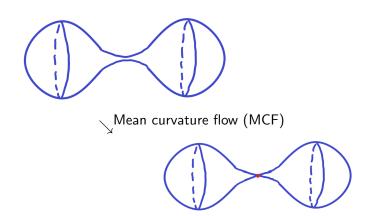
Neck pinches in Lagrangian mean curvature flow of surfaces


Jason D. Lotay

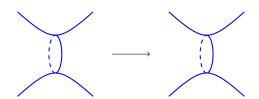
Oxford


1 April 2023

(Joint work with Felix Schulze and Gábor Székelyhidi)

Neck pinch singularity

 $\Sigma^2_t \subseteq \mathbb{R}^3$ MCF \leadsto neck pinch \sim shrinking cylinder & generic

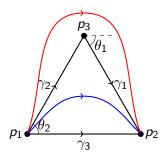

Lagrangian neck pinch singularity

 $L_t^2 \subseteq \mathbb{C}^2$ Lagrangian mean curvature flow (LMCF) \rightsquigarrow

Conjecture (Joyce)

Neck pinch ~ Lawlor neck (special Lagrangian) & generic

Note: Lawlor neck asymptotic to union of two transverse planes



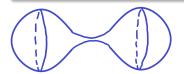
Lagrangian angle and stability

$$L^2 \subseteq \mathbb{C}^2$$
 Lagrangian \rightsquigarrow

- mean curvature $H = J\nabla\theta \leadsto \theta$ Lagrangian angle
- special Lagrangian $\Leftrightarrow \theta$ constant
- almost calibrated $\Leftrightarrow \sup \theta \inf \theta < \pi$

Thomas–Yau stability: L almost calibrated & L cannot be decomposed into $L_1 \# L_2$ with "smaller Lagrangian angles"

Main result


Conjecture (Thomas-Yau)

L stable \Rightarrow LMCF starting at L exists for all time and converges

Theorem (L.–Schulze–Székelyhidi)

 $L_t^2 \subseteq \mathbb{C}^2$ exact almost calibrated LMCF with singularity at (p, T), one tangent flow = union of two transverse planes \leadsto

- neck pinch modelled on Lawlor neck occurs;
- $L_t \rightarrow L_T$ C^1 -immersed Lagrangian;
- can continue LMCF for t > T;
- $L_T \setminus \{p\}$ disconnected $\Rightarrow L_0$ unstable

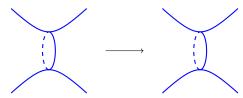
Proof: key points

Uniqueness of tangent flow: same pair of transverse planes

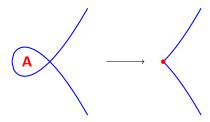
- first uniqueness theorem for singular tangent flow
- moduli space: planes with same Lagrangian angle
- "non-integrable" deformations: planes with different angles

Finding Lawlor necks

- ullet moduli space: $\mathbb{R}\setminus\{0\}$ \leadsto choose correct scale
- Lawlor necks for r > 0 and r < 0 not Hamiltonian isotopic


Key tools

- excess: (weak) closeness to some pair of planes with same angle → monotone
- distance: (strong) closeness to fixed pair of planes (uses hyperkähler rotation) → "three annulus lemma"



Questions

• mechanism for Lagrangian neck pinches?

• role of *J*-holomorphic curves?

• generic LMCF singularities?

