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Abstract. In this paper we extend the study of Turing models to investigate the réle of
boundary conditions, parameter modulation, domain growth, and coupling of models.
Our numerical simulations show that such modifications lead to patterns that cannot be
reproduced by the standard model. By comparing our results with pigmentation
patterning on marine fish we conclude that such models may have wider application
than originally imagined.

1. Introduction

In 1952, the mathematician Alan M. Turing (TURING, 1952) proposed a theory for
morphogenesis. He showed that a system of reacting and diffusing chemicals could evolve
from initial near-homogeneity into a spatial pattern of chemical concentration (the
phenomenon of “diffusion-driveninstability”). He proposed that this spatially heterogenesis
chemical (or morphogen) concentration pattern could serve as a pre-pattern to which cells
would respond by differentiating accordingly, resulting in the formation of structure
reflecting the underlying chemical pre-pattern. Turing systems have been proposed as
possible mechanisms for generating patterns in a wide range of embryological applica-
tions (see MURRAY, 1993, for acomprehensive review). Although the existence of Turing
patterns in biology is still a controversial issue, they have been found in chemistry (see
MAINI er al., 1997, for a review).

In this paper we extend the study of Turing systems to look at the réle of boundary
conditions, domain growth, and the coupling of Turing models. In Section 2 we present
the three models we will consider and, in Section 3, we present a sample of our numerical
simulations and compare the resultant spatial patterns with pigmentation patterns observed
on certain marine fish. Conclusions are presented in Section 4.
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2. Model Equations

The model equations are simple Turing systems of two chemicals, corresponding to
models widely used to simulate biochemical processes. We choose three models (we refer
the reader to the papers by VAREA et al. (1997) and BARRIO et al. (1998), for full details):
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In each case, u(x , 1), v(x, r) denote the concentrations of chemicals u and v at spatial
position X and time t; D, 6, @, B, r1, r2, K, Bu> By, Pus Pvs Ky and @ are parameter values.

The models were solved on a two-dimensional domain subject to various types of
boundary conditions for different parameter values. In some cases one adds a linear term
hu where h is a constant different from zero only at a certain boundary. This term
represents a possible source of chemical u. These sources can be interpreted as a biological
mechanism by which a certain chemical responsible for the pigmentation is enhanced at
the edge (VAREA et al., 1997). This idea has close parallels with the mechanism of stripe
formationin the Drosophila embryo, whichis caused by a high concentration of the Bicoid
protein along the anterior side (JOHNSTON and NUSSLEIN-VOLHARD, 1992).

In the following section we present a series of numerical simulations and compare
the results with pigmentation patterns on fish.
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3. Numerical Results and Applications

All the models mentioned above exhibit the phenomenon of diffusion driven
instability, that is, parameter regimes can be chosen such that the spatially uniform steady
state is stable in the absence of diffusion, but can be driven linearly unstable by diffusion.
In such parameter regimes, the solution may evolve to a bounded spatially non-uniform
steady state. A great deal of analysis has been carried out on Turing systems with zero-
flux boundary conditions on square domains, and the réle of the non-linearities in pattern
selection has been widely explored (see for example, ERMENTROUT, 1991; NAGORCKA
and MOONEY, 1992).

In this paper we extend these studies to non-standard systems. First we consider the
role of boundary sources of one of the chemicals; second we investigate how patterns
change due to domain growth; third we study the effects of spatially varying parameters;
fourth we examine interacting coupled models. We illustrate our results by the eight
simulations below (the model equations were solved using a simple Euler scheme on grids
of 100 x 100 sites).

Fig. 1. Numerical simulation of model (1) with zero-flux boundary conditions and a source h = 0.1 of u on
the upper boundary. The parameters were D =0.122, 6=2, a=0.398, =-0.4, r; =0.02 and r, = 0.2
Observe the similarity with the pattern exhibited by the puffer fish Ostracion meleagris.
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Pomacanthus imperator

Fig. 2. The juvenile coat of the angel fish Pomacanthus Imperator presents a complicated array of aligned
stripes and cells similar to the results of numerical calculations from model (2). The insets comparing the
theoretical patterns with the fish pigmentation are reproduced from V AREA et al. (1997) Figs. 3d and 4d,
and correspond to our model (2).

Fig. 3. Numerical simulation of model (3) on a “fish-like” domain and with an extreme value of the sources
(h =0.5) of u at the top and bottom boundaries. The zero-flux boundary condition was used on the other
boundaries. The parameters used were §=0.025, p,=0.02, p, = x,=0.01, 8,=0.02, B,=0, ¢=0.1, and
D = 0.01. Compare with the pattern exhibited by the butterfly fish Chaetodon capistratis.
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s o Pomacanthus Imperator

Fig. 4. Modeling the growth of the coat of the adult form of Pomacanthus Imperator using model (3) with
parameter values as in Fig. 3, but with D changing steadily during the calculation to simulate the growth
of the domain. See Fig. 5 in VAREA et al. (1997).
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Pomacanthus maculatus

Fig. 5. Pattern obtained from solving model (1) on a rectangular domain with zero-flux boundary conditions
for parameter values D =0.182, 6=2, a=0.5, f=-0.578, r; = 1.5, and r; = cos(my/10). This type of
parameter modulation produces an alternate pattern of stripes and spots, similar to those observed in the
thirteen-lined ground squirrel, and in the fish Pomacanthus maculatus (reproduced from FRANK (1973)).
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1. Model (1) can exhibit a regular and sparse spotted pattern, similar to that
observed on the fish Ostracion meleagris, as showninFig. 1. All the fish images presented
in this paper, except that of Pomacanthus maculatus, were taken from our own tank.

2.  Model (2) with sources of u at the edges, produces patterns very similar to those
found near the tail of the juvenile angel fish Pomacanthus imperator (Fig. 2).

3. When the strength of the sources is increased, a new pattern of stripes appears
that resembles the skin of the butterfly fish Chaetodon capistratis (Fig. 3).

4. The adult form of Pomacanthus imperator has stripes that conserve the
wavelength as the fish grows. Therefore in some places of the skin there are dislocation-
like patterns where a stripe bifurcates. The bifurcation point travels horizontally as the fish

Balistoides conspicillum

Fig. 6. Numerical simulation of a coupled system of two versions of model (1), where one submodel (in
variables (u’, v")) feeds into the other submodel (in variables (u, v)) by enhancing the linear production
rate of u with the term qyu’ (g; = -0.55). The resultant system was solved on a “fish-like” domain with
zero-flux boundary conditions for v, u”, and v, with a source of strength h = 0.005 for u at the top boundary,
and zero-flux everywhere else. Parameter values are =2, ry =3.5 and r, = 0.2 for both models, D=0.516,
a=0.899, and f=-0.91 for the unprimed model, and D"=0.122, o =0.398, and ' =-0.4 for the primed
model. The patterns produced are similar to those observed on Balistoides conspicillum.
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grows to produce new stripes (KONDO and ASAI, 1995). This was modeled in a growing
fish-like domain with sources at the horizontal borders and using model (3) (Fig. 4).

5. In model (1), the coefficient of the quadratic term (r2) was modulated sinu-
soidally along the horizontal direction, producing an alternate pattern of spots and stripes
that mimics the skin of the thirteen-lined squirrel and the marine fish Pomacanthus
maculatus (see Fig. 5). This pattern cannot be produced by the standard Turing model
(BARD, 1981; CoCcHO, 1987). In such a simulation, the question naturally arises as to how
the spatial modulation of r; is set up. This could be due to feedback from another Turing
model operating on a faster time scale. This motivates our study of coupled Turing
systems, and the following three simulations present a sample of the complex patterns that
can arise from such interactions.

6. We coupled linearly two models of form (1) with parameters chosen so as to
enhance modes of different wavelengths in each sub-model, and with a small source of
u at the upper border of a fish-like shaped domain. The pattern is a defective hexagonal

Fig. 7. Numerical simulation of a coupled system of two versions of model (1), where one submodel (in
variables (1, v')) feeds into the other submodel (in variables (u, v)) by enhancing the production of « with
a cubic term gsu’v?, with a corresponding degradation term in the v equation (g3 = 0.55). The equations
were solved on a “fish-like domain” with a source of h = 0.1 at the top boundary. All the other parameters
are the same as in Fig. 6. The resulting pattern is compared with the observed on Synchiropus picturatus.
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lattice of dots aligned near the border, similar to the skin of the puffer fish Balistoides
conspicillum (Fig. 6).

7. When two models of form (1) are coupled with a cubic interaction, complex
patterns of dots arise resembling the skin of Synchiropus picturatus (Fig. 7).
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Fig. 8. Patterns obtained with a coupled system of two versions of model (1) can give complicated
configurations of stripes and spots, as the ones found on the skin of Zebrasoma veliferum. The three square
insets in the figure show numerical calculations obtained with a cubic coupling g3 =0.55 between the two
submodels (see Fig. 7 caption for explanation), and the “fish-like” inset was obtained with a source of u
on the top boundary of strength h = —0.1. All the other parameters are listed in BARRIO ef al. (1998).



Spatial Patterning in Modified Turing Systems ' 221

8. Exploring further the coupling interactions in model (1) we find combined
patterns of stripes and spots as the one found in the surgeon fish Zebrasoma desjardinii

(Fig. 8).
4. Conclusions

We studied various Turing systems under different conditions with the aim of
simulating the skin patterns of marine fish and other animals. We have shown that various
modifications of the standard Turing system give rise to patterns that are not exhibited by
the standard system. This allows us to extend the application of Turing theory to the
complex spatial patterning observed in certain marine fish.

It is still an issue of controversy as to whether Turing patterns actually occur in
biology. A number of other models have been proposed and most of them rely on the
coupled mechanism of short-range activation and long-range inhibition. Due to this
mechanistic similarity, it is believed that this class of models, although based on different
detailed biological hypotheses, produce similar patterns. As Turing systems are represen-
tative of this more general class of model, we conclude that activator-inhibitor systems
may have wider applicability than first thought.
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