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Lagrangian mean curvature flow (LMCF)

Lagrangian L ⊆ (M, J, ω,Ω) Calabi–Yau

Examples: M = C (flat)  L curve

M = C2 (flat), T ∗S2 (Eguchi–Hanson), K3  L surface

LMCF: ∂Lt
∂t = H

Question: How should LMCF “decompose” L?
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Lagrangian angle

LMCF Lt ⊆ (M, J, ω,Ω): ∂Lt
∂t = H = J∇θ  θ Lagrangian angle

special Lagrangian (SL) ⇔ θ constant ↔ critical points
⇒ critical points of LMCF are minima

graded ⇔ choice of (single-valued) function θ

almost calibrated ⇔ sup θ − inf θ < π

Thomas–Yau/Joyce conjectures: Behaviour of LMCF for almost
calibrated/graded Lagrangians ↔ decomposition and stability

Main result: Proof of (version of) conjectures for large class of
M4  S1 symmetry and Gibbons–Hawking ansatz
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Gibbons–Hawking ansatz

(x1, x2, x3) ∈ U ⊆ R3, e iψ ∈ S1

V : U → R+ harmonic function, e.g.

U = R3 \ {p1, . . . , pk+1}, V = m +
k+1∑
i=1

1

2|x − pi |

ξ 1-form on U with ∗dξ = dV
 dψ + ξ connection on S1-bundle with curvature ∗dV

 metric on M4: g = V−1(dψ + ξ)2 + V (dx21 + dx22 + dx23 )

hyperkähler Hol(g) ⊆ SU(2) & (M4, g) S1-invariant

many (S1-invariant) Lagrangians L2 ↪→ M4

V = m +
∑k+1

i=1
1

2|x−pi |  ALE (m = 0) and ALF (m > 0)

e.g. m = 0  flat C2 (k = 0), Eguchi–Hanson (k = 1)
& m > 0  Taub–NUT C2 (k = 0)
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Circle-invariant Lagrangians

Eguchi–Hanson T ∗S2: V = 1
2|x−p| + 1

2|x+p|

−p p
 minimal Lagrangian S2

Gibbons–Hawking M4: curves γ ⊆ R3 ↔ S1-invariant L2γ ⊆ M4

embedded closed curve in R3 \ {pi} ↔ embedded T 2

embedded arc endpoints p1, p2 ↔ embedded S2

Lemma

Lγ Lagrangian ⇔ γ planar

Lγ special Lagrangian ⇔ γ straight line
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Stability

γ ⊆ R2 ⊆ R3  θ angle between γ and horizontal

p3

p2p1
θ2

θ1

γ1γ2

γ3

Definition

Lγ compact Lagangian  Lγ stable ⇔
Lγ almost calibrated: max θ −min θ < π and

whenever γ ∼ γ1#γ2,

`(γ) ≤ `(γ1) + `(γ2) or [θ1, θ2] * (min θ,max θ)
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Thomas–Yau conjecture

Conjecture (Thomas–Yau)

L stable ⇒ LMCF exists for all time and converges to SL
L∞ ∼Ham L

Theorem (L.–Oliveira)

For S1-invariant Lagrangian surfaces in complete Calabi–Yau from
Gibbons–Hawking ansatz, Thomas–Yau conjecture is true

(Neves 2013): Any compact Lagrangian can be perturbed (and
preserve graded) to non-almost calibrated L so that LMCF starting
at L develops finite-time singularity (even preserving invariance)
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Joyce conjectures

Conjecture (Joyce)

L graded Lagrangian in Calabi–Yau (M, J, ω,Ω) & L defines an
object in (suitable derived) Fukaya category F(M) with HF ∗

unobstructed

⇒ LMCF through singularities and with surgeries exists for all time
and converges to union of SLs L∞ = L1 ∪ . . . ∪ Ln ∼F L with
θ1 > . . . > θn

⇒ Conjecture (Bridgeland, Joyce): ∃ Bridgeland stability condition
on F(M)  Bridgeland stable graded Lagrangians

Conjecture (Joyce)

L Bridgeland stable ⇒ LMCF through singularities and with
surgeries exists for all time and converges to SL L∞ ∼F L
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Flow through singularities

∃ SL cylinder R× Sn−1 ⊆ Cn (Lawlor neck)

(Joyce): Lawlor neck should model generic “neck pinch”
singularity in LMCF

Theorem (L.–Oliveira)

L2 compact, almost calibrated, S1-invariant in complete M from
Gibbons–Hawking ansatz ⇒ ∃ continuous family {Lt}t∈[0,∞) &
times 0 < T1 < . . . < Tk = T such that

Lt satisfies LMCF for t /∈ {T1, . . . ,Tk} & Lawlor neck pinch
occurs at each Tj

Lt converges to union of SL spheres L1 ∪ . . . ∪ Ln as t →∞
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Joyce conjectures and Gibbons–Hawking ansatz
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Flow of curves

V = m +
∑k+1

i=1
1

2|x−pi |

Lγ compact almost calibrated ⇒ γ arc in R2 joining p1, p2
p3

p2p1

Lemma

LMCF
∂Lγ
∂t

= H ⇔ ∂γ

∂t
= V−1κ = V−1

∂2γ

∂s2

Key observations
∂θ
∂t = ∆θ ⇒ variation of θ non-increasing

almost calibrated ⇒ singularities can only occur at pi
(blow-up analysis for curve shortening flow)
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Conclusion

p− p+

p0

γ+γ−

γt

θ−

θ+

A(t) area of pacman disk  
Ȧ ≤ θ+ − θ−
⇒ γt hits p0 in finite time

γt barrier curve  
finite-time singularity (p,T )

p ∈ {p1, p2}  
singularity modelled on ancient solution L̃t ∼= R2 in C2

asymptotic to two transverse planes

(Lambert–L.–Schulze) ⇒ L̃t = flat plane 	
p = pi for i > 2  

tangent flow = pair of transverse planes  
(L.–Schulze–Székelyhidi) Lawlor neck pinch
∂θ
∂t = ∆θ  finitely many singularities + convergence X
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