Proof of Theorem 8.5

- Let's assume G countable.
- Let E be round conformal structure on S^2.
- For $z \in S^2$, let
 $$ E(z) = \{ (D_{g_z})^* E_{g_z} : g \in G \} $$
 defined a.e.
 bounded in space of conf. structures, as each g is K-q.
- Let $E_z = P(E(z))$ cirmun-
 (Prop. 8.2)

To see E is measurable,
let $G = \{ g_0, g_1, \ldots \}$

let $E^{(m)}_z = P(\{ (D_{g_i})^* E_{g_i} : i = 0, \ldots, \})$

defined for a.e. $z \in S^2$,
measurable as D_{g_i} meas.
P continuous, so $E = \lim_{n \to \infty} E^{(m)}_z$
is measurable.

Apply Thm 8.4 to find
$$ f: S^2 \to S^2 \text{ q.e. st.} $$
$$ E = (Df)^* E \text{ a.e.} $$
\[\forall y \in G, \ a.e. \ z \in S^2 \]
\[(Dg)_z^* E(gz) \]
\[= \{ (Dg)_z^* (Dh)_z^* \} \}
\[= \{ (D(hg)_z^* \} \}
\[= E(z) \]
So \[(Dg)_z^* \exists g_z = \exists z \ a.e. \]

\[\Rightarrow (Dg)_z^* (Df_g)_z^* \exists f_g = (Df_g)_z^* \exists f_g \ a.e. \]

So \(f_g f^{-1} \) is \(1 \)-qc \(\Rightarrow \) M{	ext{"}ob. \)

(True without assuming
\(G \) countable. take a countable
dense subgroup; limit...)
Outline of proof of theorem 8.6:

1. Define $E(z)$ as above.
2. Let $\bar{E}_z = \mathcal{P}(E(z))$.
3. As before, it's a C^1-b.v.
4. measurable conformal structure.
5. \bar{E} is approx. cts a.e.
6. Let p be such a point.
7. WLOG $p = 0$, $\bar{E}_0 = \bar{E}$.

Pick a triple z.

Choose g_i s.t. projection

$\pi(g_i z) \to p$ along line

as in pic.

Choose $\lambda_i \to \infty$ s.t.

$\#_{n+1}(e_{n+1}, \lambda; \pi(g_i z))$

uniformly bounded.

Let $f_i : \mathbb{R}^n \to \mathbb{R}^n$ be

$f_i(u) = \lambda_i g_i(u)$.

This keeps triple spread out

so by Prop 5.7, after
taking a subseq,
\[f_i \to f \text{ ac}, \text{ uniformly on } S^1 = \mathbb{R}/\mathbb{Z} \]

Show \(f \circ g \circ f^{-1} \) is \(1 \text{-ac} \).

Basically, \(\forall \varepsilon > 0 \)

\[f : gf_i^{-1} \text{ is } (2+\varepsilon) \text{-ac} \]

off set of measure \(m_i \) in \(S^1 \),

and \(m_i \to 0 \) as \(\varepsilon \to 0 \).

Tukia: in limit, \(f \circ g \circ f^{-1} \) is \(1 \text{-ac} \).

Or: \(Df \times \varepsilon = \lim_{i \to \infty} (Df_i) \times \varepsilon \)

\[= \lim_{i \to \infty} \left(\lambda_i Df_i \right) \times \varepsilon \to 0. \]

What about \(S^2 \)?

Analogue of Theorem 8.5
for unif qm groups
(Thynke toren '85). In fact:

Theorem 8.7 (Tukia, Gabai, Casson-Jungreis '89)

If \(G \cong S^2 \), then

\(G \) is a convergence group

\(\iff \) action is topologically conjugate to Fuchsian action.

Cor 8.8 (Tukia, Frenkel) \(G \) hyp.

\[0 \to G \cong S^1 \iff G \cong H^2 \text{ disc. count}. \]
Remark: Solved Seifert fibred space conjecture. \(M \) compact orientable irreducible 3-manifold, \(\pi_1 M = \pi_1 \). Then \(M \) is Seifert fibred space \(\Leftrightarrow \exists [\mathbb{B}] \cong H^1 < \pi_1 M \).

Connection: \(G \cong \text{Triples}(S') = S' \times \mathbb{R} \)

Case \(S^2 \):
Cannon's conjecture: \(G \) hyp.
\(S^4 \cong S^2 \Leftrightarrow G \cong H^3 \) geometric.

False for \(S^2, n \neq 3 \).

E.g. Mostow-Sin
Gromov-Thurston: \(\exists M^4 \) cpt. that admits Riem. metrics of curvature \(K < [-1-\epsilon, -1] \), but no hyperbolic metric.

\(G = CH^{1/2} \)
compact lattice \(\cong S^3 \)
then \(\partial G \cong S^3 \), but not \(S^3 \).
See conformal dimension later.
9. Cohomology & topological dimension

Def 9.1 \mathbb{X} metric space, $R > 0$. The Rips complex $P_{R}(\mathbb{X})$ is the simplicial complex with vertex set \mathbb{X}, and an n-simplex $\{x_0, \ldots, x_n\}$ if $\text{diam} \{x_0, \ldots, x_n\} \leq R$.

- If G f.g. group, $P_{R}(G) = P_{R}(G, d_{s})$.

Prop 9.2 C_{R} hyp $\Rightarrow P_{R}(G)$ contractible for R large enough.

Proof
- By Whitehead's theorem, $\pi_{n}(P_{R}(G)) = 0$ for all $n > 1$.
- Sufficient every finite subcomplex $\mathbb{L} \subset P_{R}(G)$ is homotopic to a point.
- Case 1 $\mathbb{L} \subset B(e, R)$.
 All \mathbb{L} lies in some simplex.
Case 2: \(\exists x \in L^{(0)} \)

st. \(d(x, z) > \frac{R}{2} \) and maximal.

Then

Define \(f : L^{(0)} \rightarrow P_R(G) \)

\[
f(z) = \begin{cases}
 w & \text{if } z = x \\
 z & \text{otherwise}
\end{cases}
\]

Want to extend \(f \) to \(L \).

If \(y \notin L^{(0)} \), \(d(y, x) \leq R \)

then \(d(y, w) \leq \frac{R}{2} + C < R \)

for \(R > 0 \).

So \(L = f(L) \) in \(P_R(G) \).

\(L \) finite, so continue until in case 1.

Cor 9.3: \(G \) hyp \(\iff \) fin. pres.

Proof: \(G \) f.g., then

\(G \) is fin. pres

\(\iff P_R(G) \) is simply conn.

for \(R \) large enough. (Ex.)
Cor 9.4: \(G \) hyp. then

3. Simplicial complex \(P \),
action \(G \) on \(P \) that is
(a) Simplicial, cocompact,
finite stabilisers
(b) \(P \) is fin. dim, contractible.
locally finite.
(c) \(G \) in \(\mathcal{D}_0 \), free and
transitive.

In particular,

1. If \(G \) torsion free then
\(G \backslash P \) is a \(K(\pi,1) \) so
\(G \) finite cohomological dim,
type \(F_\infty \) for all \(n \).

(2) \(G \) virtually tors. free
\(\Rightarrow \) finite virtual
cohom. dim.

(3) \(H^*(\mathcal{G}, \mathbb{Q}) \) is finite
dim.

(4) Type \(FP_\omega \) (Brown)

Remark: Open Q:
Is every Gr. hyp group
\(V \), torsion free?
\(\Leftrightarrow \) Is every Gr. hyp. group
residually finite?
(Kapovich - Wise '00).
Def 9.5
Volume entropy of G (with respect to fin.gen.set S) is \[h(G, S) = \limsup_{r \to \infty} \frac{1}{r} \log |B_r(e, r)| \leq \log (2|S|-1) \]

Def 9.6
In a metric space X, $\alpha > 0$, then the Hausdorff α-measure of A is

\[H^\alpha(A) = \lim_{\delta \to 0} \inf \left\{ \sum \text{diam}(E_i)\alpha : A \subset \bigcup_i E_i, \text{diam}(E_i) < \delta \right\} \]

The Hausdorff dimension of A is \[\dim_H A = \sup \{ \alpha : H^\alpha(A) = 0 \} = \inf \{ \alpha : H^\alpha(A) = \infty \} \]

Graph of $H^\alpha(A)$:
Example: \(X = \mathbb{R}^n \) then
\[H^v(\text{open set}) \left\{ \begin{array}{l}
\alpha > n \\
\alpha = n \\
\alpha < n
\end{array} \right. \]
(proportional to Lebesgue meas.)

(More in §10)

Prop 9.7 Let hyp. \(\varepsilon > 0 \).
\(d_\varepsilon \) is a visual metric on \(\partial \mathcal{G} \) with param. \(\varepsilon \).
then \(\dim_H (\partial \mathcal{G}, d_\varepsilon) \leq \frac{1}{\varepsilon^2} h(G, S) \).

Proof

If \(\alpha > \alpha' > \frac{1}{3} h(G, S) \)

\[\exists C \text{ st. } |B_C(e, r)| \leq Ce^{\alpha r} \]

Let \(\mathcal{U}_r \) be cover
\[\{ U_x : x \in \mathcal{S}(e, r) \} \]

\[\text{diam}(U_x) \leq Ce^{-\varepsilon r} \]

Then
\[\sum (\text{diam } U_x) \]

\[\mathcal{U}_r \leq (Ce^{-\varepsilon r})^{\alpha r} e^{\varepsilon r} \rightarrow e^{-\varepsilon(\alpha r)} \rightarrow 0 \text{ as } r \rightarrow \infty. \]

I.e. \(\dim_H \leq \alpha \).
In fact
Theorem 9.8 (Coornaert '93)
There exists a Q-regular measure \(\mu \) on \((\partial_0 G, d_\delta) \)
with \(Q = \frac{1}{2} \text{h}(G, S) \).
i.e. \(\text{dim}_H(\partial_0 G, d_\delta) = Q \).

Remark Ahlfors Q-regular \(\Rightarrow \forall r < \text{diam}(\partial_0 G, d_\delta) \)
\(\mu(B(x, r)) \leq r^Q \).
(Fact: then \(H^Q = \mu \).

Cor 9.9 \(\text{dim}\partial_0 G < \infty \)
Proof \(\text{dim}\partial_0 G < \text{dim}_H(\partial_0 G, d_\delta) \).

Prop 9.10 Can define compactification (G hyp.)
\(\overline{G} = G \cup \partial_0 G \)
(or \(\overline{G} = \overline{G} \cup \partial_0 \overline{G} \))
and \(\overline{G} \) is a compact, metrizable, fin. dim space.

Proof \(\overline{G} \leftrightarrow \{ \sigma: [0, \infty) \rightarrow \overline{G} : \}
\sigma(0) = e, \forall \text{ in st.} \}
\sigma|_{[0, \infty]} \text{ is geodesic,}
\sigma|_{[r, \infty]} \equiv \sigma(h). \)
Then $G = \bigcup_{\alpha < \Gamma} G_{\alpha}$ is compact. Has uniform structure so metrizable.

$$\dim G \leq \dim(\Pi G) + \dim(\partial G) + 1.$$

\[\square \]

Recall:

Def 9.11 X top. space.

$\forall U, V$ open covers.

Say V refines U is

$\forall V \in U \implies V \subseteq U$.

\[Nerve \text{ of } U \text{ is the simp. complex } N(U) \text{ with vertex set } U \text{ and an } n \text{-simplex } \{U_0, \ldots, U_n\} \iff U_0 \cap \cdots \cap U_n = \emptyset.

Def 9.12 X has $\dim(X) \leq n$ if \forall every cover U of X

has a refinement V s.t.

$\dim N(V) \leq n$.

Ex R:

\[\begin{array}{c}
\end{array} \]
If V refines U, obvious map $N(V) \to N(U)$ gets $H^*(N(U)) \to H^*(N(V))$.
Čech cohomology is $H^*(X) = \lim H^*(N(U))$.

This is nice(r): \mathbb{S}^2.

Then $H^3(X) \neq 0$ but $H^3(X) = 0$
$H^2(X) = \mathbb{Z}$.