaves on the curves Di of ranks ri > 0, in place of the

universal sheaves on the fine compactified Jacobians J i.

The main subtlety in either case which would need addressing (and which does

not arise in the situation of Theorem 8.1.1) is that, concerning the extension space

PS(Ext1X/S(F2, F1)), if either of F1 or F2 are not fibrewise simple, then Corollary 8.3.5

no-longer applies, meaning that it is no-longer clear that PS(Ext1X/S(F2, F1)) is a moduli

space of coherent sheaves. In higher ranks, the middle terms of non-split extensions of

simple sheaves on curves need not be simple.1 As such, it is not clear in either case

that taking the appropriate iterated universal extension spaces results in a moduli space

of (isomorphism classes of) coherent sheaves, especially when working with sheaves of

Harder–Narasimhan length ` > 2.

8.2 Harder–Narasimhan Filtrations for Rank 1 Sheaves on
Curves

Let f : C → S be a flat projective morphism over a locally Noetherian base scheme S

whose geometric fibres are connected, reduced curves. Pick invertible sheaves L,M on

C, with L relatively ample. As a special case of the existence of Harder–Narasimhan

stratifications for families of coherent sheaves (cf. Section 4.3.1), one has the Harder–

Narasimhan stratification

JχC/S =
⊔

τ∈HNT(L,M,χ)

J
τ
C/S

of JχC/S into locally closed sub-algebraic spaces J
τ
C/S = J

τ
C/S(L,M), with J

τ
C/S parametris-

ing all sheaves F ∈ JχC/S with the property that F ⊗ M admits a relative Harder–

Narasimhan filtration, necessarily of the form

0 = F 0 ⊗M ⊂ F 1 ⊗M ⊂ · · · ⊂ F ` ⊗M = F ⊗M
1For example, let C be a smooth curve of genus g ≥ 1, and let 0→ OC → F → OC → 0 correspond

to a non-trivial element of Ext1
C(OC ,OC) = H1(C,OC) with F locally free. Then h0(F ), h0(F∨) > 0;

by tensoring together non-trivial sections of F and F∨, one can produce an element of H0(C,F ⊗F∨) =
EndC(F ) corresponding to a non-scalar endomorphism of F .
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for a unique filtration 0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F ` = F of F with flat subquotients

Fi = F i/F i−1, of Harder–Narasimhan type τ . In particular, each sheaf Fi ⊗ M is

Gieseker semistable with respect to L.

If S = SpecC is a point and if Fi has support Di, there are inequalities

χ(F1) + degD1
M

degD1
L

> · · · >
χ(F`) + degD`M

degD` L

arising from the inequalities of reduced Hilbert polynomials p(F1⊗M, t) � · · · � p(F`⊗
M, t) defined with respect to the ample invertible sheaf L. Moreover, the filtration

0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F ` = F depends only on the polarisation ν(L,M) defined by

(L,M). This leads to the following definition.

Definition 8.2.1. Suppose S = SpecC is a point, and let F be a torsion-free sheaf on

C of uniform rank 1. Let ν = (α, φ) be a polarisation on C. The ν-Harder–Narasimhan

type of F is given by the ordered tuple of pairs

τν(F ) = (χ(Fi) + φDi , αDi)
`
i=1,

where, if L and M are any invertible sheaves on C with L ample and ν = ν(L,M), the

sheaves F i are those appearing in the Harder–Narasimhan filtration 0 = F 0 ⊗ M ⊂
F 1 ⊗M ⊂ · · · ⊂ F ` ⊗M = F ⊗M of F ⊗M with respect to L, and the subcurve Di

is the support of Fi. We refer to the filtration 0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F ` = F as the

ν-Harder–Narasimhan filtration of F . The notion of a relative ν-Harder–Narasimhan

filtration for families of sheaves on C is defined analogously.

From now on, we take S = SpecC. Suppose 0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F ` = F is the

ν-Harder–Narasimhan filtration of a torsion-free uniform rank 1 sheaf F . Since Gieseker

semistable sheaves are of pure dimension, each Fi is a non-zero torsion-free quotient of

the subsheaf F i−1 ⊂ F i, hence is of the form Fi = (F i)Di for some non-empty proper

subcurve Di ⊂ supp(F i). Each quotient F/F i is torsion-free, as seen by considering the

short exact sequences

0 F j/F i F j+1/F i Fj 0

for j = ` − 1, . . . , i + 1, i, and observing that the torsion subsheaf of F j+1/F i must

be contained in the image of the inclusion F j/F i ⊂ F j+1/F i. It follows that F i =

F supp(F i)c = ker(F � Fsupp(F i)c), where supp(F i)c = C \ supp(F i) = supp(F/F i).

We introduce a refinement of the notion of ν-Harder–Narasimhan types.
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Definition 8.2.2. Fix subcurves D1, . . . , D` ⊂ C with the property that C =
⋃`
i=1Di,

and that if i 6= j then Di, Dj share no common irreducible components. Let τ =

(θi, υi)
`
i=1 be a Harder–Narasimhan type for torsion-free uniform rank 1 sheaves on C

with respect to ν, and let τ0 be the ordered tuple

τ0 = (θi, υi, Di)
`
i=1.

If F is a torsion-free sheaf on C of uniform rank 1, we say that F has (support-) refined

ν-Harder–Narasimhan type τ0 if τν(F ) = τ and if supp(Fi) = Di for all i = 1, . . . , `.

Remark. The refinement of ν-Harder–Narasimhan types introduced in Definition 8.2.2

is different to the refinement of ν-Harder–Narasimhan types introduced by Hoskins–

Jackson (cf. [66, Definition 6.1]). After first fixing (L,M) with ν = ν(L,M), this latter

refinement involves fixing the quantities

dim HomC(F/F i ⊗M,F i ⊗M), dim HomC(F/F i ⊗M,F i−1 ⊗M)

for all i. However, all of these quantities are zero, a consequence of Lemma 5.1.8, so the

Hoskins–Jackson refinement trivially refines an ν-Harder–Narasimhan type of unstable

sheaves on the curve C. For the rest of this chapter, the notion of a refined Harder–

Narasimhan type refers exclusively to Definition 8.2.2.

As a consequence of the following Lemma 8.2.3, there exists a decomposition

J
τ
C =

⊔
τ ′0

J
τ ′0
C

of J
τ
C into open and closed subschemes J

τ ′0
C , where the disjoint union is taken over all

refined Harder–Narasimhan types τ ′0 which refine τ .

Lemma 8.2.3. Let B be a scheme, and let F be a B-flat family of torsion-free coherent

sheaves on C × B, where C is a connected, reduced, projective curve. Suppose C has

irreducible components C1, . . . , Ck. Let r = (r1, . . . , rk) ∈ (Z≥0)k be a tuple of non-

negative integers. Then there exists an open and closed subscheme Br ⊂ B such that a

morphism S → B factors through Br if and only if the multirank of FS is equal to r over

each point s ∈ S.

177



Proof. Fix an ample invertible sheaf OC(1) on C. Suppose b0 ∈ B is such that Fb0 has

multirank r. Let T be an irreducible curve, and consider a morphism (T, t0)→ (B, b0).

For each t ∈ T , let rj(t) be the rank of Ft along Cj . Then rj(t0) = rj , and since the

Ft have the same Hilbert polynomial with respect to OC(1), it follows from the Hilbert

polynomial formula in [122, Septième Partie, Corollaire 7] that

t 7→
k∑
j=1

rj(t) degCj OC(1)

is constant along T . But each map t 7→ rj(t) is upper-semicontinuous and each quantity

degCj OC(1) > 0, so t 7→
∑k

j=1 rj(t) degCj OC(1) must be locally constant on T . This

proves the lemma.

Fix a refined Harder–Narasimhan type τ0 = (θi, υi, Di)
`
i=1 for torsion-free coherent

sheaves of uniform rank 1 on C, defined with respect to the polarisation ν. The T -valued

points of J
τ0
C are given by equivalence classes of T -flat, T -finitely presented coherent

sheaves F on CT = C × T whose fibres are simple torsion-free sheaves of uniform rank

1, for which F admits a relative ν-Harder–Narasimhan filtration

0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F ` = F

of relative Harder–Narasimhan type τ , with the additional property that for each geo-

metric point t ∈ T , the sheaf (Fi)T = (F i/F i−1)T is of uniform rank 1 along the subcurve

Di ⊂ C; sheaves F and F ′ are declared equivalent if there exists an invertible sheaf N

on T with F ′ ∼= F ⊗ pr∗TN . We say that the filtration 0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F ` = F is

the relative refined ν-Harder–Narasimhan filtration of the sheaf F .

Over C × Jτ0C , there is a universal relative Harder–Narasimhan filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ V`.

This filtration is unique up to simultaneously twisting each V i by the pullback of an

invertible sheaf N ∈ Pic(J
τ0−sp
C ).

For each i, let χi = θi − φDi , and let J i = J
χi,ss
Di (νDi). There is a map

gr : J
τ0
C 99K

∏̀
i=1

J i,
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which sends a sheaf F with ν-Harder–Narasimhan filtration 0 = F 0 ⊂ F 1 · · · ⊂ · · · ⊂
F ` = F to the tuple (F1, . . . , F`) given by the Harder–Narasimhan subquotients; the

domain of definition of gr is given by the locus where each sheaf Fi is (fibrewise) simple.

Motivated by [66, Definition 4.18], we define the following open subschemes of J
τ0
C .

Definition 8.2.4. A sheaf F ∈ Jτ0C with Harder–Narasimhan filtration 0 = F 0 ⊂ F 1 ⊂
· · · ⊂ F ` = F is said to be τ0-simple if:

1. each sheaf Fi is simple (viewed as a sheaf on Di); and

2. each inclusion F i ⊂ F i+1 is non-split.

If in addition each Fi ∈ J
χi,s
Di (νDi) is stable with respect to νDi, we say that F is τ0-

stable. We denote the open subscheme of J
τ0
C parametrising all τ0-simple (resp. τ0-stable)

sheaves by J
τ0−sp
C (resp. J

τ0−s
C ).

Remark. Suppose Fi ∈ JDi (i = 1, . . . , `) are simple torsion-free sheaves, and suppose

we have for each i = 2, . . . , ` non-split short exact sequences

0 F i−1 F i Fi 0

of coherent sheaves on C, where F 1 = F1. By inductively applying Lemma 5.1.7, each

of the sheaves F i are simple. In particular, F = F ` is a simple torsion-free sheaf on C

of uniform rank 1.

8.3 Proof of the Main Result

We now turn to proving Theorem 8.1.1. Let τ0 = (θi, υi, Di)
`
i=1 be a ν-refined Harder–

Narasimhan type for unstable simple torsion-free coherent sheaves of uniform rank 1

on the reduced, connected, projective curve C. Assume that the subcurves Di are all

connected and that Di ∩Di+1 6= ∅ for all i = 1, . . . , ` − 1 (otherwise the scheme J
τ0−sp
C

is empty). Assume further that for all i 6= j, each point p ∈ Di ∩Dj is a locally planar

singularity of C.
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8.3.1 Universal Spaces of Extensions

We recall some results of Lange [80] that we require.

Let f : X → S be a flat projective morphism of Noetherian schemes, and let F1, F2

be coherent sheaves on X, flat over S.2

Definition 8.3.1. The ith relative Ext-sheaf is the coherent sheaf on S defined by

Extif (F2, F1) := Ri(f∗HomX(F2,−))(F1).

By Lemma 4.1 of loc. cit., if E is a locally free OS-module of finite rank, there are

canonical isomorphisms

Extif (F2, F1)⊗ E '→ Extif (F2, F1 ⊗ f∗E) ∼= Extif (F2 ⊗ f∗E∨, F1).

Proposition 8.3.2 ([80], Section 4). Assume Ext0f (F2, F1) = 0 and Ext1f (F2, F1) com-

mutes with base change (in particular, Ext1f (F2, F1) is locally free of finite rank). Let

P := PS(Ext1f (F2, F1)), with projection π : P→ S. Then:

1. Given a morphism g : T → S, the set of T -valued points of P are given by equiv-

alence classes of pairs (L, 0 → (F1)T ⊗ f∗TL → E → (F2)T → 0), where L is an

invertible sheaf on T and where 0→ (F1)T ⊗f∗TL→ E → (F2)T → 0 is a nowhere-

split short exact sequence of sheaves on XT = X×ST , with (L, 0→ (F1)T ⊗f∗TL→
E → (F2)T → 0) and (L, 0 → (F1)T ⊗ f∗TL′ → E′ → (F2)T → 0) being declared

equivalent if there are isomorphisms φ : L
'→ L′ and ψ : E

'→ E′ which fit into the

following diagram:

0 (F1)T ⊗ f∗TL E (F2)T 0

0 (F1)T ⊗ f∗TL′ E′ (F2)T 0

id(F1)T
⊗f∗Tφ ψ id(F2)T

2. There exists a universal extension

0 (F1)P ⊗ f∗POP(1) U (F2)P 0

on XP, which is nowhere-split.
2By invoking the base change results of [9, Section 1] in place of the base change results of [80], the

results of this subsection remain true in the case where f is a proper flat finitely presented morphism
and the sheaves F1, F2 are S-flat and locally finitely presented.
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The universal extension in Proposition 8.3.2 corresponds to the tautological quotient

π∗Ext1f (F2, F1)∨ → OP(1)→ 0 over P under the identifications

HomP(π∗Ext1f (F2, F1)∨,OP(1)) = H0(P, π∗Ext1f (F2, F1)⊗OP(1))

= H0(P, Ext1fP((F2)P, (F1)P)⊗OP(1))

= Ext1
XP((F2)P, (F1)P ⊗ f∗POP(1)),

where the final equality follows from the paragraph succeeding Corollary 4.4 in loc. cit.

The compatibility of Ext1f (F2, F1) with base change is guaranteed by the fibrewise

vanishing of Hom and Ext2.

Lemma 8.3.3. Let F,G be S-flat coherent sheaves on X, and suppose that for each

geometric point s ∈ S, HomXs(Fs, Gs) = Ext2
Xs(Fs, Gs) = 0. Then Ext0f (F,G) =

Ext2f (F,G) = 0 and Ext1f (F,G) is locally free and commutes with base change.

Proof. This follows from a straightforward application of Theorem 1.4 of loc. cit. For

each point s ∈ S and for i = 0, 2, the base change morphism τ i(s) : Extif (F,G)⊗Sκ(s)→
ExtiXs(Fs, Gs) = 0 is trivially surjective, so Extif (F,G)⊗S κ(s) = 0 for all points s ∈ S,

which implies by Nakayama’s lemma that Extif (F,G) vanishes. In particular Ext2f (F,G)

is locally free, so we may apply Theorem 1.4 of loc. cit. again to show that τ1(s) is

surjective for each point s ∈ S, and in turn to obtain that Ext1f (F,G) is locally free.

Suppose that Ext0f (F2, F1) = 0 and Ext1f (F2, F1) is compatible with base change, so

that we are in the setting of Proposition 8.3.2. Suppose as well that we are given a

morphism g : T → S and nowhere-split short exact sequences

0 (F1)T ⊗ f∗TL E (F2)T 0,

0 (F1)T ⊗ f∗TL′ E′ (F2)T 0

γ δ

γ′ δ′

of coherent sheaves on XT .

Lemma 8.3.4. In the situation above, assume in addition that the sheaves F1 and F2

are fibrewise simple3 and that for each geometric point s ∈ S,

HomXs((F1)s, (F2)s) = 0.

3This is equivalent, by [9, Corollary 5.3], to the condition that for each i = 1, 2 the natural morphism
OS → Ext0f (Fi, Fi) = f∗HomX(Fi, Fi) is an isomorphism and is an isomorphism after any base change
T ′ → S.
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Then the sheaves E and E′ are isomorphic if and only if the pairs (L, 0→ (F1)T⊗f∗TL→
E → (F2)T → 0) and (L′, 0 → (F1)T ⊗ f∗TL′ → E′ → (F2)T → 0) are equivalent (and

hence correspond to the same T -valued point of PS(Ext1f (F2, F1))).

Proof. For any invertible sheaf M ∈ Pic(T ) we have HomXT ((F1)T ⊗ f∗TM, (F2)T ) = 0,

since this is the space of global sections of the sheaf Ext0fT ((F1)T , (F2)T ) ⊗ M∨, and

Ext0fT ((F1)T , (F2)T ) = 0 by Theorem 1.4 of loc. cit. together with the fibrewise vanishing

HomXs((F1)s, (F2)s) = 0.

In particular, given an isomorphism ψ : E → E′ of coherent sheaves, the compositions

δ′ ◦ψ ◦ γ and δ ◦ψ−1 ◦ γ′ are both zero; it follows from this and the universal properties

of (co)kernels that there are isomorphisms ζ : (F1)T ⊗ f∗TL → (F1)T ⊗ f∗TL
′ and η :

(F2)T → (F2)T which fit into the following diagram:

0 (F1)T ⊗ f∗TL E (F2)T 0

0 (F1)T ⊗ f∗TL′ E′ (F2)T 0.

γ δ

γ′ δ′

ψζ η

As F2 is fibrewise simple, the isomorphism η is given by multiplication by a unit

η ∈ H0(T,O×T ); without loss of generality, we may assume η = 1. On the other hand,

the fibrewise simplicity of F1 together with Theorem 1.4 of loc. cit. implies that

Ext0fT ((F1)T , (F1)T ) = g∗Ext0f (F1, F1) = OT .

As such, we have equalities

HomXT ((F1)T ⊗ f∗TL, (F1)T ⊗ f∗TL′) = H0(T, L′ ⊗ L∨) = HomT (L,L′).

In particular, the invertible sheaves L and L′ are isomorphic, and we may take ζ to be of

the form id(F1)T ⊗ f
∗
T ζ
′, where ζ ′ : L

'→ L′ is an isomorphism. This shows that the pairs

(L, 0→ (F1)T ⊗f∗TL→ E → (F2)T → 0) and (L′, 0→ (F1)T ⊗f∗TL′ → E′ → (F2)T → 0)

are equivalent.

Corollary 8.3.5. In the situation of Lemma 8.3.4, the set of T -valued points of the

projective bundle PS(Ext1f (F2, F1)) is given by the set of isomorphism classes of coherent

sheaves E ∈ Coh(XT ) for which there exists an invertible sheaf L ∈ Pic(T ) and a

nowhere-split short exact sequence

0 (F1)T ⊗ f∗TL E (F2)T 0.

Proof. This immediately follows from Proposition 8.3.2 and Lemma 8.3.4.
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8.3.2 Constructing the Tower of Projective Bundles

We now construct the tower of projective bundles P ` → P `−1 → · · · → P 2 → P 1

appearing in the statement of Theorem 8.1.1. For each i = 1, . . . , ` let J i = J
χi,ss
Di (νDi)

be the fine compactified Jacobian parametrising νDi-semistable coherent sheaves on Di

of Euler characteristic χi = θi − φDi . Fix a choice of universal sheaf Ui on Di × J i. Via

the inclusion Di ⊂ C, we may regard Ui as a flat family of simple torsion-free sheaves

on C, of uniform rank 1 along the (fibrewise) supports Di.

The projective bundles P i are constructed inductively. For each i = 1, . . . , `, P i will

be a product of the form P i = Qi×
∏`
j=i+1 J i, with Q1 := J1, and for each i > 1, Qi will

be a Zariski-locally trivial projective bundle over Qi−1×J i; the morphism πi : P i → P i−1

will be given as the product of the projective bundle Qi → Qi−1 × J i with the identity

on the remaining factors. The schemes Qi are constructed as follows.

Construction 8.3.6. Base step: Set Q1 := J1, and set U1 := U1, the chosen universal

sheaf on C ×Q1 = C × J1.

Induction step: Suppose we have constructed for each i = 1, . . . , k (where 1 ≤ k < `)

the Zariski-locally trivial bundle Qi → Qi−1× J i (where Q0 := SpecC), together with a

Qi-flat coherent sheaf U i on C ×Qi, which along each geometric fibre is simple, torsion-

free and of uniform rank 1 along the supporting subcurve Di :=
⋃
j≤iDj . Consider the

diagram

C ×Qi × J i+1 Qi × J i+1

C ×Qi C × J i+1

p12 p13

p23

Since Di and Di+1 share no common irreducible components and since each p ∈
Di ∩Di+1 is a locally planar singularity of C, for each geometric point s ∈ Qi× J i+1 we

have

HomC((p∗13Ui+1)s, (p
∗
12U i)s) = 0 = Ext2

C((p∗13Ui+1)s, (p
∗
12U i)s)

by Lemmas 5.1.8 and 5.1.9. As such, we may apply Lemma 8.3.3 to obtain that the

sheaf Ext0p23
(p∗13Ui+1, p

∗
12U i) = 0 and that the sheaf Ext1p23

(p∗13Ui+1, p
∗
12U i) is locally free

and commutes with base change. Set

Qi+1 := PQi×Ji+1
(Ext1p23

(p∗13Ui+1, p
∗
12U i)).

183



Consider the following Cartesian diagram:

C ×Qi+1 Qi+1

C ×Qi × J i+1 Qi × J i+1

ρi+1ρ′i+1

p23

p′23

y

By Proposition 8.3.2 there is a nowhere-split universal extension

0 (ρ′i+1)∗p∗12U i ⊗ (p′23)∗OQi+1(1) U i+1 (ρ′i+1)∗p∗13Ui+1 0

of coherent sheaves on C×Qi+1. Take U i+1 to be the middle term of this extension. The

sheaf U i+1 is flat over Qi+1, and along each geometric fibre is torsion-free and of uniform

rank 1 along the supporting subcurve Di+1. That U i+1 is fibrewise simple follows from

Lemma 5.1.7. This completes the induction step of Construction 8.3.6. �

It also follows from Lemma 5.1.8 that for all i, we have HomC((p∗12U i)s, (p∗13Ui+1)s) =

0 for each geometric point s ∈ Qi × J i+1, and so Corollary 8.3.5 is applicable to the

scheme Qi+1. In particular, the set of T -valued points of Qi+1 is given by the set of

all isomorphism classes of T -flat coherent sheaves F ∈ Coh(CT ) such that, if U iT (resp.

(Ui+1)T ) denotes the pullback of the sheaf Ui (resp. Ui+1) to CT , then there exists a

nowhere-split short exact sequence

0 U iT ⊗ pr∗TM F (Ui+1)T 0

for some invertible sheaf M ∈ Pic(T ). Each such sheaf F is a family of fibrewise simple,

torsion-free sheaves of uniform rank 1 supported along the subcurve Di+1 ⊂ C.

8.3.3 The Isomorphism J
τ0−sp
C

∼= P `

We are now in a position to complete the proof of the main result of this chapter.

Proof of Theorem 8.1.1. We first exhibit a well-defined morphism Φ : J
τ0−sp
C → P ` of

schemes over P 1 =
∏`
i=1 J i.

Let T be a scheme, and consider a T -valued point of J
τ0−sp
C represented by a coherent

sheaf F with relative refined ν-Harder–Narasimhan filtration

0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F ` = F.
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From the universal properties of the fine compactified Jacobians J i = J
χi,ss
Di (νDi), there

are unique morphisms T → J i such that, if (Ui)T denotes the pullback of Ui along this

morphism, viewed as a coherent sheaf on CT with fibrewise support Di ⊂ C, then there

are invertible sheaves M1, . . . ,M` ∈ Pic(T ) and isomorphisms

Fi ∼= (Ui)T ⊗ pr∗TMi

of coherent sheaves on CT ; in this case, the morphism T → J i coincides with the

composition T → J
τ0−sp
C →

∏`
j=1 J j → J i. Since the Fi are all (fibrewise) simple, the

isomorphism class of the invertible sheaf Mi is uniquely determined by the isomorphism

class of Fi (cf. proof of Lemma 8.3.4). However, any other representative of the given

T -point is isomorphic to F ⊗ pr∗TN for some N ∈ Pic(T ), and so the Mi ∈ Pic(T )

themselves are only uniquely determined up to simultaneous translation by N . In order

to have a distinguished representative of the given T -valued point of J
τ0−sp
C , we impose

the condition that M`
∼= OT is trivial, so that the final subquotient F` is isomorphic to

the pullback along T of the universal sheaf U`.
From the inclusion F 1 ⊂ F 2 we have a nowhere-split short exact sequence

0 (U1)T ⊗ pr∗T (M1 ⊗M∨2 ) F 2 ⊗ pr∗TM
∨
2 (U2)T 0,

from which we obtain a morphism T → Q2 over T → J1 × J2, with the pullback U2
T of

U2 along T → Q2 coinciding with F 2 ⊗ pr∗TM
∨
2 (up to isomorphism), and the pullback

of OQ2(1) coinciding with M1 ⊗M∨2 .

For each i ≥ 2, we have a nowhere-split short exact sequence

0 F i ⊗ pr∗TM
∨
i+1 F i+1 ⊗ pr∗TM

∨
i+1 (Ui+1)T 0.

By induction, there is a morphism T → Qi for which F i ∼= U iT ⊗ pr∗TMi. As such,

the above sequence yields a morphism T → Qi+1, compatible with the morphism T →
Qi× J i+1, for which the pullback U i+1

T of U i+1 along T → Qi+1 is isomorphic to F i+1⊗
pr∗TM

∨
i+1, and the pullback of OQi+1(1) along T → Qi+1 is isomorphic to Mi ⊗M∨i+1.

After ` − 1 stages, we obtain a well-defined morphism T → Q` = P ` for which the

composition T → P ` → P 1 =
∏`
i=1 J i coincides with the composition T → J

τ0−sp
C →∏`

i=1 J i. In particular, we may take T = J
τ0−sp
C ; the identity morphism T → J

τ0−sp
C

corresponds to any choice of universal relative Harder–Narasimhan filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ V`
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over C × Jτ0−spC . Without loss of generality, we may assume that the universal filtration

has been chosen such that the sheaf V` = V`/V`−1 is isomorphic to the pullback (U`)Jτ0−spC

of the universal sheaf U`. From this filtration we obtain our desired morphism of P 1-

schemes Φ : J
τ0−sp
C → P `.

Next, we exhibit a well-defined morphism Ψ : P ` → J
τ0−sp
C of schemes over P 1. By

an abuse of notation, we identify the universal sheaves U i and Ui with their pullbacks to

C × P `. Writing U1 = U1, and denoting by Li the pullback of OQi+1(1) to P `, we have

over C × P ` nowhere-split short exact sequences

0 U i ⊗ pr∗
P `
Li U i+1 Ui+1 0,

and hence a filtration

0 =W0 ⊂ W1 ⊂ · · · ⊂ W`, W i := U i ⊗ pr∗P `

 `−1⊗
j=i

Lj

 ,

whose inclusions are nowhere-split, with the subquotients given by Wi = W i/W i−1 =

Ui ⊗ pr∗
P `

(⊗`−1
j=i Lj

)
. The sheaf Wi corresponds to a flat, finitely presented family of

simple ν-semistable torsion-free coherent sheaves on C, of uniform rank 1 along the

supporting subcurve Di ⊂ C; the filtration 0 ⊂ W1 ⊂ · · · ⊂ W` is a relative refined

Harder–Narasimhan filtration of refined Harder–Narasimhan type τ0. As such, this fil-

tration gives rise to a morphism Ψ : P ` → J
τ0−sp
C of schemes over P 1.

We claim that the morphisms Φ : J
τ0−sp
C → P ` and Ψ : P ` → J

τ0−sp
C are inverse.

We have uniquely determined classes Mi ∈ Pic(J
τ0−sp
C ) (with M` = O

J
τ0−sp
C

) for which

Vi = V i/V i−1 is isomorphic to the pullback of Ui twisted by pr∗
J
τ0−sp
C

(Mi), for each

i = 1, . . . , `. From the construction of Φ and Ψ, there are isomorphisms

V i ∼= (idC × Φ)∗W i, Vi ∼= (idC × Φ)∗Wi, Mi
∼= Φ∗

 `−1⊗
j=i

Lj

 if i ≤ `− 1,

and

W i ∼= (idC ×Ψ)∗V i, Wi
∼= (idC ×Ψ)∗Vi, Li ∼=

{
Ψ∗(Mi ⊗M∨i+1) if i < `− 1,

Ψ∗M`−1 if i = `− 1,

In particular, both compositions Φ◦Ψ and Ψ◦Φ preserve the respective universal objects

parametrised by P ` and J
τ0−sp
C , whence both compositions must be the identity. This

completes the proof.
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Remark. It is possible to give another proof that the scheme J
τ0−s
C (ν) is quasi-projective,

by making use of non-reductive quotienting in stages. Fix (L,M) with ν = ν(L,M).

Without loss of generality we may assume M = OC , since twisting by M yields an iso-

morphism J
τ0−s
C (L,M) ∼= J

τ0−s
C (L,OC). Recall that if Cohsimp,TFR1

C is the open substack

of the stack of coherent sheaves CohC parametrising all flat families of simple torsion-free

coherent sheaves on C of uniform rank 1, then there is an isomorphism

JC ∼= Coh
simp,TFR1
C ( Gm.

In particular, for sufficiently large integers M ′ � N � 0 as in the statement of Propo-

sition 4.3.6 applied to the polarised scheme (C,L), there is an isomorphism of algebraic

stacks

J
τ0−s
C (L,OC) ∼= [Sτ0−sN /GL(VN )] ( Gm = [Sτ0−sN /PGL(VN )],

where Sτ0−sN is the open subscheme of the Harder–Narasimhan stratum SτN parametris-

ing those quotients whose underlying sheaf is τ0-stable. With the groups Pτ ⊂ SL(VN )

and P̃τ ⊂ GL(VN ) as in the statement of Proposition 4.3.6, there is also an equiv-

ariant isomorphism Sτ0−sN
∼= SL(VN ) ×Pτ Y τ0−s, where Y τ0−s ⊂ Y ss

τ consists of those

quotients whose underlying sheaf is τ0-stable, and an isomorphism of quotient stacks

[Sτ0−sN /GL(VN )] ∼= [Y τ0−s/P̃τ ]. Consequently, there is an isomorphism of stacks

J
τ0−s
C

∼= [Y τ0−s/P̃τ ] ( Gm = [Y τ0−s/P τ ],

where P τ is the common image of Pτ and P̃τ in PGL(VN ). In particular, the natural

morphism Y τ0−s → J
τ0−s
C is a geometric Pτ -quotient.

The quasi-projectivity of J
τ0−s
C can be shown by applying NRGIT to the Pτ -action on

the closure of Y τ0−s, by utilising non-reductive quotienting-in-stages, making use of the

results of [66, Section 4.2.4];4 the key observation is that taking the Harder–Narasimhan

associated graded preserves the Hoskins–Jackson refined Harder–Narasimhan type (cf.

remark after Definition 8.2.2). Unlike with Theorem 8.1.1, NRGIT says little about the

geometry of J
τ0−s
C aside from its quasi-projectivity. As such, we elect to not carry out

the NRGIT construction here.

4NRGIT quotienting-in-stages also yields a proof, independent of the results of Section 5.3, that J
τ0−s
C

is a scheme.
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8.4 Nodal Refined Harder–Narasimhan Types

In the case where any two of the subcurvesDi, Dj meet only at nodes of C, the relative di-

mension of J
τ0−sp
C →

∏`
i=1 J i can be expressed solely in terms of the Harder–Narasimhan

length ` and the point counts |Di ∩Di−1|.

Definition 8.4.1. Let C be a reduced connected curve, and let τ0 = (θi, υi, Di)
`
i=1 be a

refined Harder–Narasimhan type for simple torsion-free sheaves on C of Euler charac-

teristic χ and uniform rank 1, with the property that each subcurve Di is connected and

that the intersections Di ∩Di+1 6= ∅ for all i = 1, . . . , ` − 1. We say that τ0 is a nodal

refined Harder–Narasimhan type if in addition that for all i 6= j, any point p ∈ Di ∩Dj

is a nodal singularity of C.

Fix a nodal refined Harder–Narasimhan type τ0. Let P ` → P `−1 → · · · → P 2 →
P 1 =

∏`
i=1 J i be the tower of projective bundles obtained by applying Construction

8.3.6 with the refined Harder–Narasimhan type τ0.

Lemma 8.4.2. Let p ∈ C be a nodal singularity, with branches D and D′. Then

dimC Ext1
OC,p(OD,p,OD′,p) = 1.

Remark. It follows from Lemma 8.4.2 that if

0 OD′,p M OD,p 0

is any short exact sequence of OC,p-modules, then M ∼= OD,p ⊕ OD′,p, correspond-

ing to 0 ∈ Ext1
OC,p(OD,p,OD′,p), or M ∼= OC,p, corresponding to the span of 1 ∈

Ext1
OC,p(OD,p,OD′,p) ∼= C.

Proof of Lemma 8.4.2. Since Ext1 is finite dimensional over C, by passing to the com-

pletion ÔC,p of OC,p with respect to the maximal ideal there is an equality

Ext1
OC,p(OD,p,OD′,p) = Ext1

ÔC,p
(ÔD,p, ÔD′,p).

As p ∈ C is a nodal singularity, there is an isomorphism ÔC,p ∼= C[[x, y]]/(xy); with

respect to this identification, there are isomorphisms ÔD,p ∼= C[[x]] and ÔD′,p ∼= C[[y]] of

C[[x, y]]/(xy)-modules. A projective resolution of C[[x]] as an A := C[[x, y]]/(xy)-module

is given by

· · · A A A A A C[[x]] 0.
yxyx
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Applying the functor HomA(−,C[[y]]) and taking cohomology yields

Ext1
A(C[[x]],C[[y]]) = C[[y]]/yC[[y]] = C.

This proves the lemma.

Corollary 8.4.3. Let D,D′ be subcurves of C with D ∩D′ 6= ∅, which do not share in

common any irreducible component of C. Suppose in addition that each point p ∈ D∩D′

is a node of C. Let F, F ′ be torsion-free rank 1 sheaves supported on D,D′ respectively.

Then

dimC Ext1
C(F, F ′) = |D ∩D′|.

Proof. As in the proof of Lemma 5.1.9, consider the local-to-global Ext spectral sequence

Ep,q2 = Hp(C, ExtqC(F, F ′))⇒ Extp+qC (F, F ′).

We have E1,0
2 = E2,0

2 = 0, so Ext1
C(F, F ′) = H0(C, Ext1C(F, F ′)). As the sheaf Ext1C(F, F ′)

is supported at the nodes p ∈ D ∩D′, there is an equality

H0(C, Ext1C(F, F ′)) =
⊕

p∈D∩D′
Ext1

OC,p(Fp, F
′
p).

At the node p, since D and D′ are both non-singular at p there are isomorphisms

Fp ∼= OD,p and F ′p
∼= OD′,p (cf. Proposition 5.1.10). The corollary now follows from

Lemma 8.4.2.

Corollary 8.4.4. Let τ0 = (θi, υi, Di)
`
i=1 be a nodal refined Harder–Narasimhan type of

C. The fibre dimension of the locally trivial projective bundle πk : P k → P k−1 is equal

to |Dk ∩Dk−1| − 1, where Dk−1 =
⋃
j≤k−1Dj. In particular, the relative dimension of

the morphism gr : J
τ0−sp
C →

∏`
i=1 J i is equal to

∑`
i=2 |Di ∩Di−1| − (`− 1).

Proof. From Construction 8.3.6, the relative dimension of πk is equal to the fibre dimen-

sion of the locally trivial projective bundle

Qk = PQk−1×Jk(Ext1p23
(p∗13Uk, p∗12Uk−1))→ Qk−1 × Jk.

Fix a geometric point s ∈ Qk−1 × Jk, and set F = (p∗13Uk)s, F ′ = (p∗12Uk−1)s; the fibre

of Qk over s is given by the projective space Qks = P(Ext1
C(F, F ′)). Applying Corollary

8.4.3, we have dimC Ext1
C(F, F ′) = |Dk ∩Dk−1|. The result follows.
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8.5 Generalising to Families of Curves

Instead of working with a fixed curve C, consider instead a flat projective morphism f :

C → S of finite presentation over a locally Noetherian base scheme S, whose geometric

fibres are connected, reduced curves. Fix invertible sheaves L and M on C, with L

relatively ample, fix an Euler characteristic χ, and fix a Harder–Narasimhan stratum

J
τ
C/S = J

τ
C/S(L,M) ⊂ JχC/S , where τ = (θi, υi)

`
i=1 is a Harder–Narasimhan type of

length `. Assume there are closed subschemes D1, . . . , D` ⊂ C, each flat over S, such

that for each geometric point s ∈ S:

(i) (Di)s is a connected subcurve of Cs;

(ii) for all i 6= j, (Di)s and (Dj)s contain no common irreducible component of Cs;

(iii) for all i 6= j, any point p ∈ (Di)s ∩ (Dj)s is a locally planar singularity of Cs; and

(iv) for all i = 1, . . . , `− 1, (Di)s ∩ (Di+1)s 6= ∅.

Fix a choice of a sequence D1, . . . , D` of such subschemes of C.

Lemma 8.5.1. There exists an open and closed sub-algebraic space J
τ0
C/S ⊂ J

τ
C/S

parametrising all sheaves F ∈ J
τ
C/S such that, if 0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F ` = F is

the relative Harder–Narasimhan filtration of F , then for each geometric point s ∈ S, the

support of (Fi)s is equal to (Di)s, and (Fi)s is of uniform rank 1 along (Di)s.

Proof. The proof proceeds along very similar lines to the proof of Lemma 8.2.3, using

the fact that the rank of a flat torsion-free sheaf along any of the subcurves Di is upper-

semicontinuous.

Let J
τ0−sp
C/S ⊂ J

τ0
C/S be the open sub-algebraic space parametrising those sheaves

F ∈ Jτ0C/S such that, if 0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F ` = F is the relative Harder–Narasimhan

filtration of F , then

(i) each sheaf Fi is (fibrewise) simple; and

(ii) each inclusion F i ⊂ F i+1 is nowhere-split.
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There is also an open sub-algebraic space J
τ0−s
C/S ⊂ J

τ0−sp
C/S obtained by imposing the

additional constraint that each Fi is fibrewise stable with respect to (L,M), viewed as a

family of torsion-free uniform rank 1 sheaves on Di/S. The fibres of J
τ0−sp
C/S over closed

points of S are given by moduli spaces of simple, torsion-free, uniform rank 1 coherent

sheaves of refined Harder–Narasimhan type τ0 to which Theorem 8.1.1 is applicable.

Setting χi = θi − degDiM , we have a well-defined morphism

gr : J
τ0−sp
C/S →

∏̀
i=1

J
χi,ss
Di/S

(L,M)

which associates to a sheaf F with relative Harder–Narasimhan filtration 0 = F 0 ⊂ F 1 ⊂
· · · ⊂ F ` = F the tuple (F1, . . . , F`) consisting of the Harder–Narasimhan subquotients

(here the product should be understood as a fibre product of schemes over S).

Assume further that there are sections σ1, . . . , σn : S → C of f , each factor-

ing through the S-smooth locus of C, such that for each geometric point s ∈ S,

each irreducible component of Cs is geometrically integral and contains σi(s) for some

i = 1, . . . , n, so that by Lemma 5.3.3 the étale and Zariski sheafifications of J∗Di/S coin-

cide for all i = 1, . . . , `, and all of the fine compactified Jacobians JDi/S admit universal

sheaves. Construction 8.3.6 then carries over to the relative setting after making the

necessary notational changes, yielding a tower of Zariski-locally trivial projective bun-

dles P ` → P `−1 → · · · → P 2 → P 1. There are relative analogues of the morphisms Φ

and Ψ which appear in the proof of Theorem 8.1.1. The same argument used to show

that these morphisms are inverse to each other carries over to the relative setting. As

such, we obtain the following result, which generalises Theorem 8.1.1 to cover relative

moduli spaces of unstable simple torsion-free uniform rank 1 sheaves over the fibres of

C/S, of refined Harder–Narasimhan type τ0 with respect to (L,M):

Theorem 8.5.2. In the situation described above, there exists a diagram

J
τ0−sp
C/S P `

P `−1

...

P 2

P 1 =
∏`
i=1 J

χi,ss
Di/S

(L,M)

π`

π2

'

gr
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where each πi : P i → P i−1 is a Zariski-locally trivial projective bundle.
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[25] Brambila-Paz, L., and Rios Sierra, R. Moduli of Unstable Bundles of HN-Length Two with
Fixed Algebra of Endomorphisms. arXiv preprint arXiv:2203.08986 (2022).

[26] Bruns, W., and Herzog, H. Cohen–Macaulay Rings, vol. 39 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 1998.

[27] Caporaso, L. A Compactification of the Universal Picard Variety over the Moduli Space of Stable
Curves. J. Am. Math. Soc. 7, 3 (1994), 589–660.
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Math. IHÉS 36 (1969), 75–109.

[40] Dolgachev, I. Lectures on Invariant Theory, vol. 296 of London Mathematical Society Lecture
Note Series. Cambridge University Press, 2003.

194



[41] Dolgachev, I., and Hu, Y. Variation of Geometric Invariant Theory Quotients. Pub. Math.
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