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Abstract

We present two modelling frameworks for studying dynamic anistropy in connective

tissue, motivated by the problem of ®bre alignment in wound healing. The ®rst model is

a system of partial di�erential equations operating on a macroscopic scale. We show

that a model consisting of a single extracellular matrix material aligned by ®broblasts

via ¯ux and stress exhibits behaviour that is incompatible with experimental observa-

tions. We extend the model to two matrix types and show that the results of this ex-

tended model are robust and consistent with experiment. The second model represents

cells as discrete objects in a continuum of ECM. We show that this model predicts

patterns of alignment on macroscopic length scales that are lost in a continuum model

of the cell population. Ó 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction and biological background

The term `®brous connective tissue' denotes a wide class of supporting tis-
sues within and between organs. Common to this wide variety of tissues are
®brous extracellular matrix (ECM) and ®broblast cells. The interaction
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between ®broblasts and ECM plays a crucial role in a number of important
biological and medical phenomena, and several mathematical models have
been proposed to address various aspects of these processes. The potential for
tissue mechanics to generate spatial patterns has been studied in detail by
Murray, Oster and coworkers [1,2], with particular applications to embryolo-
gy. The development of solid tumours within connective tissue has also been
modelled extensively, including studies of angiogenesis [3], nodularity [4] and
invasion [5,6]. There has also been extensive modelling of cell behaviour within
the ECM in vitro, in particular in ®broblast-populated collagen lattices [7±9].
The vast majority of this previous modelling work assumes the ECM to be
isotropic, neglecting the fact that the degree of alignment varies, with the de-
gree of anisotropy being an important variable in the model. We are aware of
only one study, other than our own recent work, in which `dynamic anisotropy'
of the ECM has been included, namely a paper by Barocas and Tranquillo [10],
which we discuss later. The simpler case of tissues with a ®xed degree of ani-
sotropy has of course been studied quite extensively, in particular in models of
the heart [11,12].

Dynamic anisotropy is an important ingredient in a wide range of other
biological systems, and has been the subject of extensive mathematical mod-
elling in recent years. Three systems have been the focus of particular attention:
the intracellular actin network, ®broblast colonies in vitro, and ecological
swarming. Actin ®laments are the main structural protein in cells, and exhibit
preferential orientation when the cell is subject to either chemical or mechan-
ical stimuli. This system was ®rst modelled using a generic spatiotemporal
representation [13], and subsequently in more detail but neglecting spatial
variation [14,15]. In ®broblast colonies in vitro, cells re-orient as a result of
direct cell±cell contacts, generating a complex range of alignment patterns, on
which a large amount of detailed data is available. This has been studied ex-
tensively by Edelstein-Keshet and coworkers [16,17] using integro-di�erential
equations. Alignment also occurs in ecological swarming of both macro-or-
ganisms and bacteria; here cellular automata are the most prevelant modelling
tool [18,19]. Cook [20] and Gr�unbaum [21] have recently proposed frameworks
for reducing integro-di�erential equations for alignment phenomena to reac-
tion±di�usion±advection equations, which are widely applicable within both
ecological and ®broblast culture contexts.

The alignment process in connective tissue di�ers signi®cantly from that in
these systems because of the dynamic interaction between cells and their sur-
rounding ECM. Alignment mechanisms arising from this interaction can be
broadly divided into two categories: `¯ux-induced alignment' caused by the
remodelling of matrix by ®broblasts as they move through the tissue, and
`stress-induced' alignment, resulting from mechanical forces within the wound.
We have recently developed two di�erent models for ¯ux-induced alignment
[22,23]; the present paper is concerned with stress-induced alignment and with
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the development of a single, coordinated model. The recent study by Barocas
and Tranquillo [10] is the only other study that we are aware of concerning
dynamic anisotropy in connective tissue. This paper does include force balance
within the tissue, but the alignment they consider is due entirely to local dis-
placements, rather than being a direct response to the stress ®eld. The approach
of Barocas and Tranquillo is in fact very di�erent from ours, focussing on the
biphasic nature of collagen gels, which consist of a ®brous network and in-
terstitial ¯uid. In contrast, we neglect any role of the interstitium, and focus on
the cell±®bre interactions.

The ECM anisotropy is of particular interest in the context of wound
healing. Mathematical modelling has been used by a number of research
groups to focus on speci®c aspects of the healing process. These include the
regulation of wound angiogenesis [24±26], mechanochemical control of wound
contraction, in which the boundaries of the wound are pulled together [27±29],
and the regulation of the densities of collagen I and collagen III, which appear
to control ®bre thickness [30]. The ECM alignment is excluded from all these
models, which focus on other aspects of the repair process. However, one of the
hallmarks of scar tissue is a pronounced anisotropy in the ECM, which con-
trasts with the fairly isotropic surrounding dermis, and is a key indicator of
scar quality; here we are referring to (an)isotropy in the ®brous ECM. During
the healing process, there is a gradual transition from a non-aligned blood clot
to aligned scar tissue, and an understanding of this alignment process is vital
for the development of anti-scarring therapies.

We begin this paper by brie¯y summarising our previous work in Refs.
[22,23] concerning ¯ux-induced ECM alignment. We then (Section 3) develop a
simple model for stress-induced alignment, and present an analysis of equi-
librium states and their stability. In Section 4, we discuss the e�ects of a
combined model, including both stress- and ¯ux-induced alignments. The re-
sulting simple model is inconsistent with the observed existence of partially
aligned equilibria, and in Section 5 we show that this is corrected in an en-
larged model in which the interaction of two di�erent ECM types is considered.
Finally, in Section 6 we discuss a more discrete model for tissue alignment,
which is concerned with alignment patterns on a microscopic length scale.

2. Modelling ¯ux-induced ECM alignment

The processes by which the cells and the ECM interact to determine cell
orientation and ®bre alignment are very complex. It is known that cells can re-
align the ECM by traction [1,32] and that cell motility also plays a key role in
®bre alignment [31,33]. In this paper, therefore, we shall consider two forms of
alignment: ¯ux-induced alignment, in which cells remodel the matrix as they
move through it, and stress-induced alignment, in which cell stress reorients
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®bre direction. We have previously developed two di�erent continuum models
for the process of ¯ux-induced alignment, and in this section we brie¯y sum-
marise these models and their equilibrium states.

2.1. A basic model for ¯ux-induced alignment

We begin by reviewing the alignment model developed in Ref. [22], which
is formulated in terms of the densities of the ECM ®bres predominantly
aligned in each of two orthogonal directions, m1�x; t� and m2�x; t�. This is an
appropriate representation for geometries in which any preferential alignment
will necessarily occur along the coordinate axes: important examples include
the healing of linear (`slash') and circular wounds. The representation is
nevertheless restrictive. For example, it fails to distinguish between the con-
®guration in which ®bres are distributed over all possible orientations, and
that in which half of the ®bres are oriented in one coordinate direction, and
half in the other; both of these correspond to m1 � m2. We discuss below an
extended model which removes this restriction by treating matrix density as a
continuous function of orientation as well as space and time. However, the
simpler framework has the major advantage of giving a more tractable
mathematical system. In particular, we will use this framework when con-
sidering stress-induced alignment in Section 3, on the grounds of mathe-
matical simplicity.

We thus represent matrix alignment as a reversible conversion between ®-
bres in two orthogonal directions:

m1

R2

R1

m2: �1�
The key assumptions are those made in the forms of R1 and R2; in Ref. [22],
these rates were taken to be proportional to the cell ¯ux in the 1- and 2-di-
rections, respectively (which are the x- and y-directions, respectively); we de-
note these ¯ux components by F1 and F2. In addition it was assumed that
production of new ECM in each of the 1- and 2-directions occurs at a rate
g�n;m�, dependent on the cell density n�x; t� and the total ECM density
m�x; t� � m1�x; t� � m2�x; t�. This gives the following equations for m1, m2 and n:

om1

ot
� kf� ÿ F2j jm1 � F1j jm2� � g�n;m�; �2a�

om2

ot
� kf F2j jm1� ÿ F1j jm2� � g�n;m�; �2b�

on
ot
� oF1

ox
� oF2

oy
� f �n;m�; �2c�

where kf is the ¯ux-induced alignment rate parameter and is assumed to be a
positive constant.
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Here the function f �n;m� denotes the rate of cell division. In Ref. [22], the
cell ¯ux terms F1, F2 were based on standard representations of random cell
movement, directed movement up matrix gradients (`haptotaxis') and the
preferential movement of cells in directions of local ECM ®bre orientation
(`contact guidance'), with the speci®c form

�2d�

The general form of the above equation would have gradient terms for
haptotaxis and for random movement. However, making the simplifying as-
sumption that the wound is one-dimensional, that is, changes occur only in the
x-direction, reduces the gradient terms to the above. The coe�cients v�m� and
D�m� both tend to zero at very high values of the matrix density m, which will
immobilize the cells; a detailed explanation of the various terms is given in Ref.
[22]. For simplicity, we scale the variables so that n � m � 1 are the equilibrium
levels in normal tissue; this implies the conditions f �n;m� � g�n;m� � 0.

In the present paper we are primarily concerned with spatially homogeneous
equilibrium states and their stability. For the model (2a±d), this is straight-
forward. In a spatially homogeneous state, F1 and F2 will both be zero, and
thus it can be seen immediately that n � 1, m � m1 and m2 � 1ÿ m1 is an
equilibrium for any m1 2 �0; 1�. Moreover, numerical simulations suggest that
these states are all stable to spatially localised perturbations. Thus any degree
of alignment is possible at a spatially uniform state, for the simple reason that
the absence of cell ¯ux means that no additional alignment takes place. For
example, in the context of dermal wound healing, the basic repair process in-
volves ®broblasts moving into the wound region from surrounding tissue,
depositing collagen and aligning it in their direction of motion. However, once
the wound has healed, there is no longer a net ¯ux of ®broblasts, and conse-
quently there is no change in the degree of alignment. Thus the anisotropy in
the ®nal healed state (the scar) depends on the degree of alignment during the
transient healing process; the dependence of this on model parameter values is
quanti®ed in Ref. [22] by studying the spatiotemporal structure of the solutions
during healing.

2.2. A more detailed model for ¯ux-induced alignment

The basic focus of this paper is to incorporate stress-induced alignment into
the model framework presented above. However, before doing so we digress
brie¯y to review a more detailed approach to modelling ¯ux-induced alignment
developed by Dallon and Sherratt [23]. This involves treating the ECM density
as a continuous function of orientation, rather than considering densities in
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two orthogonal directions, and we discuss it because of the insight given into
the interpretation of the simpler framework.

In Ref. [23], the model variables are N�h; t� and M�h; t�, denoting, respec-
tively, cell and ECM densities as a function of time t and orientation h with
respect to an arbitrary reference direction. Spatial variation could be included
in principle, but is omitted in the interests of mathematical simplicity; thus the
model is concerned with spatially homogeneous states, and in particular,
spatially homogeneous equilibria and their stability. The conservation equa-
tion for cell density N has two terms, representing random reorientation,
modelled by angular di�usion, and directed reorientation, representing the
tendency of ®broblasts to move preferentially in the direction of ECM orien-
tation [34]. This directed reorientation involves a non-local convolution term,
since cells and ECM can interact over a range of orientations; this use of
convolutions is a fundamental feature of a number of models for alignment in
other biological systems [16,35]. In the ECM conservation equation, there is
only one term representing the tendency of ®broblasts to reorient collagen in
their direction of motion; again, this involves a convolution. These various
terms again represent the process of ¯ux-induced alignment, although in a
more detailed way than the model in Section 2.1.

Details of the mathematical model and its analysis are given in Ref. [23];
here, we simply summarise the key results. The basic implication of the model
is that stable equilibria have the form of one or more localised bands of ECM
orientations, with no ®bres aligned at intermediate orientations. In particular,
the state in which the ECM density is the same at all orientations is unstable,
while the state consisting of bands of matrix aligned in two orthogonal di-
rections is stable. There is also a wide spectrum of stable anisotropic states,
consisting of one or more isolated ECM orientations, with various proportions
of the ECM aligned in these discrete directions. These results are consistent
with those of the simpler model presented in Section 2.1, namely that any
degree of anisotropy is possible as a stable state when ECM is reoriented only
by cell ¯ux. Moreover, the more detailed framework predicts that these states
consist of discrete ECM orientations, rather than a continuous range of ®bre
alignments. This provides speci®c justi®cation for the relevance of the frame-
work in Section 2.1, in which only two discrete, orthogonal directions are
considered. In the remainder of this paper, we use this simpler representation
to consider the process of stress-induced alignment, which is more complex
mathematically, and thus demands a simple model framework.

3. Basic stress-induced ECM alignment model

The ECM ®bres have the potential to be reoriented by mechanical forces
within the tissue, as well as by the movement of cells. In this section, we
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consider this `stress-induced alignment' in isolation from ¯ux-induced align-
ment; in later sections, we will consider the two mechanisms acting together.
Modelling alignment due to mechanical stress is signi®cantly more complex
than for ¯ux-alignment, and we restrict attention simply to the representation
of anisotropy via ECM densities in two orthogonal directions, as in Sec-
tion 2.1. This is partially justi®ed by the agreement in the ¯ux-alignment case
between the results predicted by this simple framework, and those of the more
detailed model described in Section 2.2; the essential advantage of the simpler
framework is its mathematical tractability.

The key assumptions in our model concern the form of the conversion rates
R1 and R2 between the di�erent matrix alignments: these rates were introduced
in Eq. (1). Since we are considering stress-induced alignment, we suppose that
R1 and R2 are functions of the stress tensor r. For simplicity, we restrict at-
tention to geometries in which the e�ective principal stress axes are always
parallel to the coordinate directions: this includes a number of common wound
geometries, such as a linear (slash) wound and a circular wound. Such cases
avoid the need to perform a local diagonalization of r at each point in space
and time in order to calculate these principal axes, and mean that we can take
R1 and R2 to be simply a function of the diagonal, bulk components of the
stress tensor, r11 and r22.

This method of including anisotropy in a mechanical model was used pre-
viously in Ref. [13], in a study of actin ®lament alignment. Following their
approach, we impose the following constraints on the dependence on r of the
alignment rates, R1 and R2:
· R1 and R2 depend only on the ratio, q � jr11=r22j, of the magnitudes of the

principal stress components;
· R1 � ksR�q� and R2 � ksR�1=q�, by symmetry, for some appropriate function

R and (constant) stress-induced alignment rate parameter ks > 0;
· R is an increasing function of q, with R�0� � 0 and R is bounded as q!1;

without loss of generality, we set this upper bound to unity.
Again following Ref. [13], we take the speci®c form R�q� � qp=�1� qp�. Here,
the parameter p > 0 is a measure of the sensitivity of the ECM alignment re-
sponse to variations in the stress ®eld.

Thus the conservation equations for m1 and m2 are of the form

om1

ot
� ks

qpm2 ÿ m1

qp � 1

� �
� g�n;m�; �3a�

om2

ot
� ks

m1 ÿ qpm2

qp � 1

� �
� g�n;m�; �3b�

where g�n;m� again represents cellular production of new ECM. We begin by
considering only spatially homogeneous equilibria. In this case there will be no
elastic contribution to stress, which will be due entirely to cell traction. This
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results from the pull of cells on local ECM, and its components in the 1- and 2-
directions will di�er only in proportion to the amount of ECM aligned in these
directions. Thus q � r11=r22 � m1=m2.

Again we rescale so that n � m � 1 is the equilibrium level in normal tissue:
as in the ¯ux-aligned case, the key issue is the possible values of m1 and m2 �
1ÿ m1 at equlibrium. We write / � m1, so that m2 � 1ÿ /, giving

1

ks

d/
dt
� F �/� � /p�1ÿ /� ÿ �1ÿ /�p/

/p � �1ÿ /�p : �4�
Recall that p �> 0� is the alignment response sensitivity parameter. Equilibria
occur when F �/� � 0, namely for / � 0, 1=2 and 1; / � 0 and 1 correspond,
respectively to matrix aligned entirely in the 1- and 2-directions, while / � 1=2
corresponds to isotropic matrix (m1 � m2). Stability of these equilibria is easily
calculated from Eq. (4) by considering the qualitative behaviour of F , as shown
in Fig. 1. There are two scenarios, depending on the value of p:0

We thus conclude that the fully isotropic con®guration will occur if the
sensitivity parameter p is less than the critical (bifurcation) value p � 1, while
the fully anisotropic con®guration will develop if p is larger than unity.

These results are similar to those of Ref. [13] for spontaneous auto-align-
ment of intracellular actin ®laments, and are intuitively plausible: if the
alignment response is su�ciently sensitive to changes in the stress ®eld (p > 1)
then we expect that the positive feedback that exists between stress anisotropy
and matrix alignment will result in maximal alignment. However if the align-

0 < p < 1: / � 0; 1 are unstable, / � 1=2 is globally stable (subject to the
constraint 0 < / < 1).

p > 1: / � 0; 1 are locally stable with basins of attraction �0; 1=2� and
�1=2; 1� respectively; / � 1=2 is unstable.

Fig. 1. The qualitative form of the function F �/), de®ned by Eq. (4), for the two cases 0 < p < 1

and p > 1. The circles mark the equilibria / � 0, 1=2 and 1, and arrows indicate the dynamics

towards the locally stable equilibria (®lled circles). When the alignment response is fairly insensitive

to changes in the stress ®eld (p < 1), the isotropic con®guration (/ � 1=2) is stable, but when the

alignment response is stronger (p > 1), fully aligned states (/ � 0; 1) become stable.
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ment response is su�ciently insensitive, then the generation of stress in the
dominant direction of alignment may be insu�cient to overcome the intrinsic
equilibrating mechanism whereby m1 is converted into m2 at a rate propor-
tional to m1, and vice versa ± see Eqs. (3a) and (3b).

The isotropic architecture of normal skin corresponds to / � 1=2 and is
clearly stable to small perturbations. Thus we require 0 < p < 1 in order that
the model be realistic. However, a number of other tissues are highly aniso-
tropic, in particular the scar tissue that results from dermal wound healing.
This represents a stable, partially aligned state, corresponding to 1=2 < / < 1,
which is clearly inconsistent with the above model. In the remainder of this
paper, we discuss various extensions of the model, with the aim of resolving
this discrepancy. In Section 4, we consider the combined action of ¯ux- and
stress-induced alignment; this combination of the models in the current sec-
tion and Section 2.1 is more realistic than either model considered in isola-
tion, but in fact does not resolve the discrepancy. In Section 5, we study a
further extension of the model, in which there are two types of interacting
ECM, and show that this extension can give stable, partially aligned equi-
libria.

4. Combining ¯ux- and stress-induced alignment

A natural extension of the models we have presented is to consider the ef-
fects of ¯ux- and stress-induced alignment acting together. In fact the steady
state structure in this case is determined only by the stress component of the
alignment. This is for the simple reason that the cell ¯ux is necessarily zero at a
spatially homogeneous equilibrium. Of course, the inclusion of ¯ux-induced
alignment does alter the approach of the system towards equilibrium. To il-
lustrate this, we digress from the consideration of homogeneous equilibria, and
consider the way in which the two alignment mechanisms interact during nu-
merical simulations of the wound healing process.

For simplicity, we restrict attention to the case of one space dimension,
corresponding to a linear (`slash') wound. In this case the equations governing
ECM orientation, incorporating both stress- and ¯ux-alignment, have the
form

�5a�

�5b�
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where the principal stress components are

and the cell ¯ux is given by

�5c�

Here, u is the displacement of a material point originally at a position x,
E1 � E=�1� m�;E2 � m=�1ÿ 2m�, where E is Young's modulus and m is the
Poisson ratio, l1 and l2 are the shear and bulk viscosities, respectively, and
s�n;m� is the tractional stress exerted by the cells. Thus, we are considering the
matrix to be a linear viscoelastic material which contains cells as contractile
units (see Ref. [1]). We take s�n;m� to be proportional to cell and matrix
densities when these are low, but with a decrease to zero at high densities,
re¯ecting the phenomenon of traction inhibition [36,2]. The above is simply a
combination of Eqs. (2a), (2b), (3a), (3b); the viscoelastic terms must be in-
cluded in the stress tensor since we are considering the non-equilibrium situ-
ation. These equations are coupled to the conservation Eq. (2c) for cell density,
which in one space dimension has the form

on
ot
� oF1

ox
� f �n;m� �6�

and to the force balance equation

or11

ox
� smu and

or22

ox
� 0: �7�

The latter assumes that the system is operating at very low Reynolds number so
that inertial terms can be ignored. Hence, the viscoelastic forces within the cell-
matrix milieu are in balance with external body forces. We assume that the
latter are due to elastic tethering and take the form smu, where s is the modulus
of elasticity, and u � �u; 0� is the displacement vector. We solve these equations
on 0 < x < L1, with x � 0 representing the centre of a symmetric wound, and
the wound edge at x � L� L1. We use symmetry boundary conditions at
x � 0, and ®x the variables at their unwounded levels at x � L1, i.e.
m1 � m2 � 1=2, n � 1, u � 0. To simulate a wound, we take n � 0, m1 � m2 �
minit initially inside the wound (0 < x < L), with unwounded levels elsewhere;
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here minit < 1 represents a low density of the ECM deposited during the initial
in¯ammatory response to injury.

Fig. 2 illustrates the solutions of Eqs. (5a)±(5c), (6) and (7), subject to these
end conditions, for a set of parameters corresponding to stress-induced
alignment only (kf � 0). Cells (n) move towards the wound centre as expected,
depositing ECM (m) in the wave-back. The cell- and ECM-mediated traction

Fig. 2. Numerical simulation of dermal wound healing in the case of stress-induced alignment only,

using Eqs. (5a)±(5c), (6) and (7) with kf � 0, ks 6� 0. We plot pro®les of cell density (n), tissue

displacement (u), the di�erence m1 ÿ m2 of the orthogonal ECM density components and the stress

ratio q � r11=r22 at time t � 5. The solution has the form of wave-like solutions (direction indicated

by the arrows), with cells and ECM moving into the wound from its periphery. Behind this wave

front, the system evolves towards the uniform, dermal steady state n � 1, m1 � m2 � 1
2

and u � 0,

representing normal healing with no permanent ECM alignment. The functional forms and pa-

rameter values are: s�n;m� � s0nm=��j2
sn
� n2��j2

sm
� m2��, f �n;m� � n�ÿn� a0m=�j2

a � m2��,
g�n;m� � �1ÿ m�n, D�m� � D0m=�j2

D � m2�, v�m� � 0, D0 � 0:2, jD � 0:5, a0 � 1:01, ja � 0:1,

E1 � 2, E2 � 2, l1 � 1, l2 � 1, s0 � 1, jsn � 0:5, jsm � 0:05, s � 50, p � 0:5, ks � 10 and

minit � 0:1. The initial conditions are n�x; 0� � �x=10�h=�1� �x=10�h�, m�x; 0� � minit�
�1ÿ minit��x=10�h=�1� �x=10�h�, m1�x; 0� � m2�x; 0� � m�x; 0�=2 and u�x; 0� � 0, with h � 50. The

boundary conditions are given by symmetry at x � 0 and normal dermal values for the variables as

x!1, which we approximate using the in®nite domain approximation x1 � 15. Only the pro®les

in the region 06 x6 10 are shown, for clarity. The equations were solved numerically using an

alternating direction semi-implicit ®nite di�erence scheme, with mesh sizes are Dx � 0:05 and

Dt � 0:001.
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forces, together with the viscoelastic response of the ECM, cause a net stress
(r11) and thus a tissue displacement (u). Ahead of the wave-front, the positive
traction gradient gives rise to the positive displacement (u > 0): this gradient is
due to the increased traction forces generated in the wave itself compared with
the relatively acellular tissue ahead of the wave. Similarly, behind the wave,
traction is inhibited by the high ECM density (in particular), resulting in a
negative traction gradient and hence, negative displacement (u < 0). The dis-
placement is proportional to the stress gradient by virtue of the force-balance
Eq. (7). Fig. 2 shows that m1 > m2 if and only if r1 > r2, or q > 1. The mag-
nitude of m1 ÿ m2 generally increases with the (stress-induced) alignment rate
parameter ks, although the e�ect is self-limiting due to the negative feedback
property of stress-alignment which occurs whenever p < 1, a process which
accelerates with increasing ks.

In order to explain the pro®le of m1 ÿ m2 in Fig. 2, we consider the roles of
the mechanical stress terms as detailed in Fig. 3. In the wave-front there is a

Fig. 3. Illustration of the tissue stresses implied by the numerical solutions illustrated in Fig. 2. We

show pro®les of the cell traction stresses (top left), ECM viscoelastic stresses (top right) and total

stresses (bottom left) at time t � 5. The x-axis is expanded for clarity. Components of these stress

terms in the 1- and 2-directions, r11 and r22, are indicated by dashed and dotted curves, respec-

tively. Also shown (bottom right) is the stress ratio, q � jr11=r22j, as in Fig. 2 (bottom-right). Note

the sharp cell traction stress within the region 4 < x < 5 which contains the position of the ad-

vancing cell front at time t � 5 (see also Fig. 2).
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pronounced, positive cell traction pro®le (Fig. 3: top-left), eliciting a coun-
teracting (negative) viscoelastic ECM response by virtue of Eq. (7). This in-
trinsic response is greater in the 1-direction than in the 2-direction since the
dilational (bulk) stress acts in both directions whereas the shear stress acts only
in the 1-direction (Fig. 3: top-right). Consequently, near the peak of the
traction pro®le, the cell traction stress dominates the ECM stress to a greater
extent in the 2-direction than in the 1-direction, causing a greater net stress in
this direction (Fig. 3: bottom-left). Therefore, the ratio of absolute stresses in
the 1-direction to the 2-direction is less than one in this region (Fig. 3: bottom-
right), thus promoting the conversion of m1 into m2 in this region, by Eqs. (5a)
and (5b).

When ¯ux-induced alignment is included (kf > 0), the ®nal equilibrium level
of ECM after the wave of cells has passed is still the isotropic state
m1 � m2 � 1=2, as expected since this remains the only stable equilibrium for
p < 1. However, the transient alignment is increased relative to the pure stress-
induced alignment case, depending on the magnitudes of ks and kf , the stress-
and ¯ux-induced alignment rate parameters, respectively. For larger values of
ks, the ¯ux-induced alignment is rapidly corrected, so the spatiotemporal
pro®les are similar in form to those presented in Fig. 2. For lower values of ks,
however, the stress-induced relaxation towards m1 � m2 � 1=2 in the wake of
the ¯ux-induced e�ect is more gradual (illustrated in Fig. 4). If ks is actually
zero, so that only the ¯ux-induced alignment mechanism applies, then the in-

Fig. 4. Numerical simulation of dermal wound healing as in Fig. 2, but in the case of both stress-

induced and ¯ux-induced alignment, using Eqs. (5a)±(5c), (6) and (7) with both kf and ks non-zero.

For brevity, we plot only the pro®les of the di�erence m1 ÿ m2 of the orthogonal ECM density

components. The degree of alignment (m1 ÿ m2) within the healing wave-front is increased as a

consequence of ¯ux-induced alignment compared to the case of stress-alignment only (cf. Fig. 2).

The system ultimately evolves towards the dermal steady state (cf. Fig. 2), over a longer time scale

as ks becomes smaller. The parameter values are as in Fig. 2 except for the values of ks.
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coming wave of cells leaves permanently aligned ECM behind it, with the
degree of alignment dependent on details of the wave form: this dependence is
explored in detail in Ref. [22].

5. Model extension: the two ECM types

For the combination of stress- and ¯ux-induced alignments, only fully
aligned or isotropic equilibria are stable, a property that is incompatible with
the wide range of partially aligned equilibria observed in real tissues. In this
section, we consider a possible resolution of this discrepancy, namely that two
di�erent ECM components may be interacting, with di�erent alignment
properties. This is particularly relevant to the proliferative phase of wound
healing, during which both a collagen and a ®bronectin-coated ®brin network
are present in signi®cant quantities, with ®broblasts able to realign both ECM
types in vitro [37,38]. We consider ®rst (Section 5.1) the case in which both
matrix types are subject to both stress- and ¯ux-alignment, showing that
partially aligned states can then be stable. In Section 5.2 we then suppose that
only one matrix type is subject to both alignment mechanisms, with the other
only ¯ux-aligned, showing that the stability of partially aligned states for two
matrix types is a robust result, applying to this case also. The alternative
possibility that only ¯ux-induced alignment applies for both matrix types is
trivial, with any degree of alignment possible at equilibrium.

5.1. The two ECM types, both stress- and ¯ux-aligned

We denote by m�1� and m�2� the densities of the two di�erent types of ECM;
again, the subscripts 1 and 2 denote components in the two orthogonal direc-
tions, and suppose that the orthogonal components of m�1� and m�2� contribute
linearly (additively) to the cell-derived traction stress tensor. At the dermal
equilibrium where n � 1, m�1� � 1, m�2� � 1 and u � 0, we de®ne / � m�1�1 and
w � m�2�1 . The cell traction function, s will now be a function of three variables
namely, n;m�1� and m�2�. The net stress components are then given by

r11 � /s�1��1; 1; 1� � ws�2��1; 1; 1� and

r22 � �1ÿ /�s�1��1; 1; 1� � �1ÿ w�s�2��1; 1; 1�

which yields the stress ratio

q � r11

r22

� /� cw
1ÿ /� c�1ÿ w� ;

where
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c � s�2��1; 1; 1�
s�1��1; 1; 1� :

We denote the alignment sensitivity parameters for m�1� and m�2� by p and q,
respectively. Then, as before, we obtain di�erential equations for perturbations
in / and w about the dermal equilibrium:

1

k�1�s

d/
dt
� F �/;w� � �/� cw�p�1ÿ /� ÿ �1ÿ /� c�1ÿ w��p/

�/� cw�p � �1ÿ /� c�1ÿ w��p ; �8a�

1

k�2�s

dw
dt
� G�/;w� � �/� cw�q�1ÿ w� ÿ �1ÿ /� c�1ÿ w��qw

�/� cw�q � �1ÿ /� c�1ÿ w��q : �8b�

We can extend the analysis of Section 3 to this system; the details are similar
and we omit them for brevity. The analysis implies that at equilibria

/ � 1

"
� 1ÿ w

w

� �p=q
#ÿ1

:

Therefore, 0 < / < 1=2 if and only if 0 < w < 1=2, and 1=2 < / < 1 if and
only if 1=2 < w < 1. Also, / or w are only 0, 1=2 or 1 when / � w; thus one
matrix type can only be isotropic/fully aligned if the other matrix type also has
this alignment. Standard local stability analysis shows that
· �0; 0� and �1; 1� are locally stable if and only if p > 1 and q > 1.
· �1=2; 1=2� is locally stable if and only if p � cq < 1� c.
These results are illustrated in Fig. 5.

Using phase plane analysis we can obtain results on the global stability of
these equilibria. This shows that if both the ECM types are su�ciently sensitive
to variations in the local stress ®eld, that is p > 1 and q > 1, then both m�1� and
m�2� become fully aligned in the same direction. Conversely, if both the ECM
types are relatively insensitive to the stress ®eld, so that p � cq < 1� c, then the
fully isotropic, or `random' con®guration arises. This includes the possibility
that either p > 1 or q > 1 (but not both), so that the isotropic con®guration
possesses a wider attracting domain in the bifurcation plane than in the
analogous model with one ECM type, where this equilibrium is (globally)
stable if and only if p < 1.

The `intermediate' situation, in which one ECM type is insensitive to the
local stress ®eld and the other is su�ciently sensitive results in a partially
aligned con®guration. For example, suppose that m�1� is insensitive to aniso-
tropic stress and that m�2� is su�ciently sensitive, so that p < 1 and
q > �1� cÿ p�=c: then (locally) stable equilibria �m�1�;m�2�� � �/�;w�� and
�1ÿ /�; 1ÿ w�� occur where 0 < w� < /� < 1=2, indicating that m�1� is aligned
to a lesser extent than m�2�.
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5.2. Two ECM types, one only ¯ux-aligned

We now consider the possibility that two matrix types interact, but with only
one subject to stress-induced alignment, with the other aligned only by cell ¯ux.
The object of this extension is to consider the robustness of the potential sta-
bility of partially aligned equilibria. We suppose that the orthogonal compo-
nents of m�1� and m�2� contribute linearly (additively) to the cell-derived traction
stress tensor, as in the previous model. However, in this case, the components
of net stress feed back only into the rate of conversion of the orthogonal
components of m�1�, with m�2� subject only to ¯ux-induced alignment (previ-
ously, both of the ECM types were stress-aligned as well as ¯ux-aligned).

We suppose that the traction stresses are given by

rii � m�1�i

m�1�
s�1� n;m�1�;m�2�
ÿ �� m�2�i

m�2�
s�2� n;m�1�;m�2�
ÿ �

for i � 1; 2 with s�1�, s�2�P 0. We also assume that only m�1� is stress-aligned via
the mechanism discussed in Section 3, that both types may be ¯ux-aligned and
that the dermal equilibrium density of each ECM type has been scaled to unity.
At this equilibrium (where cell density n � 1 and there in no net tissue dis-
placement), the stress ratio is given by

q � r11

r22

� c1 � /
c2 � 1ÿ /

;

Fig. 5. An illustration of the regions in p±q space in which the steady states �/;w� � �0; 0�,
�1=2; 1=2� or �1; 1� are (locally) stable. The shaded regions indicate where all three equilibria are

unstable; in these regions, detailed phase plane analysis reveals the existence of at least one locally

stable equilibrium in the region 0 < /;w < 1=2, with a corresponding equilibrium in

1=2 < /;w < 1.
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where

c1 �
s�2��1; 1; 1�m�2�1

s�1��1; 1; 1� and c2 �
s�2��1; 1; 1�m�2�2

s�1��1; 1; 1� �
s�2��1; 1; 1� 1ÿ m�2�1

� �
s�1��1; 1; 1�

and / is the equilibrium value of m�1�1 . Since matrix of type 2 is only ¯ux-
aligned, m�2�1 can take any value (subject to 0 < m�2�1 ) at equilibrium. There-
fore, c1 and c2 may be regarded as parameters, and we investigate the range
of possible values for / and the stability of these equilibria, as c1, c2 and p
vary.

To begin, we use the above formulae to derive the di�erential equation
governing (temporal) perturbations in / about the dermal equilibrium, giving

1

ks

d/
dt
� F �/; c1; c2; p� �

�c1 � /�p�1ÿ /� ÿ �c2 � 1ÿ /�p/
�c1 � /�p � �c2 � 1ÿ /�p : �9�

Note that the denominator is positive since the parameters c1, c2 and p are non-
negative and 06/6 1, and that the function F �/� is continuous on this in-
terval. Also, F �0�P 0 and F �1�6 0, with equality if and only if c1 � 0 and
c2 � 0, respectively. This implies the existence of at least one locally stable
equilibrium in the con®ned set 0 < / < 1 for the case c1, c2 > 0, and that an
odd number of equilibria exist in this interval.

Detailed investigation of equilibria requires care. In particular, the number
of equilibria depends on parameter values. The boundaries in parameter space
between di�erent numbers of equilibria will correspond to repeated steady state
solutions of (9), and solving F � dF =d/ � 0 gives a family of curves in the
�c1; c2� plane, expressed parametrically in terms of / in the following form:

c1 � C1�/; p� � p/�1ÿ /� 1

"
� 1ÿ /

/

� �1=p
#
ÿ 1� /; �10a�

c2 � C2�/; p� � p/�1ÿ /� 1

"
� /

1ÿ /

� �1=p
#
ÿ /: �10b�

When p < 1, a straightforward check con®rms that C1 and C2 are never both
positive, so that there are no changes in the number of equilibria. Moreover,
when p� 1, F �/� � 1=2ÿ /, so that / � 1=2 is the unique equilibrium. Thus
for any p < 1, there is a unique equilibrium, which is globally stable. This
equilibrium varies monotonically from 1=2 to c1=�c1 � c2� � m�2�1 as p increases
from 0 to 1. This is as expected intuitively, since p measures the sensitivity of
m�1� alignment to anisotropy in the stress ®eld. Thus when p� 1, changes in
stress have relatively little e�ect. As p increases, m�1� becomes aligned sympa-
thetically to the alignment of m�2�, with the alignments becoming the same at
p � 1; recall that m�2� is ¯ux-aligned only, with m�1� subject to both alignment
mechanisms.
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As p increases above 1, multiple equilibria are possible, depending on the
values of c1 and c2. When these parameters are su�ciently large, there is a
single equilibrium, with the value of / re¯ecting sympathetic alignment of m�1�

and m�2�. However, when p > 1, the curve de®ned by (10) now lies in the
positive quadrant of the c1±c2 plane; the form of this curve is illustrated in
Fig. 6, showing in particular the cusp at c1 � c2 � �p ÿ 1�=2. This point cor-
responds to / � 1=2, and a cusp, or fold, bifurcation occurs there. For c1 and
c2 lying below this critical point there are three possible equilibrium values of
/ 2 �0; 1�: two are locally stable and their basins of attraction are separated by
the third, unstable equilibrium. That the bifurcation is from one to three
(rather than > 3) equilibria can be shown by continuity, with reference to the
special case p!1. In this limit the bifurcation curve (10) approaches the two
parallel lines c2 � c1 � 1, and determination of the limiting form of F shows
that there are three equilibria for c1, c2 between these lines, namely 0, 1 and
�1ÿ c1 � c2�=2. For c1, c2 above/below both of these lines, / � 0=1 is the only
equilibrium. Thus as p !1, only fully aligned states are stable; this is ex-
pected intuitively, since large p corresponds to strong sensitivity to anisotropy
in the stress ®eld.

Fig. 6. Plots of the parametric curves de®ned (in the positive quadrant) by c1�/; p� and c2�/; p�, for

p � 2, 4, 6, 8 and 10 (increasingly broken curves), delineating the regions in which there exist one

(to the top-right of the curves) and three (to the bottom-left of the curves) equilibria in the interval

0 < / < 1. We use logarithmic axes, for clarity. The cusp bifurcations at c1 � c2 � �p ÿ 1�=2 are

apparent from these curves.
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Variant: non-linear traction coupling: We brie¯y consider a di�erent sce-
nario in which the components of the two ECM types contribute multipli-
catively rather than additively (or linearly) to the traction stress. In the
context of wound healing, this is partly motivated by the co-distribution of
®bronectin and collagen ®bres in wound tissue [39,40]. It is believed that
adhesion complexes involving collinear extracellular ®bronectin and collagen
®brils at cell surfaces may coordinate the intracellular and extracellular me-
chanical responses which result in macroscopic cell-derived traction forces
[41,42,37,43].

Such observations suggest the hypothesis that both collagen and ®bronectin
must be aligned (to some extent) in a given direction for cells to exert traction
forces in that direction. In this scenario, the simplest expression for the traction
stress components is a multiplicative coupling of the components of the two
ECM types, given by

rii � m�1�i

m�1�
m�2�i

m�2�
s n;m�1�;m�2�
ÿ �

for i � 1; 2 (and sP 0). The stress ratio, previously given by Eq. (21), now
becomes

q � /m�2�1

�1ÿ /�m�2�2

:

Determination of steady states and their stability is straightforward; we omit
the details for brevity and simply summarise the results. When p > 1, the fully
aligned equilibria / � 0; 1 are both stable, separated by a third unstable
equilibrium. Conversely, for p < 1, it is this intermediate state that is stable,
and with a preferential alignment for m�1� mirroring that for m�2�; as p ! 0,
/! 1=2, corresponding to an isotropic state.

5.3. Conclusions

We have shown that the interaction between cells and two types of ECM
enables a partially aligned state to be a stable equilibrium in the presence of
stress-induced alignment. This is true whether one or both of the matrix types
is aligned by the stress ®eld, although in the latter case, the alignment prop-
erties of the two matrix types must be signi®cantly di�erent. This suggests that
where partial ECM anisotropy is observed, two ECM components with dif-
ferent alignment properties must be present and interacting. In the context of
dermal wound healing, it is well known that collagen and ®bronectin-coated
®brin matrices act in combination throughout the healing process; our mod-
elling predicts that di�erences in the alignment properties of these matrix
components may be crucial in establishing the alignment patterns that are
observed in scar tissue. Even in the case of two ECM types, one feature not

L. Olsen et al. / Mathematical Biosciences 158 (1999) 145±170 163



exhibited by the model is the coexistence of stable partially aligned and iso-
tropic states. For wound healing, this is a signi®cant omission, since aligned
scar tissue coexists with isotropic surrounding dermis. The model thus suggests
that this inconsistency with experimental observations re¯ects di�erent align-
ment properties in the two tissues.

6. Alignment at the microscopic scale

The models considered so far have all involved continuum representations
of cell and matrix density. In this section, we discuss a discrete model for
alignment, whose aim is to address the possibility of alignment on a smaller
scale. Although many connective tissues are spatially homogeneous and iso-
tropic at a macroscopic level, they nevertheless have spatial structure and lo-
calised anisotropy at the microscopic level. Our objective in this section is to
show that a di�erent type of mathematical model can reveal this local structure,
which is entirely masked by continuum models. We restrict attention to ¯ux-
induced alignment; the e�ect of anisotropic stress at this smaller scale is an
important but challenging question that we hope to consider in subsequent
work. In this new model, spatial variation is a key ingredient. However, we
must emphasise that the spatial scale here is much smaller than in the previous
model frameworks, and that the size of domain we consider (1 mm2) would be
averaged to a single point in the continuum models described above. For
simplicity, we restrict attention to two spatial dimensions: this has the great
advantage that orientations can be expressed as a single real number. In this
two-dimensional domain, we represent cells as discrete objects, while ECM is
treated as a continuous variable. We make the simplifying assumption that
ECM density does not vary with position, and include variation only in the
orientation of the matrix. Thus the model variables are the positions P i�t�
(16 i6K) of the K cells, their directions of motion Di�t� (16 i6K), and the
ECM orientation H�x; t�; Di and H are angles measured with respect to the
same reference direction, and to be speci®c, we take this to be the x-coordinate
direction in our two-dimensional domain. Note that we assume a single
dominant orientation for the matrix at each space point; this is a reasonable
assumption at this smaller spatial scale.

Within this framework, ¯ux-induced alignment is represented very simply,
as a change in H towards the directions Di of cells near that point in space. This
reorientation will in fact involve a time lag, because the time taken for ECM
reorientation corresponds to the cell moving a distance that is signi®cant on the
small scale we are considering. In practice, ®broblasts have signi®cantly
elongated shapes, with direction determined at the front of the cell while re-
modelling occurs at the rear [44]; the time lag gives a measure of this elonga-
tion. This gives an equation for H of the form
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oH�x; t�
ot

� j
XK

i�1

W P i�t�� ÿ x�W Di�t
� ÿ tlag� ÿH�x; t��; �11a�

where tlag is the time lag, which we assume to be constant. Here we assume a
linear superposition of cell activity. This simplifying assumption is realistic
provided cell densities are relatively low; at very high cell densities, new
phenomena arise via direct cell±cell interactions, which require a quite dif-
ferent type of model formulation [35,17]. The function W is a weighting
function that decreases with the distance between the cell and the space point
concerned; we take W to be zero at distances greater than about 10lm (about
one cell length), so that only cells within this distance of a point can in¯uence
the ECM alignment there. The function W is linear when Di � H, but on a
larger scale W is periodic, re¯ecting the fact that cell i is aligned with the local
ECM whenever Di and H di�er by a multiple of p. The parameter j re¯ects
the extent of cellular reorientation of matrix, and is the key parameter of the
model.

Cell position changes simply because of cells moving in their current di-
rection; we take cell speed to be a constant S, so that

dP i

dt
� S�cos Di; sin Di� �16 i6K�: �11b�

The direction of the cells will also change of course, because of their tendency
to move up ECM ®bres. We model this `contact guidance' by assuming that
cell direction aligns exactly with the ECM orientation; thus we take

Di�t� � H P i�t�; t� � �16 i6K�: �11c�
This equation for Di completes the formulation of the model; further details
will be presented elsewhere [45]. From Eq. (11c), it is clear that the time lag tlag

plays an important role in the model; in particular, if tlag � 0, the cells orient
the ECM towards the current cell orientation, which is simply that of the
ECM, resulting in no restructuring of the matrix. At non-zero tlag, however, the
alignment of the matrix is signi®cant. A natural extension of the model would
be to incorporate some persistence into the ®broblast movement, replacing
Eq. (11c) with a di�erential equation in which dDi=dt is related to
�H�Pi; t� ÿ Di�; in fact we have found that such extensions do not alter the
qualitative nature of the results. Further details of numerical methods for this
type of model are given in Ref. [46].

We solve Eqs. (11a)±(11c) numerically on a square domain; to represent
spatial homogeneity, we use periodic boundary conditions. Numerically, there
is a ®xed space grid for the ECM, but the cells are allowed to take any posi-
tions, rather than being con®ned to grid points. Eq. (11c) then requires the
value of ECM orientation H between grid points, and we determine this using a
tensor product interpolant with quartic Lagrangian interpolation in each
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direction [47]. We take the matrix to be isotropic with two orthogonal orien-
tations initially, re¯ected in numerical simulations by randomly choosing the
initial value of H at each point in the spatial grid to be one of the two direc-
tions. The cells are initially placed uniformly in the domain.

Fig. 7 illustrates a range of solutions of Eqs. (11a)±(11c), solved numerically
in this way, using 196 cells in a domain of size 1 mm� 1 mm. We illustrate the
matrix orientations by plotting a series of short curve segments with tangents
whose angle is equal to the matrix alignment H at each point; in the language
of ¯uid dynamics, these curve segments are streamlines. The most signi®cant
aspect of this alignment pattern is the variation with j, which measures the
extent to which the ECM is reoriented by the cells. When j is low, the matrix
remains in a disorganised state, similar to the initial random state; this is ex-
actly as expected, since at low j the cells have little e�ect on the matrix through
which they are moving. As j is increased, patterns of alignment develop. The
whole domain does not become aligned, however; rather, a series of small
regions of roughly unidirectional alignment develop, on a length scale which
increases as j increases approaching a value of about 250 lm.

7. Discussion

In this paper we have presented a number of ways to model cell±matrix
anisotropic interactions. The main body of the paper deals with a continuum-
type model which considers alignment on a macroscopic scale. In Section 6 we
consider a novel discrete model on the microscopic scale. The simulations of
this model show that the alignment patterns predicted by the macroscopic
models discussed in previous sections of the paper can in fact mask a pattern of
microscopic alignment, occuring on a scale of a few cell lengths. The occur-
rence of such patterns depends on the strength of the ¯ux-induced alignment,
requiring that the matrix orientation is su�ciently sensitive to cell movements.
These microscopic alignment patterns will be superimposed on the macro-
scopic patterns described in previous sections of the paper, and may play an
important role in the properties of the tissue. Important challenges raised by
these results include the incorporation of stress into this microscopic model,
and the extension of a model re¯ecting this microscopic detail to a macroscopic
scale; this latter problem is straightforward in principle, but leads to an un-
feasible computational problem. Furthermore, cell motion arises as a result of
the mechanical interaction between cells and matrix, which is mediated
through cell traction. Therefore, from a detailed mathematical description of
this interaction, one should be able to recover the ¯ux term. At the moment,
such a detailed description does not exist, but its derivation would have ap-
plication in many areas of mathematical biology in which cell motion is im-
portant.
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Fig. 7. The ECM orientation is shown for the discrete cell model with various values of j. In the top

left j � 0, so that the initial con®guration of the ECM is preserved; in the top right j � 2, in the

bottom left j � 5 and in the bottom right j � 10. As j increase the regions of alignment become

larger. The cell speed is 40 l/h, W�h� � sinh and W �Pi ÿ x� � axay with ax � maxf�1ÿ jpx ÿ xj=L�; 0g
and ay � maxf�1ÿ jpy ÿ yj=L�; 0gwhere P i � �px; py�, x � �x; y� and L is a typical cell diameter, taken

to be 10 lm. There are 101 grid points in each direction and the time step and tlag are both 0:15h. The

®gure shows solutions after a long time (1000 h), allowing transients to dissipate. It is important to

stress that the ®gure does not show permanent equilibria, since the solutions continue to change

dynamically as the cells move through the domain. As time progresses, e�ects from the periodic

boundary conditions will dominate the solution; however, by changing the boundary conditions to

no ¯ux where the cells are randomly allowed to re-enter the domain when they leave, the same

qualitative features of the solution appear and persist. By examining both boundary conditions, it can

be seen that the structure is not introduced by the randomness in the no ¯ux boundary conditions and

gives con®dence that this structure would be present for simulations with an in®nite domain. If the

initial conditions are altered such that the ECM orientation is random, the same features are present.
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For the models on the macroscopic scale, we have considered two di�erent
matrix components and assumed that their re-alignment depends only on cell±
matrix interactions. In reality, the matrix networks will interact with each other
so that a more realistic model should consider how the reorientation of one
matrix component a�ects other matrix components.
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