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Abstract. We examine sequential spatial pattern formation in a tissue interaction model for
skin organ morphogenesis. Pattern formation occurs as a front sweeps across the domain leaving
in its wake a steady state spatial pattern. Extensive numerical simulations show that these fronts
travel with constant wave speed. By considering the envelope of the solution profile we present a
novel method of calculating its wave speed.
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1. Introduction. The vast range of patterns and structures observed in animals
develops from the apparently homogeneous mass of cells that constitutes the early
embryo. In an attempt to understand the underlying mechanisms of this process,
termed morphogenesis, mathematical modeling has been used extensively.

Most mathematical models for morphogenesis focus on synchronous pattern for-
mation (see Murray (1989) for a review). However, morphogenetic processes fre-
quently occur sequentially. Regular patterns of repeated units often develop at a
frontier of pattern formation (Zeeman (1974)) which moves across the prospective
area to transform unstructured tissue into an array of patterned components.

A typical example of sequential skin pattern formation is in the chick embryo
where feather germ initiation occurs sequentially, row by row, with the first row
being laid down on the dorsal midline (Davidson (1983a), (1983b)). Similar waves of
pattern formation also occur, for example, in the development of somites (Pearson
and Elsdale (1979)), scales (Maderson (1965a), (1965b)), and alligator skin patterns
(Murray, Deeming, and Ferguson (1990)).

Recently, Cruywagen and Murray (1992) proposed a novel tissue interaction
model for describing skin patterning. As was demonstrated by Cruywagen and Murray
(1992) and Cruywagen, Maini, and Murray (1997), their tissue interaction model can
account for synchronous patterning. The model can also exhibit propagating patterns.
For example, Cruywagen, Maini, and Murray (1992) showed that the model, solved on
a rectangular domain, can exhibit propagating patterns resulting in stripes, consistent
with patterns observed in the developing alligator embryo, or rhombic structures, con-
sistent with those observed during feather germ formation on embryonic dorsal chick
skin. In both of these cases, sequential pattern formation resulted from a small lo-
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calized disturbance in the tissue which developed into a pattern and subsequently
propagated through the domain as a traveling wave of pattern formation.

The phenomenon of traveling waves occurs throughout nature (Maini (1995),
(1996)) and has been widely studied. In most cases the wave sweeps across the
domain as the variable switches from one unstable, homogeneous steady state to
another stable, uniform steady state. Such models were first studied by Fisher (1937)
and Kolmogoroff, Patrovsky, and Piscounoff (1937), who showed how to determine
the wave speed of the front by first transforming to traveling wave coordinates.

The traveling waves that we investigate in this paper are rather different because
they consist of a traveling front that leaves in its wake a spatially varying steady
state solution. Myerscough and Murray (1992) analyzed such traveling waves for a
cell-chemotaxis model and used the method of steepest descents to find the speed of
the traveling front. In this paper, we propose a new method, using envelope functions,
for determining the wave speed of such propagating patterns. This method is valid in
the vicinity of the bifurcation point from the homogeneous steady state solutions to
patterned steady state solutions.

In section 2 we briefly describe the basic tissue interaction model of Cruywagen
and Murray (1992) which we believe is currently one of the more biologically realistic
models for pattern formation. Using linear analysis, we delimit regions in a parameter
space where the uniform steady state of this system is unstable and, using a weakly
nonlinear analysis, we determine, analytically, the spatially varying pattern to which
the solutions evolve.

In section 3 we demonstrate that sequential pattern formation can be induced
by a small localized disturbance in the tissue, which subsequently develops into a
spatially varying pattern that propagates through the domain. A crucial observation
is that the envelope of the solutions exhibits a traveling wave-like behavior from
one spatially uniform state to another. We exploit this behavior in section 4 to
generalize the Fisher-type analysis to such traveling waves. In section 5 we illustrate
the application of this method by considering a specific example. It is important to
note that this method is applicable in general to all pattern formation models that
exhibit such traveling wave behavior. We use the tissue interaction model here merely
by way of example.

2. Model equations. Vertebrate skin is composed of two layers—the epidermis
and the dermis. Skin organ formation typically occurs due to interaction between
these two layers. For example, in chick skin a feather germ arises as a result of tissue
interaction leading to an aggregation of dermal cells, termed a papilla, underlying
a thickening in the epidermis, termed a primordium. The model we consider here
consists of two coupled equations, one for each layer. A crucial aspect of the biology
captured by this model is that the pattern can only occur as a result of both layers in-
teracting with one another. (For a discussion of modeling tissue interaction in general,
see Murray and Cruywagen (1994) and Murray, Cruywagen, and Maini (1994).)

Here we consider a reduced tissue interaction model. Details of the full model
can be found in Appendix A of this paper, and Cruywagen and Murray (1992). Cruy-
wagen, Maini, and Murray (1997) show that this reduced model captures the salient
features of the full model.

The reduced model focuses on the two key field variables—θ(x, t), which repre-
sents the epithelial dilation, and n(x, t), which is the dermal cell density at position
x (we are considering the one-dimensional case only) and time t.
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The nondimensionalized model is

effects of passive forces︷ ︸︸ ︷
µ

∂3θ

∂t∂x2
+

∂2θ

∂x2
− β

∂4θ

∂x4
+

active traction︷ ︸︸ ︷
∂2

∂x2

{
τn2

[1 + ν(1− θ)]
2
+ cn2

}
=

body forces︷︸︸︷
ρθ ,(2.1a)

∂n

∂t
=

diffusion︷ ︸︸ ︷
D

∂2n

∂x2
−

chemotaxis︷ ︸︸ ︷
α

∂

∂x

{
n

∂

∂x

(
1− θ

1 + γn

)}
+

cell growth︷ ︸︸ ︷
n(1− n) ,(2.1b)

where µ, β, τ , ν, c, ρ, D, α, and γ are positive parameters.
The tissue interaction in these caricature equations is represented in (2.1a) by the

fourth term on the left-hand side, in which cell traction in the epidermis is a function
of dermal cell density, and in (2.1b) by the second term on the right-hand side, in
which dermal cell chemotaxis is a function of the dilation in the epidermis.

Equations (2.1) admit the spatially homogeneous steady states

n = 0, θ = 0 and n = 1, θ = 0.

Since we are interested in spatial pattern formation occurring in established cell popu-
lations, the trivial steady state is irrelevant. (For traveling wave solutions connecting
the two steady states refer to Cruywagen, Maini, and Murray (1994).)

We linearize about the nontrivial steady state in the usual way to obtain the
dispersion relation λ(k2) for the temporal growth of perturbations of wave number k as

λ(k2) =




−b(k2) + �
(√

b2(k2)− 4a(k2)c(k2)
)

2a(k2)
if k2 �= 0,

−r if k2 = 0,

(2.2)

where

a(k2) = µk2,

b(k2) = (µD + µQ1 + β)k4 + (P1 + 1 + µr)k2 + ρ,

c(k2) = β(D + Q1)k
6 − (P2Q2 − rβ −DP1 − P1Q1 −D −Q1)k

4

+ (r + rP1 + ρD + ρQ1)k
2 + ρr,

and

P1 =
2τν(1 + ν)

(1 + 2ν + ν2 + c)2
,(2.3a)

P2 =
2τ(1 + 2ν + ν2)

(1 + 2ν + ν2 + c)2
,(2.3b)

Q1 =
αγ

(1 + γ)2
,(2.3c)

Q2 =
α

1 + γ
.(2.3d)

Spatially heterogeneous solutions of the linear system are characterized by a dis-
persion relation satisfying �λ(0) ≤ 0 but which exhibits a range of modes correspond-
ing to the eigenvalues k2 > 0 with �λ(k2) > 0. In this case, the uniform steady state
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is unstable to spatially heterogeneous perturbations, and these modes grow initially.
As the amplitudes of these modes increase and the linear approximation is no longer
valid, it is the form of the nonlinearities that is crucial in determining the final pat-
tern. Cruywagen and Murray (1992) and Cruywagen, Maini, and Murray (1997) used
extensive numerical simulation, steady state analyses, and weakly nonlinear bifurca-
tion analyses to show that, in the vicinity of a primary bifurcation point, the linear
stability analysis gives a very good indication as to the form of the solution of the full
nonlinear problem.

In this paper, we consider a simplified version of the reduced model in which D,
r, and µ are set equal to zero. This simplification is biologically realistic because the
dermal cell diffusion effect is very small compared to the chemotactic term, cell pro-
liferation appears to cease when pattern formation starts, and the epidermal viscosity
coefficient is believed to be relatively very small. The parameter γ is used as the bifur-
cation parameter, with the critical value γ = γc corresponding to the neutrally stable
case for the homogeneous steady state; that is where λ(k2

c ) = 0 for a critical k2
c . By

setting γ = γc − ε2, where ε � 1, the steady state becomes marginally unstable and
a nonlinear perturbation analysis can be carried out (see Appendix B of this paper
and Cruywagen and Murray (1992)). The general one-dimensional solution obtained
on the infinite domain is(

θ
n

)
=

(
0
1

)
+ ε

(
1
M

)
(A cos kcx + B sin kcx) + O(ε2) as T → ∞,(2.4)

where A2 +B2 = −Γ/Ω, with Ω and Γ complex expressions of the model parameters,
M = −(γc + 1)/γc, and T is a slow timescale (see Appendix B).

3. Propagating patterns. Cruywagen and Murray (1992) solved the tissue
interaction system on a one-dimensional spatial domain. As initial conditions they
used random perturbations about the homogeneous steady states for the dermal cell
density n and the epithelial dilation θ. This led to a pattern of peaks and troughs
developing simultaneously across the whole domain. If, however, a perturbation is
made in, say, the dermal cell density n in just one small region on a very large domain,
the pattern is generated progressively. In effect the initial conditions, as specified in
this case, give rise to a propagating wave of pattern.

This behavior can be illustrated by solving the simplified reduced model numeri-
cally. Figure 1 shows the solution obtained when the model is solved using the NAG
FORTRAN routine D03PGF for the parameter set

γc = 1.0− ε2, c = 1.0, ν = 4.0, α = 4.0,

τ = 6.25, β = 0.011258, ρ = 88.826,

where γc is the bifurcation parameter and ε = 0.1. The system was solved on the
domain [0, 30] with zero-flux boundary conditions. Initially n and θ were set to their
respective homogeneous steady states, θ = 0 and n = 1, on the whole domain, except
for a small region at the origin. Here we specified small random perturbations about
the steady state.

As expected these perturbations develop into a coherent spatial pattern which
gradually propagates outward into the rest of the domain. The result is a traveling
wave of pattern formation propagating from the origin toward the other end of the
domain. Figure 1 illustrates how the pattern in dermal cell density progresses with
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Fig. 1. The time evolution of propagating patterns generated from random initial conditions at
the origin by solving (2.1) with parameter values as shown in section 3. (a) t = 15, (b) t = 22, and
(c) t = 29.

time (since the pattern in dilation is similar to that for the dermal cell density, we
only show the latter). This type of behavior is similar to that obtained by Myerscough
and Murray (1992) for a reaction-diffusion–chemotaxis model.

Far away from the initial disturbance, the wavelength of the standing pattern and
its speed of propagation seem to be constant and independent of the initial conditions.
This motivates us to look for analytical methods to determine expressions for these
quantities.

4. Envelope technique for propagating pattern analysis. By connecting
the peaks and troughs of the evolving cell density and cell dilation patterns one can
construct envelopes which enclose the developing patterns (see Figure 2(a)). It is
crucial to note that these envelopes travel at the same speed as the propagating
patterns. Here we use the properties of these envelopes to determine the approximate
minimum wave speed of the spreading pattern.

We introduce a coordinate system moving with the traveling pattern by the usual
change of variables z = x − vt, where v is a positive constant. We are thus con-
cerned with patterns propagating in the positive x-direction. The assumption that
the patterns travel at a constant speed v is based on the results of extensive numerical
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Fig. 2. (a) An illustration of the envelope of the propagating wave of pattern formation in cell
density. (b) An illustration of the envelope functions representing changes in the amplitude of the
pattern and in the average cell density.

simulations. The transformed system can be written in terms of x and z as

−µv

(
∂3θ

∂z3
+ 2

∂3θ

∂z2∂x
+

∂3θ

∂z∂x2

)
+

(
∂2θ

∂z2
+ 2

∂2θ

∂z∂x
+

∂2θ

∂x2

)

−β

(
∂4θ

∂z4
+ 4

∂4θ

∂z3∂x
+ 6

∂4θ

∂z2∂x2
+ 4

∂4θ

∂z∂x3
+

∂4θ

∂x4

)

+τ

(
∂2

∂z2
+

∂2

∂z∂x
+

∂2

∂x2

)(
n2

[1 + ν(1− θ)]2 + cn2

)
= ρθ,(4.1a)

−v
∂n

∂z
= D

(
∂2n

∂z2
+ 2

∂2n

∂z∂x
+

∂2n

∂x2

)
+ rn(1− n)

−α

(
∂

∂z
+

∂

∂x

){
n

(
∂

∂z
+

∂

∂x

)(
1− θ

1 + γn

)}
,(4.1b)

where θ and n are now functions of x and z.

We introduce three envelope functions: the envelope of the pattern in epithelial
dilation; the envelope of the pattern in dermal cell density; and an “envelope” to
represent the change in the average dermal cell density (see Figure 2(b)). We represent
these by the normalized curves p(z), q(z), and s(z), respectively. The last function
s(z) is, strictly speaking, not an envelope, but for convenience we shall describe it as
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such. The following properties are ascribed to the envelope functions:

lim
z→∞ p(z) = 0, lim

z→∞ q(z) = 0, lim
z→∞ s(z) = 0,(4.2a)

lim
z→−∞ p(z) = 1, lim

z→−∞ q(z) = 1, lim
z→−∞ s(z) = 1.(4.2b)

We further assume that the solution of the system (4.1) can be expressed as

θ(x, z) = p(z)θG(x, z),(4.3a)

n(x, z) = q(z)[nG(x, z)− nA] + s(z)(nA − 1) + 1,(4.3b)

where θG and nG are functions that will be determined below. The value nA is the
average dermal cell density as z → −∞,

nA = lim
z→−∞

1

P

∫ P

0

n(x, z)dx,

where P is the period of the steady state spatial pattern at z = −∞.
The motivation for taking these solution forms comes from examination of the

solutions illustrated in Figures 1 and 2, in which it is apparent that the solutions can
be approximated very closely by a constant wavelength spatial pattern that has an
amplitude that decreases monotonically. Note that the envelope function s(z) appears
in the expression for n(x, z). This is because the average cell density, nA, of the final
solution is not necessarily equal to the initial average cell density n = 1, which is
the homogeneous steady state value. So we have to track the change in average
cell density, which is due to the logistic growth term in our dermal cell conservation
equation, as well as the change in the developing pattern. In fact, in the simplified
version of the model that will be considered below, the logistic growth term is set to
zero and this envelope term disappears.

To determine the functions nG(x, z) and θG(x, z), we examine the solution be-
havior in the limit as z → ±∞. Far behind the leading edge of the disturbance,
that is, where z → −∞, the system is at a spatially periodic steady state, say S1.
We represent this steady state pattern by S1 = (θS1(x), nS1(x))

T , which is also the
solution of the z-independent nonlinear problem. So, from (4.2) and (4.3) it follows
that

lim
z→−∞

(
θG(x, z)
nG(x, z)

)
=

(
θS1(x)
nS1(x)

)
.

Far ahead of the leading edge of the disturbance, that is, as z → ∞, the system is
at the homogeneous steady state S0, where S0 = (0, 1). As the disturbance propagates
into the homogeneous region, the steady state is perturbed and a spatially periodic
solution begins to evolve. We represent the form of this initial pattern in dilation and
cell density by the functions θS0

(x) and nS0(x), respectively. In terms of the above
expressions (4.2) and (4.3) this means that

lim
z→∞

(
θG(x, z)
nG(x, z)

)
=

(
θS0(x)
nS0(x)

)
.

Additionally, we assume that the amplitudes of the periodic functions θS0(x) and
nS0(x), representing the initial shape of the patterns, are the same as the amplitudes
of the final pattern θS1

(x) and nS1
(x). The change in form of the initial pattern
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at S0 into the final pattern at S1 is tracked by the functions θG(x, z) and nG(x, z).
However, in the vicinity of a primary bifurcation from the uniform steady state,
the most significant change in the patterns is in their amplitudes, while changes
in their shapes are negligible in comparison (see Figure 1). Hence, we will assume
that θG(x, z) and nG(x, z) are independent of z and thus that the final steady state
pattern far behind the wave is the same shape as the initially evolving pattern at the
leading edge of the wave, with the amplitudes tracked by the envelope functions. For
notational convenience we shall write(

θS(x)
nS(x)

)
≈
(
θG(x, z)
nG(x, z)

)
.

We now study the phase space of the above system which has the two (z-independent)
steady states S1 = (θS1(x), nS1(x)) and S0 = (0, 1). The system has a propagating
pattern solution if and only if there exists a trajectory in the phase space connecting
these two steady states. By linearizing about these steady states, one can examine
their stability to see whether such a trajectory is possible.

We begin by linearizing about S1, by setting

θ(x, z) = θS(x) + p̃(z)θS(x),(4.4a)

n(x, z) = nS(x) + q̃(z)nS(x),(4.4b)

where

|q̃(z)| � 1 and |p̃(z)| � 1.

Because of our assumption that the form of the pattern stays fixed while the am-
plitudes of the propagating patterns change, only the amplitudes of the pattern are
perturbed about the steady state.

By substituting (4.4) into (4.1) for the simplified model, that is, with D = µ =
r = 0, and dropping the tildes for algebraic convenience, we have the linear system(

∂2

∂z2
+ 2

∂2

∂z∂x
+

∂2

∂x2

)
(pθS)

−β

(
∂4

∂z4
+ 4

∂4

∂z3∂x
+ 6

∂4

∂z2∂x2
+ 4

∂4

∂z∂x3
+

∂4pθS
∂x4

)
(pθS)

+

(
∂2

∂z2
+

∂2

∂z∂x
+

∂2

∂x2

)
(U1(x)pθS + U2(x)qnS) = ρpθS ,(4.5a)

− v
∂

∂z
(qnS) =

(
∂

∂z
+

∂

∂x

){
qnS

(
∂

∂z
+

∂

∂x

)
W0(x)

+nS

(
∂

∂z
+

∂

∂x

)
(W1(x)qnS + W2(x)pθS)

}
,(4.5b)

where

U1(x) =
2τν[1 + ν − νθS(x)]

{[1 + ν − νθS(x)]2 + cn2
S(x)}2

,

U2(x) =
2τnS(x)[1 + ν − νθS(x)]2

{[1 + ν − νθS(x)]2 + cn2
S(x)}2

,
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and

W0(x) =
−α[1− θS(x)]

1 + γnS(x)
,

W1(x) =
αγ[1− θS(x)]

[1 + γnS(x)]2
,

W2(x) =
α

1 + γnS(x)
.

Likewise, we linearize about the steady state S0 by setting

θ(x, z) = p̃(z)θS(x),(4.6a)

n(x, z) = 1 + q̃(z)nS(x),(4.6b)

where

|q̃(z)| � 1 and |p̃(z)| � 1.

Substituting this into (4.1) and dropping the tildes gives(
∂2

∂z2
+ 2

∂2

∂z∂x
+

∂2

∂x2

)
(pθS)

−β

(
∂4

∂z4
+ 4

∂4

∂z3∂x
+ 6

∂4

∂z2∂x2
+ 4

∂4

∂z∂x3
+

∂4pθS
∂x4

)
(pθS)

+

(
∂2

∂z2
+

∂2

∂z∂x
+

∂2

∂x2

)
(P1pθS + P2qnS) = ρpθS ,(4.7a)

− v
∂

∂z
(qnS) =

(
∂2

∂z2
+ 2

∂2

∂z∂x
+

∂2

∂x2

)
(Q1qnS + Q2pθS) ,(4.7b)

where P1, P2, Q1, and Q2 are as in (2.3).
These linear systems are extremely complicated and it is very difficult to carry

out a stability analysis in general because we do not know the functions θS(x) and
nS(x). However, we can approximate these functions in the vicinity of a primary
bifurcation from the uniform steady state by using the weakly nonlinear perturbation
technique detailed in Appendix B for the case where γ is the bifurcation parameter.

For the purpose of our explanation below we briefly refer back to system (2.1),
which is the above set of equations (4.1) written in terms of the space and time
coordinates x and t. In section 2 we showed that this system bifurcates from the
homogeneous steady state S0 if the dispersion relation (see (2.2)) becomes positive for
some critical eigenvalue k2

c . This happens, for example, if the bifurcation parameter γ
becomes marginally smaller than the critical value γc. By setting γ = γc − ε2, where
ε is the small perturbation parameter, an approximate nonhomogeneous steady state
solution for large time (see (2.4)) was found by Cruywagen and Murray (1992) by a
multiple time scale analysis (refer to Appendix B of this paper).

The perturbation solution is valid for the traveling coordinate system (4.1) in the
region where z → −∞ and is in fact the steady state solution S1. Hence, from (2.4),
we have that (

θS1
(x)

nS1
(x)

)
= Λ

(
1
M

)
(A cos kcx + B sin kcx) + O(ε2),(4.8)
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where the amplitude is given by Λ, M is as in section 2, and A2 + B2 is given in
section 2 and Appendix B.

Next we look at the steady state S0 as z → ∞ and more specifically at the
functions θS0 and nS0 . Initially, for t very small, the solution of (2.1) evolves from the
homogeneous steady state θ = 0, n = 1. Since the variables initially take values close
to their steady state values we can approximate the nonlinear system by a linearized
version about the steady state. The linear solution of (2.1), obtained for large time,
can be written as(

θ(x, t)
n(x, t)

)
≈
(
0
1

)
+

∫ kR

kL

pf (k)

(
1
M

)
eλ(k2)t(A cos kx + B sin kx)dk,

where pf (k) is determined by a Fourier transform of the initial conditions, A and B are
arbitrary constants, M is as before, and [kL, kR] is the range of unstable wavenumbers.
When performing the weakly nonlinear analysis (see Appendix B) it is assumed that,
since we are in the vicinity of the bifurcation point, the linear solution with the critical
eigenvalue k2

c is the dominant one and, for small enough ε, the only one that evolves
initially. So, using expressions (4.2) and (4.3) we can write(

θS0(x)
nS0(x)

)
= Λ

(
1
M

)
(A cos kcx + B sin kcx),(4.9)

where we have multiplied the solution by Λ so that the amplitudes of θS0(x) and
nS0(x) are rescaled to be the same as the amplitudes of the final steady state solution
(4.8).

Our initial pattern (θS0(x, z), nS0(x, z))
T , far ahead of the leading edge of the

traveling wave, is, to O(ε), the same as the final pattern (θS1
(x), nS1

(x))T , far behind
the wave. This means that our solution (θ(x, z), n(x, z))T is, to O(ε), separable in a
x-independent part (p, q)T and a z-independent part (nG, θG)T .

Hence, to O(ε), we can approximate these functions by(
θS
nS

)
= Λ

(
1
M

)
(A cos kcx + B sin kcx).(4.10)

Substituting this into the linearized system (4.5), ignoring terms of O(ε2), and
equating coefficients of cos kcx, we get the following two equations:

βAp′′′′ + 4βBp′′′ − (1 + 6βk2
c + P1)Ap′′ − (2kc + 4βk3

c + P1kc)Bp′

+ (k2
c + βk4

c + P1k
2
c + ρ)Ap = MP2(Aq′′ + kcBq′ − k2

cAq),(4.11a)

Q2Ap′′ + 2Q2kcBp′ −Q2Ak2
cp = −MQ1Aq′′

− (vAM + 2MQ1kcB)q′ + MQ1k
2
cAq,(4.11b)

where the prime indicates differentiation with respect to z.
Likewise, by equating coefficients of sin kcx, we obtain

βBp′′′′ − 4βAp′′′ − (1 + 6βk2
c + P1)Bp′′ + (2kc + 4βk3

c + P1kc)Ap′

+ (k2
c − βk4

c + P1k
2
c − ρ)Bp = MP2(Bq′′ − kcAq′ − k2

cBq),(4.12a)

Q2Bp′′ − 2Q2kcAp′ −Q2Bk2
cp = −MQ1Bq′′

+ (vMB + 2MQ1kcA)q′ + MQ1k
2
cBq.(4.12b)
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We now add (4.11a) to (4.12a) and (4.11b) to (4.12b) after multiplying (4.11) by A
and (4.12) by B. After dividing the two resulting equations by (A2 +B2) we are left
with

βp′′′′ − (1 + 6βk2
c + P1)p

′′

+ (k2
c + βk4

c + P1k
2
c + ρ)p = MP2(q

′ − k2
cq),(4.13a)

Q2p
′′ −Q2k

2
cp = −MQ1q

′′ + vMq′ + MQ1k
2
cq,(4.13b)

which is the linearized system about the steady state S1 to O(ε).
The linearized system to O(ε) about the steady state S0 can be found in a similar

fashion. We substitute (4.10) and (4.9) into (4.7), follow the same procedure as
above, and find that the linearized system about S0 is exactly the same as the system
(4.13). The complexity of the two original linear systems has now been reduced
considerably—they are dependent only on the variable z and are written in terms of
the envelope functions p and q.

By setting

p0 = p, p1 = p′, p2 = p′′, p3 = p′′′, q0 = q, q1 = q′,

the coupled pair of ordinary differential equations (4.13) can be written as a sixth-
order system, namely,

p′0 = p1,

p′1 = p2,

p′2 = p3,

p′3 =
1

β

[(
−βk4

c − (P1 + 1− P2Q2

Q1
)k2

c − ρ

)
p0

+

(
6βk2

c + P1 + 1− P2Q2

Q1

)
p2 +

P2Q2v

Q2
1

q1

]
,

q′0 = q1,

q′1 = p2 − k2
c −

v

Q1
q1 + k2

cq0.

We examine the stability of this system in the usual way by looking for solutions
of the form

(p0, p1, p2, p3, q0, q1)
T = W eηz,(4.14)

where the vector W is constant and the sign of �η determines the stability of the
steady state.

Substituting (4.14) into the linearized system of equations leads to a system of
six homogeneous equations. A nontrivial solution exists for this system if and only if
η satisfies the following solvability condition:

∆(η) = η6 +
v

Q1
η5 −

(
kc +

χ

β

)
η4 − v

βQ1

(
6βk2

c + P1 + 1
)
η3

+
1

β

(
k2
cχ− ω

)
η2 +

1

βQ1

(
βk4

c + k2
c + P1k

2
c + ρ

)
η +

k2
cω

β
= 0,(4.15)

where
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χ = 6βk2
c + P1 + 1− P2Q2

Q1

and

ω = −βk4
c − P1k

2
c +

P2Q2k
2
c

Q1
− k2

c − ρ.

From the linear analysis of section 2

βQ1(γ)k
6
c − [P2Q2(γ)− P1Q1(γ)−Q1(γ)]k

4
c + ρQ1(γ)k

2
c < 0 if γ < γc,

and so

ω(γ) > 0 if γ < γc.

Furthermore,

P2Q2(γ)− P1Q1(γ)−Q1(γ) > 0 if γ < γc,

(see Appendix B) and thus

χ(γ)− 6βk2
c > 0 if γ < γc.

Using this we have that

k2
cχ− ω = 3βk2

c + ρ + 2k2
c (χ− 4βk2

c ) > 0 if γ < γc.

Hence the polynomial (4.15) has only two sign changes in the sequence of coefficients
and Descartes’ rule of signs implies that there are either two or zero positive roots.
By substituting −η for η into (4.15) we see that the resulting polynomial has four
sign changes and it therefore has either four, two, or zero negative roots.

As z changes from −∞ to ∞ the traveling envelope corresponds to a trajectory
connecting S1 to S0 in phase space. As necessary conditions for such a trajectory
to exist, an unstable manifold at S1 and a stable manifold at S0 are required. The
solvability condition (4.15), which is valid to O(ε) at both steady states, allows for
both stable and unstable manifolds. Notice, however, that these are not sufficient
conditions; whether there indeed exists a trajectory connecting the steady state S1 to
S0 cannot be proven in general.

5. Applying the envelope method. Here we consider a specific example to
illustrate how the envelope method can be used to predict the wave speed of the
propagating patterns. We chose the parameter set given in section 3 and set ε = 0.01
so that we are in the vicinity of the bifurcation point. For this parameter set, the
polynomial (4.15) has two positive and two negative roots for all v ≥ 0 and hence
we have at least a two-dimensional stable manifold and a two-dimensional unstable
manifold. This suggests that a trajectory from S1 to S0 is possible for any speed
v ≥ 0. This is inconsistent with the numerical results of section 3 which show that
the solution propagates at a fixed wave speed depending on the parameter set chosen.

Closer inspection of (4.15) reveals that, for this parameter set, two more negative
eigenvalues appear as the parameter v increases. If we hypothesize that the stable
manifold at S0, into which the connecting trajectory shoots, is represented by these
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Fig. 3. The solvability condition (4.15) with parameter values as in section 3 and ε = 0.01.
(a) All the roots of the polynomial are shown. (b) The double root that appears as the wave speed v
increases through 0.13.

Table 1
A comparison of the wave speeds obtained for the propagating pattern from the asymptotic

method, the envelope method, and the numerical simulations.

ε Numerical result Envelope method Asymptotic method

0.01 0.13 0.13 0.13

0.1 1.35 1.33 1.36

0.5 9.4 - 9.9

two roots, we can get a bound on v. One can find the minimum value of v, for which
these two new roots appear as a double negative root. This value of v would then
represent a lower bound on the wave speed of the traveling pattern. Although we
cannot prove the existence of a trajectory connecting the steady states S0 and S1,
such a trajectory seems highly likely in light of the numerical experiments performed
below.

Numerically we found that the double negative root appeared at a minimum value
of v = 0.13 (see Figure 3). The actual speed at which the pattern propagates, as was
found from the numerical simulations, agrees exactly with this prediction. As is the
case for the Fisher wave (see, for example, Murray (1989)) we see that our wave of
pattern formation indeed travels at, or very close to, the minimum speed, since it
agrees well with the analytical approximation for the minimum speed.

If we choose ε = 0.1, our analytical approximation of v = 1.33 compares favorably
with the actual numerically computed speed of 1.35. However, if we move still further
away from the bifurcation point, this method breaks down, as one would expect (see
Table 1 for a summary of the results).

Extensive numerical simulations show that this method works well. To test the
general applicability of this envelope method for determining the minimum wave speed
at which waves of pattern formation travel, we applied the method to a reaction-
diffusion system. For the purpose of our analysis we chose the Schnakenberg system,
one of the simplest reaction-diffusion systems (see Schnakenberg (1979)). Instead of
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a sixth-order polynomial we found, as stability condition for the two steady states, a
fourth-order polynomial. As we varied the wave speed we got either zero or two stable
manifolds at these steady states. Therefore if a trajectory connecting the two steady
states does exist a bound on the wave speed is obtained. The numerically computed
traveling wave speed compared favorably with the minimum wave speed predicted
analytically.

6. Conclusion. We have proposed a new “envelope” method for calculating
the speed of propagating patterns in a one-dimensional domain, arising from typical
biological pattern formation models such as reaction-diffusion and mechanochemical
equations. As a specific example of a pattern formation system, we have considered
the tissue interaction model of Cruywagen and Murray (1992). Extensive numerical
simulations show that, in the vicinity of a primary bifurcation point, the spatially
varying steady state patterns forming far behind the advancing front of pattern are
very similar to those developing at the leading edge, the most notable difference being
in the amplitude of the spatially periodic patterns. We track the change in amplitude
by plotting the envelope function which is a traveling wave propagating with constant
speed. By transforming to traveling wave coordinates we conjecture that the speed of
propagation is bounded below by the critical value of the speed v at which two of the
eigenvalues in the linearization change from being complex to being real via a double
root (Figure 3(b)).

In the classical Fisher model (Fisher (1937)), the system in traveling wave co-
ordinates is a pair of coupled ordinary differential equations with two steady states.
The minimum wave speed is at the critical value of v at which one of the steady
states changes from a stable node to a stable spiral. It can be rigorously shown
that a trajectory corresponding to a saddle-node connection exists for wave speeds
above this minimum value. Moreover, any initial conditions with compact support
will evolve into a wave traveling with this minimum wave speed (see, for example,
Murray (1989)).

In this paper, our model system is a six-dimensional phase space and therefore
one cannot derive such rigorous results. Our numerical simulations suggest, however,
that the phenomenon of a minimum wave speed holds here as well. Due to the basic
assumptions underpinning the envelope method, it has a high degree of accuracy in the
vicinity of a bifurcation point but fails as one moves a substantial distance away from
the bifurcation point. We have tested other models (for example, reaction-diffusion
models) and found that they too give results consistent with the above conjecture.

The envelope method is more generally applicable than the alternative asymptotic
method proposed by Murray and Myerscough (1992) and mentioned in the introduc-
tion of this paper. The asymptotic method is based on a quadratic approximation of
the dispersion relation. The accuracy with which the caricature dispersion relation
approximates the full dispersion relation has an important effect on the accuracy of
the wave speed predicted by the asymptotic method. Moreover, in their approach it is
unclear exactly how each parameter influences the wave speed as these do not appear
in the caricature dispersion relation. Thus, one cannot directly relate parameters in
the caricature dispersion relation to actual model parameters. This contrasts with
the envelope method in which we can examine the effect that varying a particular
parameter has on the dispersion relation and thus how it influences the wave speed.

Appendix A. Here we briefly describe the tissue-interaction model. The reader
is referred to Cruywagen and Murray (1992) for the full details of the derivation of
the model.
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The model assumes that tissue interaction between the epithelial and dermal
skin layers is mediated by two signal chemicals which are secreted in each layer,
respectively. These chemicals diffuse across the basal lamina—a thin sheet separating
the dermis and epidermis—thus transferring information between the layers.

The model consists of seven equations: four to describe the production, degra-
dation, and diffusion of the chemicals within and between layers; two conservation
equations for the dermal and epidermal cell densities, respectively; and finally, a force
balance equation for modeling stresses in the epithelium. As the chemical equations
are standard, we shall not describe them here, but will instead focus on the force
balance and cell density equations.

The epithelium is modeled as a viscoelastic continuum at a low Reynolds number
in which active traction forces exerted by the epidermal cells are balanced by elastic
restoring forces and external elastic tethering to the basal lamina. The force balance
equation has the form

∇ ·




elastic stress︷ ︸︸ ︷
E

1 + υ

[
ε− β1∇2ε+

υ

1− 2υ
(θ − β2∇2θ)I

]

+

viscous stress︷ ︸︸ ︷
µ1

∂ε

∂t
+ µ2

∂θ

∂t
I +

traction stress︷ ︸︸ ︷
τs2

1 + cs2
I


 =

body forces︷︸︸︷
ρu ,(A.1)

where u(x, t) is the displacement at time t of a material point in the epithelium which
was initially at position x, θ = ∇·u is the dilation, ε = 1

2 (∇u +∇uT ) is the strain
tensor, where T denotes the transpose, and s(x, t) is the concentration of the signal
chemical produced in the dermis. The parameters E and υ are Young’s modulus
and Poisson’s ratio, respectively, while µ1 and µ2 are the shear and bulk viscosities,
respectively, I is the unit tensor, and β1 and β2 reflect long-range elastic stresses (see
Murray (1989)). The traction stress is a switch function of the dermal signal chemical,
s, with τ measuring the magnitude and c the abruptness of the switch.

We assume that the epidermal cells migrate due to convection only. Hence the
epidermal cell density N(x, t) satisfies the conservation equation

∂N

∂t
=

convection︷ ︸︸ ︷
−∇ ·N ∂u

∂t
.(A.2)

The conservation equation for dermal cell density, n(x, t), accounts for diffu-
sion, mitosis, and chemotaxis toward the signal chemical produced in the epithelium.
Hence, the dermal chemotaxis equation is

∂n

∂t
=

diffusion︷ ︸︸ ︷
D∇2n −

chemotaxis︷ ︸︸ ︷
α∇ · n∇e +

cell growth︷ ︸︸ ︷
rn(n̄− n) ,(A.3)

where D is the coefficient of diffusion, α is the chemotactic coefficient, e(x, t) is the
concentration of the signal chemical produced in the epithelium, and r and n̄ are
positive constants.
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We can linearize about the uniform epidermal cell density steady state, say N̂ , and
integrate (A.2) to obtain a linear relationship between N and θ, namely, N = N̂(1−θ).
Using this and assuming that the chemical kinetics occur on a fast timescale, one can
find actual algebraic expressions for the signal chemicals in terms of θ and n, namely,
s = n/(1 + ν(1 − θ)) and e = (1 − θ)/(1 + γn) (see Cruywagen and Murray (1992)
for full details). From these expressions we observe that the active traction stress in
the epidermis is induced by high concentrations of dermal cells, but inhibited by high
concentrations of epithelial cells. Similarly, dermal chemotaxis occurs toward high
concentrations of epithelial cells but is inhibited by high concentrations of dermal
cells.

The simplified nondimensionalised set of equations is shown in section 2, equation
(2.1), for one spatial dimension.

Appendix B. Here we examine the time evolution of the nonlinear system
(2.1) using a multiscale perturbation procedure on a one-dimensional domain. This
shows how the different parameters are involved in determining the amplitude of the
pattern and gives conditions under which a steady state spatial pattern is attained.
Refer to Cruywagen and Murray (1992) for further details and to Cruywagen, Maini,
and Murray (1997) for the two-dimensional version of this analysis.

We are interested in the simplest biologically realistic version of the basic tissue
interaction model for which we can isolate any unstable wavenumber with an appro-
priate parameter combination. We assume that D = 0, r = 0, and µ = 0 in (2.1).
The one-dimensional version of the reduced model is then

∂2θ

∂x2
− β

∂4θ

∂x4
+ τ

∂2

∂x2

n2

[1 + ν(1− θ)]2 + cn2
= ρθ,(B.1a)

∂n

∂t
= −α

∂

∂x

{
n

∂

∂x

(
1− θ

1 + γn

)}
.(B.1b)

This system has the parabolic-type dispersion relation

λ(k2) = −βQ1k
6 − (P2Q2 − P1Q1 −Q1)k

4 + ρQ1k
2

βk4 + (P1 + 1)k2 + ρ
;(B.2)

(refer to (2.2)). Since limγ→0+ Q1(γ) = 0 and limγ→0+ Q2(γ) = α, we can force the
dispersion relation to be positive by ensuring that γ is small enough. It is easy to
show that if P2Q2(γ) − P1Q1(γ) − Q1(γ) > 0, then the uniform steady state loses
stability as γ decreases beyond a critical value γc, where

(P2Q2(γc)− P1Q1(γc)−Q1(γc))
2 = 4βρQ2

1(γc).

The corresponding critical wavenumber is

k2
c =

P2Q2(γc)− P1Q1(γc)−Q1(γc)

2βQ1(γc)
.(B.3)

The epithelial and dermal cell condensations which form during early chick skin
morphogenesis are small; we therefore hypothesize that they occur in the vicinity of
the bifurcation point. We shall also assume that there is one and only one wavenumber
k that has a positive growth rate. Furthermore, we assume that at bifurcation k = kc,
and that the solutions are periodic in space with period 2π/kc.
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As the linear growth rate is small we look, as usual, for solutions that evolve on
the slow time scale ε2t; thus we set

γ = γc − ε2, where 0 < ε � 1, and T = ε2t.(B.4)

We consider the variables θ and n as functions of ε, x, and T , ignoring the t dependence
except through T in the usual way. We assume power series expansions for θ and n,

θ(x, T, ε) = εθ1(x, T ) + ε2θ2(x, T ) + · · · ,(B.5a)

n(x, T, ε) = 1 + εn1(x, T ) + ε2n2(x, T ) + · · · .(B.5b)

By substituting (B.4) and (B.5) into (B.1) we reduce the analysis of the nonlinear
system to that of a hierarchy of linear equations by equating coefficients of O(ε),
O(ε2), and so on.

To O(ε) we have

L
(
θ1

n1

)
= 0,

where

L ≡
(
−β ∂4

∂x4 + (1 + P1)
∂2

∂x2 − ρ P2
∂2

∂x2

Q2
∂2

∂x2 Q1
∂2

∂x2

)
.

Thus we have (
θ1

n1

)
=

(
1
M

)
(A(T ) cos kcx + B(T ) sin kcx) ,

with M as in (2.4).
In the usual way, A(T ) and B(T ) are determined by suppressing secular terms

later. Secular terms appear at O(ε3), where we have

L
(
θ3

n3

)
=

(
R1

R2

)
,(B.6)

where R1 and R2 are known functions of θ1, θ2, n1, and n2 (where θ2 and n2 are
determined from the equations at O(ε2). Secular terms appear in the solutions for
(θ3, n3)

T . To suppress these secular terms we use the Fredholm alternative (see, for
example, Keener (1988)). A solution w = (θ3, n3)

T exists for (B.6) if and only if the
Fredholm alternative is satisfied, that is, the inner product

〈w∗,R〉 =

∫ 2π
kc

0

(θ∗R̄1 + n∗R̄2) dx = 0,

where the bar denotes the complex conjugate and w∗ is a bounded solution of the
adjoint problem

L∗(w∗) = 0,

where L∗ is the adjoint operator to L.
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Solving this gives, after much tedious algebra, the Landau equation for the evo-
lution of the amplitude A2(T ) + B2(T ) on the slow time scale as

1

2

d
(
A2 + B2

)
dT

= Ω
(
A2 + B2

)
+ Γ

(
A2 + B2

)2
,(B.7)

where

Ω =
γk2

c

(γc + 1)3
> 0

and Γ is a complicated expression of the model parameters (refer to Cruywagen and
Murray (1992)).

The behavior of this equation is summarized in Cruywagen and Murray (1992).
If Γ < 0 the solution evolves to(

θ
n

)
=

(
0
1

)
+ ε (A cos kcx + B sin kcx) + O(ε2) as T → ∞,(B.8)

where A2 + B2 = −Ω/Γ.
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