Introduction	Setting	Lagrangians	Thomas–Yau conjecture	Joyce conjectures

Joyce conjectures for Lagrangian mean curvature flow with circle symmetry

Jason D. Lotay

Oxford

(Joint work with Goncalo Oliveira)

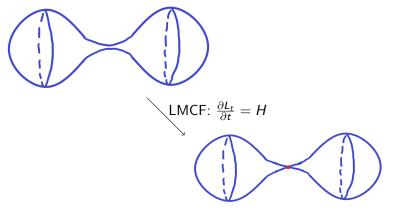
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lagrangian mean curvature flow (LMCF)

Lagrangian $L \subseteq (M, J, \omega, \Omega)$ Calabi–Yau

Examples: $M = \mathbb{C}$ (flat) $\rightsquigarrow L$ curve

 $M = \mathbb{C}^2$ (flat), $T^* S^2$ (Eguchi–Hanson), $K3 \rightsquigarrow L$ surface



Question: How should LMCF "decompose" L_{2}^{2}

3

Introduction	Setting	Lagrangians	Thomas–Yau conjecture	Joyce conjectures
○●	O	O	00	
Lagrangian	angle			

LMCF $L_t \subseteq (M, J, \omega, \Omega)$: $\frac{\partial L_t}{\partial t} = H = J \nabla \theta \rightsquigarrow \theta$ Lagrangian angle

- special Lagrangian (SL) $\Leftrightarrow \theta$ constant \leftrightarrow critical points \Rightarrow critical points of LMCF are minima
- graded \Leftrightarrow choice of (single-valued) function θ
- almost calibrated $\Leftrightarrow \sup \theta \inf \theta < \pi$

Thomas–Yau/Joyce conjectures: Behaviour of LMCF for almost calibrated/graded Lagrangians \leftrightarrow decomposition and stability

Main result: Proof of (version of) conjectures for large class of $M^4 \rightsquigarrow S^1$ symmetry and Gibbons–Hawking ansatz

Introduction	Setting	Lagrangians 0	Thomas–Yau conjecture	Joyce conjectures
Gibbons–l	Hawking	ansatz		

$$(x_1, x_2, x_3) \in U \subseteq \mathbb{R}^3$$
, $e^{i\psi} \in S^1$
• $V : U \to \mathbb{R}^+$ harmonic function, e.g.

$$U = \mathbb{R}^3 \setminus \{p_1, \dots, p_{k+1}\}, \quad V = m + \sum_{i=1}^{k+1} \frac{1}{2|x - p_i|}$$

• ξ 1-form on U with $*d\xi = dV$ $\rightarrow d\psi + \xi$ connection on S^1 -bundle with curvature *dV

 \rightsquigarrow metric on M^4 : $g = V^{-1}(\mathrm{d}\psi + \xi)^2 + V(\mathrm{d}x_1^2 + \mathrm{d}x_2^2 + \mathrm{d}x_3^2)$

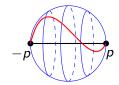
- hyperkähler $\operatorname{Hol}(g) \subseteq \operatorname{SU}(2)$ & $(M^4, g) \ \mathcal{S}^1$ -invariant
- ullet many (\mathcal{S}^1 -invariant) Lagrangians $L^2 \hookrightarrow M^4$

$$V = m + \sum_{i=1}^{k+1} \frac{1}{2|x-p_i|} \rightsquigarrow \text{ALE } (m = 0) \text{ and ALF } (m > 0)$$

e.g. $m = 0 \rightsquigarrow \text{flat } \mathbb{C}^2 \ (k = 0), \text{ Eguchi-Hanson } (k = 1)$
& $m > 0 \rightsquigarrow \text{Taub-NUT } \mathbb{C}^2 \ (k = 0)$

Introduction Setting Lagrangians Thomas-Yau conjecture Joyce conjectures oo Circle-invariant Lagrangians

Eguchi–Hanson
$$T^*S^2$$
: $V = \frac{1}{2|x-p|} + \frac{1}{2|x+p|}$



 \rightsquigarrow minimal Lagrangian \mathcal{S}^2

Gibbons–Hawking M^4 : curves $\gamma \subseteq \mathbb{R}^3 \leftrightarrow S^1$ -invariant $L^2_{\gamma} \subseteq M^4$

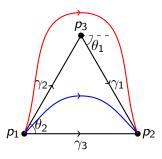
- embedded closed curve in $\mathbb{R}^3 \setminus \{p_i\} \leftrightarrow$ embedded \mathcal{T}^2
- embedded arc endpoints p_1 , $p_2 \leftrightarrow$ embedded \mathcal{S}^2

Lemma

- L_{γ} Lagrangian $\Leftrightarrow \gamma$ planar
- L_{γ} special Lagrangian $\Leftrightarrow \gamma$ straight line

Introduction	Setting	Lagrangians	Thomas–Yau conjecture	Joyce conjectures
00	O	O	●0	
Stability				

 $\gamma\subseteq \mathbb{R}^2\subseteq \mathbb{R}^3 \leadsto \theta$ angle between γ and horizontal



Definition

 L_{γ} compact Lagangian $\rightsquigarrow L_{\gamma}$ stable \Leftrightarrow

- L_{γ} almost calibrated: $\max \theta \min \theta < \pi$ and
- whenever $\gamma \sim \gamma_1 \# \gamma_2$, $\ell(\gamma) \leq \ell(\gamma_1) + \ell(\gamma_2) \text{ or } [\theta_1, \theta_2] \nsubseteq (\min \theta, \max \theta)$

Introduction	Setting	Lagrangians	Thomas–Yau conjecture	Joyce conjectures
			00	
Thomas-	-Yau conie	ecture		

Conjecture (Thomas–Yau)

L stable \Rightarrow LMCF exists for all time and converges to SL $L_{\infty}\sim_{Ham}L$

Theorem (L.–Oliveira)

For S^1 -invariant Lagrangian surfaces in complete Calabi–Yau from Gibbons–Hawking ansatz, Thomas–Yau conjecture is true

(Neves 2013): Any compact Lagrangian can be perturbed (and preserve graded) to non-almost calibrated L so that LMCF starting at L develops finite-time singularity (even preserving invariance)

Introduction	Setting	Lagrangians	Thomas–Yau conjecture	Joyce conjectures
00	O	O	00	●0000
Joyce cor	njectures			

Conjecture (Joyce)

L graded Lagrangian in Calabi–Yau (M, J, ω, Ω) & L defines an object in (suitable derived) Fukaya category $\mathcal{F}(M)$ with HF^{*} unobstructed

 \Rightarrow LMCF through singularities and with surgeries exists for all time and converges to union of SLs $L_{\infty} = L_1 \cup \ldots \cup L_n \sim_{\mathcal{F}} L$ with $\theta_1 > \ldots > \theta_n$

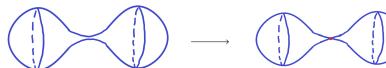
⇒ Conjecture (Bridgeland, Joyce): ∃ Bridgeland stability condition on $\mathcal{F}(M) \rightsquigarrow$ Bridgeland stable graded Lagrangians

Conjecture (Joyce)

L Bridgeland stable \Rightarrow LMCF through singularities and with surgeries exists for all time and converges to SL $L_{\infty} \sim_{\mathcal{F}} L$

 \exists SL cylinder $\mathbb{R} \times S^{n-1} \subseteq \mathbb{C}^n$ (Lawlor neck)

(Joyce): Lawlor neck should model generic "neck pinch" singularity in LMCF



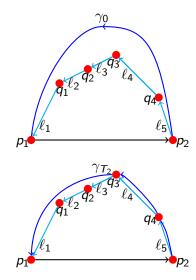
Theorem (L.–Oliveira)

 L^2 compact, almost calibrated, S^1 -invariant in complete M from Gibbons–Hawking ansatz $\Rightarrow \exists$ continuous family $\{L_t\}_{t \in [0,\infty)}$ & times $0 < T_1 < \ldots < T_k = T$ such that

- L_t satisfies LMCF for t ∉ {T₁,..., T_k} & Lawlor neck pinch occurs at each T_j
- L_t converges to union of SL spheres $L_1 \cup \ldots \cup L_n$ as $t \to \infty$

			Howking openta	
Introduction	Setting	Lagrangians	Thomas–Yau conjecture	Joyce conjectures
00	O	O	00	00●00

Joyce conjectures and Gibbons–Hawking ansatz

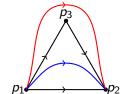




Flow of a	curves			
Introduction	Setting	Lagrangians	Thomas–Yau conjecture	Joyce conjectures
00	O	O	00	000●0

$$V = m + \sum_{i=1}^{k+1} \frac{1}{2|x-p_i|}$$

 L_γ compact almost calibrated $\Rightarrow \gamma$ arc in \mathbb{R}^2 joining p_1 , p_2



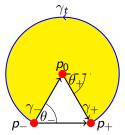
Lemma

$$LMCF \ \frac{\partial L_{\gamma}}{\partial t} = H \Leftrightarrow \frac{\partial \gamma}{\partial t} = V^{-1}\kappa = V^{-1}\frac{\partial^2 \gamma}{\partial s^2}$$

Key observations

- $\frac{\partial \theta}{\partial t} = \Delta \theta \Rightarrow$ variation of θ non-increasing

Introduction	Setting	Lagrangians	Thomas–Yau conjecture	Joyce conjectures
00	O	O	00	0000●
Conclusion				



- A(t) area of pacman disk \rightsquigarrow $\dot{A} \leq \theta_{+} - \theta_{-}$
- $\Rightarrow \gamma_t$ hits p_0 in finite time
- γ_t barrier curve →
 finite-time singularity (p, T)

- $\textit{p} \in \{\textit{p}_1,\textit{p}_2\} \rightsquigarrow$
 - singularity modelled on ancient solution $\tilde{L}_t \cong \mathbb{R}^2$ in \mathbb{C}^2 asymptotic to two transverse planes
 - (Lambert–L.–Schulze) $\Rightarrow \tilde{L}_t = \text{flat plane }$
- $p = p_i$ for $i > 2 \rightsquigarrow$
 - tangent flow = pair of transverse planes → (L.-Schulze-Székelyhidi) Lawlor neck pinch
 - $\frac{\partial \theta}{\partial t} = \Delta \theta \iff \text{finitely many singularities} + \text{convergence } \checkmark$