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= BIFURCATION ANALYSIS .
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Abstract \

We present a mechanical model for cell aggregation in embryonic
development. The model is based on the large traction forces exerted
by fibroblast cells which deform the extracellular matrix (ECM) on
which they move. It is shown that the subsequent changes in the cell
environment can combine to produce pattern. A linear analysis is
carried out for this model. This reveals a wide spectrum of different
types of dispersion relations. A non-linear bifurcation analysis is
presented for a simple version of the field equations: a non-standard
element is required. Biological applications are briefly discussed.

1. INTRODUCTION

A central question in developmental biology is the process by
which geometrical patterns emerge during embryogenesis. Several models
have been proposed to describe the mechanisms of development of bio-
logical form (morphogenesis). Turing (1952) showed how a system of
reacting and diffusing chemicals (morphogens) could produce pattern
due to instability of a homogeneous equilibrium state. Such reaction-
diffusion models have been widely-studied since (e.g. Gierer and
Meinhardt (1972), Thomas (1975), Murray (1977, 1981), Meinhardt (1982)).

A somewhat simpler scheme is the gradient model (Wolpert (1969)),
which supposes the existence of a group of morphogen secreting cells
(e.g. Saunders and Gasseling (1968)). The morphogen diffuses away from
the source setting up a stationary gradient. Cells differentiate when :
the concentration of the morphogen reaches a certain threshold value .
(Smith and Wolpert (1981), Wolpert and Hornbruch (1981), Smith et al
(1978) , Tickle (1981)).
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" The central principle underlying these models is the setting up

‘of a chemical pre-pattern to which the cells respond. However, such

-:ﬁodels have certain problems: (i) except in rather special cases, the

° morphogens remain, as yet, unidentified; (ii) the mechanism by which
cells respond to the concentration of morphogen is vague and, in general,

i must be exquisitely sensitive.

i In this paper we present a mechanism for spatially patterning

" populations of mesenchymal cells which is based on the following well

" documented mechanical properties (Harris et al (1981)): 1) Cells spread
“.-and migrate within a substratum consisting of a fibrous extracellular

} matrix (ECM). 2) They generate large contractile forces which deform

, the ECM.

Section 2 contains a brief resume of the model equations; the
reader is referred to the paper by Oster, Murray and Harris (1983) (and
references therein) for full details. Section 3 contains a linear

. analysis of the model. This gives rise to an abundance of dispersion
%'relations, suggesting a richness in the pattern forming abilities of
the model. In Section 4 a non-linear bifurcation analysis is presented
+on a simplified version of the model. This gives certain predictions
‘for the amplitude of the heterogeneous cell density. The bioclogical
applications to long-standing problems of feather germ formation and
. wound healing are discussed at the end of the paper.

' 2. CELL TRACTION MODEL MECHANISM

The model is based on the three field variables

n(x,t) = density of mesenchymal cells at position x and time t
p(x,t) = density of ECM at position x and time t
g(i,t] = displacement at time t of a material point in the matrix

which was initially at x.

The equation for cell movement is

3n = 9, (D1(g}?n.-D25)V3n = a[nv{p+u'§2)]-nig) + rn(N-n)
i BE = = P at (1)
random dispersal haptotaxis convection mitosis
;ihere € = 1/2[Vu + ?HT] is the linear strain tensor. We motivate each

“of these terms in turn.

gkandom dispersal. We model this wi?h a Fickian flux: J = -D1{§1Vn
:uhere D1{§] is a strain dependent (i.e. matrix directed) diffusion
‘coefficient. However, at large cell densities, Fick's Law is inadequate
Tbecause it does not take into account non-local effects. These effects are

.
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important here because mesenchymal cells can detect non-local concen-

trations via long cell protuberances (filopodia). Thus cell movement alsc.",'.'

1

depends on the average cell concentration in the immediate surroundinq.f
This average may be modelled by including a higher order term, Dzlglv;n;
in the flux expression, where Dzlg) is the long range diffusion coeffi-
cient: for simplicity we take D1(g) and Dz(g} to be constant in this .7
paper. Thus the random dispersal flux is modelled as

?sn.

=a01?n + D

ﬂrandom 2

)

like

Note that the sign accompanying D, is plus. This implies that Dz,
DT,is dispersive.

Haptotaxis. Cells actively move by attaching their filopodia to certah{
specialized adhesive sites on the extracellular matrix. They tend ta.ig
move up a gradient in adhesive sites (haptotaxis) because the filopodia
have a better grip where there are more adhesive sites and will thus 'tg
drag the cell up the gradient (Harris (1973)). Assuming the adhesive o

sites are uniformly situated throughout the matrix, we have

2
L}
Ehaptotaxis = anV(p + a'V7p)

B

2 . . . '-
where the V'p(x,t) term takes into account long range interactions (c.f.,

long range diffusion).

Conveection. Cells may move passively due to the movement of the matrix.
We model this in the usual way by the term e

Jconvection = P2

whe

Hence the total flux is:

3
J =-D.Vn + D,V n +a[nV(p + a'?z

1 5 p)] + n3u

It

Mitosis. We assume cells proliferate until a limiting density N is
reached, according to the logistic growth law '

mitotic rate = rn(N -n)
Egqn (1) gives the conservation law for density:
2 4 .
3% " D1? n- DZV n- V.(anV(p + a"V%p)) - v(nig) + rn(N -n)
at '
rate of change of cell density = net flux + cell division

Mechanical Balance Equation. ; - Y
We are dealing with systems in the realm of low Reynolds humber |

(Purcell (1977)) so that the viscous and elastic forces dominate_
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inertial terms (i.e. motion of cells instantly ceases when the applied
forces are turned off). Therefore, the restoring forces in the ECM
are in equilibrium with the cell contractile forces. We model the ECM

as a simple visco-elastic material with a stress tensor

= 9E
l-|-1_- + uzqﬁ + E (é + _\i___eI:' (2)

cous elastic

where E is the Young's modulus, Bqsu, the shear and bulk viscosities,
v the Poisson ratio, 8 = V.u the dilatation (this measures the increase
in volume due to applied forces) and I the unit tensor.

E measures the passive elastic m;dulus of the ECM, which we assume
is initially isotropic. However, the contractile forces exerted by the
cells align the collagen fibrils and thus increase the strength of the
ECM. To account for this strain alignment in the simplest way (without
introducing additional elastic constants), we set E = E(0), where E(8)

is some monotonically increasing function of 8. The Poisson ratio

accounts for the transverse compression of the ECM when it is stretched.

We assume the stress due to cell traction has the form

_ 2
Scell-matrix - T(nInle + BV plI -

where T(n) = T:%Hz is the traction per cell (e.g. dyne/cm/cell). This
says that as the cell density increases, the traction exerted by each cell
decreases, that is, as the cells pack together their traction decreases
due to contact inhibition (Trinkaus (1984)). Because the cells exert
contractile forces via attachments to the ECM, traction also depends on
the local matrix density pix,t) (short range traction) and non-local
(average) matrix density vzpti,t} (long range traction). The parameter
f measures the strength of the long range traction. Note that in an
environment of large cell density and low matrix density, the cells
would exert contractile forces by attaching their filopodia to other

cells. Hence, we model the cell-cell contribution to active traction

as
B'Vzn] (4)
Sse11pary = Tia)in ¥ ' :
The equation for mechanical equilibrium is
?.g + pF = 0 (5)
a ; « B
where g gm + gcell—matrix and F accounts for body forces or
example, if the ECM is attached elastically to an external substratum
i then

E = =5u.
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The conservation equation for matrix material has the form ‘-n:

5 ) - ) - _ 7
3 = V. 02d) + s(n,u,p) (6)

convection secretion

We shall assume in this model that secretion of matrix is negli-
gible on the time scale of pattern formation (i.e. S(n,u,p) = 0)

Equations (1), (5) and (6) constitute the field equations describing
mesenchymal morphogenesis.

3. LINEAR ANALYSIS

Before linearizing, we non-dimensionalise the system. This reduces
the number of parameters, making the mathematics slightly simpler. Mo;
importantly, the non-dimensional parameter groupings are biologically e
significant since they show which processes have equivalent effects
The non-dimensionalised system is presented in Appendix (a). The .
equations admit the non-trivial steady state

n=p=1,u=0.
M @ : (7)

Linearizing about this steady state and substituting solutions of

the f gk Je+ik.x
orm e =, where k is a wave vector, gives rise to various

types of dispersion relations o{kzl, depending on the parameter values,

(See Appendgx (b) for the full dispersion relationship). we consider
various ¢ (k“) behaviours and discuss the isolation of modes

2 F
Types of o(k®) behaviours. From Appendix (b) all of the dispersion
relations have the form

2

o (k2) = 2203 /5% (k2) ~au%e (k2)
2
2pk

(8)

2
where b(k“) and c(k2) are polynomials in k2
of the model.

and involve the parameters

Th; homogeneous steady state will go unstable if Ri(o(kz}} > 0 for
some k®. We look for diffusion-driven instabilities wherein the homo-
geneous equilibrium is stable to non-spatial variations. With all
parameters non-zero, it is possible to have the behaviour shown in
Fig. 1(a). Ssince RL(a(k?)) > 0=b(k?) < 0 or c(k?) < 0 it nay be
possible (depending on the parameters satisfying certain relationships)
to have the ¢ behaviour illustrated in Fig. 1(b). :
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FIG. 1. Two possible dispersion behaviours. In (b), the relative

values of the maxima depend on’ the parameter values.

We now examine the effect on the dispersion relationship of setting
certain parameters equal to zero. This helps us to understand how
various parameters affect the model and we can see if it is possible for

simpler models to mimic the behaviour of the more complicated system.

Setting u = 0 gives c{kz) = —c(kz)/b(kzl hence we have the possi-
bility of infinite linear growth rates for certain non-zero modes ki,
where b(ki) = 0. Consider, for instance, the model in which only s,r,
B and T are non-zeroc. In this case,

bk?) = grk? + (1-200k% + s
(9)
c(k2} = r[ﬁ'rk4 + (1 —'r)k2 + 5]

Fig. 2 illustrates the behaviour of o[kz} as T increases, while

Fig. 3 shows the dispersion relation with s = 0 as well.
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FIG. 2. Dispersion relation for the model with u,B,r and s non-zero.

Notice the character of the predicted growth rate as t increases (a)-(e).
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FIG. 3. Dispersion relationship in Fig. 2 with s = 0. As T increases

through the bifurcation value 1/2, there is a discontinuous change in
2

a(k™).

When viscosity is reintroduced the growth rate is rendered finite
(Fig. 4). The central issue in the linear analysis is which of the
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FIG. 4. Dispersion relation with u,s,T and g non-zero. The uniform

o (kY

steady state becomes unstable as 1 increases.

modes k, in Fig. 2(c) grows fastest, as this is presumably the only one
observed. This, together with the biological significance of such
behaviour, is currently under investigation. Setting different para-
meters zero gives rise to a varied collection of c(kzl behaviours

(Murray and Oster (1984)).

Isolating modes. With fixed geometry, we show that, in order to isolate
modes, it is necessary to vary at least two parameters.

Consider the one-dimensional domain [0,1] with boundary conditions

ni, =g, 0, u=20o0nx=0,1. The eigenfunctions are then
n a cos kx 2
u = b sin kx ealk It (10)
p c cos kx

where k = nm and a,b,c are arbitrary constants and the unstable modes
have Rio(kzl 0.

We can try to isolate these modes by continuously varying one
parameter (that is, as the parameter changes, the first mode goes
unstable by itself, then the second mode by itself, etc.). To illus-
trate the argument, consider the model wherein u,s,T and B are non-zero.
(We discuss this model in more detail in section 4.) Let us increase
t while keeping the other parameters fixed. The dispersion relation is
c{kzl = -b(kz)/ ukz where b{kzi = B'rk4 + (1 -2'rlk2 + s and U(k21 >0
if and only if b(k?) < 0. The parabolas b(k?) intersect at k° = 0 and

in one non-zero fixed point for

bk?,1,) = b(k?,7,) = k? = 0 or x% = 2/8.

T
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Clearly one can isolate the first mode by increasing 1 (Fig.5(a)). If
we try to isolate mode 2, we note that the parabolas b(kz,t} for T in-
creasing must intersect at the fixed point A (see Fig.5(a)) and thus go
below the parabola b{kz,rll. Hence mode 1 will remain unstable and
it is impossible to isolate the second mode. The difficulty is that A
is fixed. For a general p{kzl, it may be possible to vary the point
of intersection by varying more than one parameter and thus isolate many
modes (Fig.5(b)). It is clear how to generalise this simple argument
for the full dispersion relationship. Note that a necessary condition
for isolating modes by varying only one parameter is that it must occur
guadratically in the dispersion relation.
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FIG.5. Isclating modes. (a) Varying 1 alone will isolate one mode at
most. (b) Varying two parameters for a general b(kzl. (see text for

detail.)

The above discussion illustrates the wide and varied behaviour that
such a model may exhibit. It can be shown that the corresponding three
species reaction-diffusion system can only give rise (for purely real
c{kzll to a dispersion relation of the form illustrated in Fig. 4. This
suggests that the model here has a much richer class of pattern forming
abilities than reaction-diffusion models.

4. NON-LINEAR ANALYSIS

Consider the simple model in which cell movement is by convection
only and the ECM is tethered to an underlying layer (e.g. the subdermal
layer in feather tract formation). The one-dimensional equations for
this model are
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Equating powers of €, we have from (11)

£l (ni*qxu1] =0

t
axxtuT *+ axxu1 * Icax(n1 +p1) * Tcaaxxxn1 su1-= 0 (12)
at(p1+'3xu1) = (.
The solution of (17) is #
n a,.lk.)
1 T4 3 2
u, =z b1j(kj) ec{kj}t +iij (18)
]
p‘[ _ c.lj‘kj)
as . (k)
3 3 ctk2lt +1iksx
where h1j{kj} = j b are the eigenfunctions of (17).
Cyalk
13 J}

The uniform steady state becomes unstable only through the eigen-
function of wavenumber kc, that is,

2 2 2 2
c(kcl > O,crlknl <0V kn - kc

so, over a long time scale, we expect this eigenfunction to dominate.
Thus the asymptotic form of (18) is (Matkowsky (1970))

n, a1C(T,kc] .
4 12| B VR |8 (19)
Pq C1C(T’kc}
where the exponential term has been incorporated into the T dependence
of a1c’b1c'c1c'

Continuing this calculation at every step, the t dependence can be

ignored in the subsequent analysis, and all calculations carried out

asymptotically for large time. Hence we look for solutions of the form

(14).
To lowest order in €, we have
0 0 s
() +k Bl g =0

0
1

0 0 ..
(c; +kCB1}T =0

2 0 Bl
chcA + {kc +s)B1 + kcrc(1 ~kcB}C1 =0 (20)

and a similar set of equations for {D?,E?.F?}. For the remaining cal-

culation we shall only consider {A.,B.,C.} to simplify the analysis.
(The analysis can be repeated exactly for {Dj,Bj,Fj}-)

Order cz terms give

g
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.2l -0
3 2 2 )

ua 2 - ; + r%% [n(p +B§—%]] - sup =0 . (11)
ax 9t ax X

3 , 8  3u _

3¢ *ax Mg = 0

where we have approximated t(n) by Tn.
The dispersion relation is
(B1k4+ (1-21) k2+s)
k2
which is similar to that in Fig. 4: here the bifurcation

U(kzi =0 or c{kzl

(12}

1, = 1/2{(1+s8) + L(1+s8)2-11""3

and we have incorporated u into the time scale.
We perform a nonlinear bifurcation analysis similar to that in
Lara and Murray (1983) as 1 exceeds its critical value Tc by setting

T = Tc + 526, 0 < e<<1, § =11 (13)

We look for solutions of (11) of the form

nix,T,e) =1+ [ ej{A.{a,Tlcos jk x + D.(e,T)sin jk _x}
3=1 5] e 3 ) I%e

u(x,T,e} = L €I (B, (e,T) sin jk..; E,(e,T ik

354 5e,TIsin Jhkox + J(a )cos jk_x}

pix,t,e) =1 + j£1c3{cj{e,T)c05 Jkox + the,T)sin jkcx} (14)

4 1, )
where A.(e,T) = [ A (T)e™, etc. and T = e“¢t.
3 i=0 2J

To motivate the stretching of the time scale, consider the behaviour

of O{sz for a small variation about the critical traction T A

2 .
Taylor expansion of 0 about k” gives

c
2 2 2 30 4w
o (xS, 1) = chb{igs + e 2 + o(eh (15)
0 kz,r
[+ c
0(e)e
r

and the exponential growth term in the solution becomes e
suggesting a slow time variable T = Ezt.

We motivate the form of solution (14) as follows. Assume

n=1n4+ ﬁsjn.(x,t,T]
3j 3

u = Zedu, (x,t,T) _ (16)
S

p =1 + Zedp, (x,t,T).
3j ]
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(A + 2k _BO) . + kcA?B?T =0
2% T A) + (4k2 + s18) + 2k_t_(1-48K2)C, = o
- kT (1 -k a)ao ° - $ 85c)
(cd + 2x _B): + kcln. 8 =0
and order 53 terms give
x2B,2 - k 8(a] + C]) pekic) + k_t, (28K - »alc)
(22)
+ kigc (BK_ -1)A° 0 -3 [C?Bg - Oczl =0

Standard nonlinear analysis simply requires successive suppression of

secular terms. With the structure of our eguations this is not

sufficient to determine the amplitude egquations. It turns out that we
must use an integrated form of the conservation equations. Integrating
the first and third of (20) we have three simultaneous equations for
0 .0 0
31,81 and C1
0 0 _
<R ;
0 2 0 2 -0 (23)
kcrcA'I + (kc + s]B.‘ +kc‘rc[1 kcﬁ,‘c1
0 o . .0
kcB1 + 01 £ ¥y
where y? and yg are constants. This system is degenerate and has non-

‘ trivial solution if and only if
2 0 2 0 _ (24)
(kc(1 —TC] + 5}73 + chcY1 =0
i.e. there is a constraint on the initial conditions. As we have two
conservation equations in the system (11) we obviously expect some

constraints on initial perturbations.
Integrating the first and third of (21) gives

2
0 _ .0 1
A, * 2kch = A12/2 £ ¥ (25
0 0o _ 0 1
C, + 2k B, = C; /2 + Yy

where 11 and Y1 are constants

Note t.h.at-y&‘ A (0) +k B (0). If we assume initial perturbations to be 01(5 Yy
then Y? Yg = 0. Moreover, assuming initial perturbations to be 0(e3) implies ¥y =

73 = 0. (Making these assumptions is not necessary but they help make the analysis

AEplgc) 0 0 0 0
We can solve the systems (23) and (25) for B1,C1 A2 B, and C2 in terms of A

and substituting into (22) we have the Lancau equation

03

dA?/dT = GXA? + YA1
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2
X = - =
where 2 Skc (ETC + 1}/{ZTc] ) (26)
and Y = {14351 + 24t - 638s - 12)/72sB
Notice that the coefficient of A? is s;mply Bc that is, what
we expect from the linear analysis. kc’Tc

The possible behaviours for (26) are summarised in the Table.

n 1
TABLE. Behaviour near the bifurcation when (u) = (0) -

p 1
¥ as in (26).

¥ <0 Y >0
§ >0 0 evolves to /-¥ A2 goes unbounded
1 Y| 1
§ <0 ? tends to 0 there is a threshold in A?
0 XK. 0
R1{0,D) (/T?T - A1 + 0
0 e 0
A1(0,01>JY "A.i-rﬂ

If we are in the parameter space P (Fig. 6) the cell density
evolves to the bounded steady state

1+ e/X7TE cos (k_x) . ' (27)

p:"\

i
s N
=N

b
>

S

FIG. 6. Parameter space, P, in which Y > 0 and the homogeneous steady

state evolves to the heterogeneous solution (27).

If we had kept in the initial constants, we would have finished

up with a perturbed version of the above Landau equation, namely
dAD/dT cc v ox+ x a0 + 2.2 v a0’ (28)
0 0°™M 071 1
0, 0 and ZO are functions of 12,71,1 = 1,3. Thus the homogeneous
steady state would evolve to a heterogeneous steady state dependent on

where C

initial perturbations. Since we are dealing with small perturbations,

however, these variations will also be small.
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5. BIOLOGICAL APPLICATIONS

Formation of skin organs. In the early stages of skin organ development
(hair, teeth, feathers, scales) dermal cells aggregate to form a

regular spatial pattern. These aggregations (papillae), in association
with overlapping arrays of columnar epidermal cells (placodes), lead to
the formation of skin organ primordia (e.g. Rawles (1963) , Wessels
(1965)) . '

It is found that feather primordia develop in a hexagonal pattern
within well-defined regions of chicken skin (pterylae). The primordia
do not develop synchronously, however. 1In the posterior part of the
spinal pteryla, for example, an initial row of feather primordia forms
along the dorsal midline (Stuart and Moscona (1967}, Davidson (1983))
and successive rows form on either side of this initial row.

We now apply our model to this with the following scenario: the
columnar condensation forms first as dermal cells along the dorsal mid-
line break up into isolated clumps. This could be triggered by the
increasing traction of cells (or, equivalently, other parameters involved
in the dimensionless traction parameter). This parameter evolution may
be due, for example, to cell maturity: cells "age" into the unstable
regime in parameter space wherein the homogeneous steady state becomes
unstable and evolves into a heterogeneous steady state (c.f. Section 4).
The tractions produced by these aggregates strain the matrix and the
secondary row of papillae form at loci midway between the primary
papillae, where the strain is a local minimum. This recruits other
cells and thereby forms a hexagonal pattern. Fig. 7 illustrates the
situation. (Numerical and analytical studies are underway to find these

two-dimensional patterns).

e o ©
Y @ 2 0 © e e @ @
e ¢ e

FIG. 7. Idealised section of chick pteryla. As traction increases, the
uniform cell density (i) becomes unstable and forms aggregations (i1}
This row of aggregates causes condensation along a neighbouring row at
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interdigitating points. (iii) shows how this could give rise to hexa-

gonal structure.

Wound healing. During wound healing, cells migrate‘towards the damaged
site and the fibroblasts exert large contractile forces to pull the
wound closed {(Trinkaus (1984), Fig. 12.1). This gives rise to gross
disfiguring particularly after skin graft subsequent to severe burns.
The model equations are currently being studied with this application
in mind. It gives rise to a formidable free boundary problem. However
the potential practical rewards justify an in-depth study.

6. DISCUSSION

We have presented a model for cell aggregation, based on well
documented mechanical properties of cells and extracellular matrix. We
have illustrated how cell traction on an elastic substratum can produce
various aggregation patterns. No directed cell migration is necessary,
although if cells are motile this will merely enhance the tendency to
form patterns. Thus the model illustrates how different mechanical
properties of the cells can lead to cell pattern. The predictions of
the model can be (and are being) tested experimentally as, in principle,
all the parameters are measurable. '

Mechanical models can thus lead to a greater understanding, bio-
logically, of the phenomenon of development. For the mathematician and
numerical analyst, the models provide an interesting and formidable

class of problems to be investigated.
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APPENDIX

(a) Let L, T, be typical length and time scales respectively and let

0

Py be a typical matrix density. With the following dimensionless
guantities
f=n/N, 5 = p/py, & =%, € = t/T,, & = x/L, Dy = D,T,/L?, X = an?
1 P P/Pge B ! DX X/iu, by 140 [ '
g = B/L2 § = s L2(1+v)/E D, = D,T /L4 & = ap,T /L2 a' = a'/L
¢ o ¥ g T mgrgeR e g e :
L=rNTy, By = w(1+v}/TeE, i, = uy (14+v) /ToE, T = tHp,(1+v)/E
the system (1), (5), (6) becomes (dropping tildes)

au
dn Djvzn ~D2vdn - av.[nV{p+u'vzp}] - V.[nsi + rn{1-n)

=
dE -~
V.lu,== + pu 38, I+ (g+90I) + —2 {p +BV29}I] = sup
19t 23t = = = 1+An2 = -
ap du,
=t ?.(Dat] =0
where U = 1:3v‘

Notice that by taking different values for TO' we can work on
different time scales, e.g. we could work on the haptotactic time scale

by setting Ty = Lzlcm{:| (Oster, Murray and Harris (1983)).

{(b) Linearizing about the steady state n = p = 1, u = 0 by setting
n=1+h, p=1+5, u=u (where the tilde variables are small vari-
ations from the steady state), we find the dispersion relation, in the

usual way, by looking for solutions

=11

Lo kD)t + ik.x

=

=t

k=l

In one dimension, this gives rise to the relationship

o (k%) (k?0? (k%) + bkD o (k%) + c(k?)) = 0
where
b(kzl ='uD2k6 + (TB/(1+X) + uD1]k4 + (1+ur—2t/{1+l)2)k2 + 8,

2
ck’) = ©/(1+2)8D,k% + (1/(1+X) (8D, =D, + aa'(1-2A/(1+A)) +D,)k°

+[t/(1+X) (B - Dl-uli-zl/(1+kl} + 5D2+Dl]k4 +{le+r—r1/(1+A]}k2

+ rs
where p = ul * Bor and we have normalised u, 1 and s by dividing by

(1+0) .
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