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INTRODUCTION

The elucidation of the underlying mechanisms that occur during morpho-
genesis is of fundamental importance in developmental biology. From the
homogeneous mass of dividing cells of the early blastula, emerge the rich and
varied range of pattern and structure observed in animals. Little is known
about the mechanisms involved in such development. Although genes must
play a key role, genetics says little about the actual mechanisms which
produce structure as an organism develops from the egg to its adult form.

Morphogenesis consists of a complex series of chemical, mechanical and
electrical interactions and an identification and understanding of these has
been the focus of much experimental and theoretical research. Here we
briefly compare the two main mathematical models for morphogenetic
pattern formation, namely reaction-diffusion systems and mechanochemical
models, both of which produce patterns which closely resemble those
observed during several developmental processes.

First we outline the theory behind each mechanism and then we focus on
the application of these models to only two problems in development,
namely, the patterning in the limb that presages cartilage formation and the
patterning of feathers and scales. These models have been applied to a
Cell 1o Cell Signalling: From Copyright @ 1989 Academic Press Limited
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remarkable array of problems and the reader is referred to the papers listed
for other examples. These applications rely on the models’ ability to generate
spatially heterogeneous solutions. We conclude with a brief discussion of
some of the successes, failures and drawbacks of the models.

THE MODEL MECHANISMS

In his seminal paper on the chemical basis of morphogenesis, Turing (1952)
showed that a system of reacting and diffusing chemicals (morphogens) could
evolve from an initial homogeneous steady state to a spatially heterogeneous
steady state of morphogen concentration. This behaviour is called diffusion-
driven instability. If we assume cell differentiation occurs above a certain
threshold in chemical concentration, then the landscape of chemical pattern
will be reflected in a spatial pattern of cell differentiation.

Numerous reaction—diffusion schemes have since been proposed (for
example, Gierer and Meinhardt, 1972; Schnakenberg, 1979) with different
reaction kinetics. The general form of the equations for a two-species
reaction diffusion system is

dufdt= D Vu+f(u,v) (1
av/dt=D,Vv+ g(u,v) (2)

where u(x,t) and v(x,f) denote morphogen concentrations at time ¢ and
spatial coordinate x, D, and D, are positive diffusion coefficients, V* is the
Laplacian operator and f(u,v) and g(u,v) describe the non-linear reaction
kinetics.

The fundamental idea underlying the formation of such chemical pre-
patterns can be couched in terms of short-range activation and long-range
inhibition and is most easily seen in the Gierer-Meinhardt (1972) model
kinetics. One of the morphogens, say », may be thought of as an activator. It
is produced locally, for example by autocatalysis, and diffuses slower than
the other chemical, v, which plays the role of inhibitor. If the parameters of
the system lie in the appropriate domain — the Turing domain (see Murray,
1982) — this interaction can lead to spatially patterned peaks of activator
chemical concentration. This chemical prepattern provides the bauplan for
cell differentiation and is the basis for Wolpert’s positional information
theory (see, for example, Wolpert, 1981) in which cells interpret the chemical
prepattern and differentiate accordingly.

Reaction—diffusion mechanisms have been widely studied both mathema-
tically and experimentally. The mathematical analysis has concentrated on
the pattern-producing abilities of such systems (see, for example, the books

- by Britton, 1986; Murray, 1989, the former of which is more mathematical
with the latter blatantly applications oriented). Equation systems like (1) and
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(2) can produce a large range of spatially heterogeneous patterns. spiral
patterns and travelling wave solutions. Much experimental work has been
|nv0h.'cd in trying to identify the morphogens so as to provide some
experimental justification for a reaction—diffusion basis of morphogenesis. So
far this has met with limited success.

In the 1980s a fundamentally different approach to cell patterning was
proposed by Oster, Murray and their colleagues (for example, Oster et al..
1983; Murray and Oster, 1984a.b: Oster et al., 1985). They modelled the
mleclmnnchcmiczll interaction of a major class of cells, known as fibroblasts
with the substratum, the extracellular matrix (ECM), on which they movcr
The ().Is'tcr Murray approach consists of three equations which describe,
respectively, cell and matrix conservation and the mechanical equilibrium
between cell and matrix. Each equation describes the physico-chemical
processes occurring in the cell-matrix milicu. An important difference
between the mechanochemical (MC) and reaction-diffusion (RD) models is
that the constituent variables and properties involved in the MC mechanisms
e{rc all well known and the parameters in principle measurable. The assump-
tions behind each equation are the following.

Cell equation
The general form of the cell equation is
onfdt=—V J+ F(n) (3)

where n(x,z) is the cell density at time ¢ and position x and J is the cell flux.
The sccond_ term on the right hand side models cell mitosis, a reasonable
form of which is logistic growth

Hn)=rn(N—n) (4)

where NV is a typical homogeneous cell density and rN the linear mitotic rate
of cells.

Several factors contribute to the cell flux term, for example,

(a) Convection. Cells may ride passively on the ECM. pulled by the forces
exerted by their neighbours. This contributes a term of the form

J.=ndu/di (5

where u(x,1) is the displacement of a material point initially at x.

(b) Haptotaxis. Cells move by attaching their filopodia to adhesive sites on
the external substratum. It is well known from in virro studies that cells
tend to move up a gradient in adhesive site density (see references in
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Oster et al., 1983). This is known as haptotaxis and may be modelled,
in its simplest form, by

J,=anVp (6)

where p(x,r) is the ECM density and o is the (positive) constant

coefficient of haptotaxis. - ‘ .
(c) Chemotaxis. Movement of cells up a grad_lem in some c.hemoall r?c
tant. This type of behaviour is common in many types of cc‘ ( gr
example, in the slime mould Dictyostelium discoideum) and may be

modelled, in its simplest form, by
‘]ch: a'”v?.' (7)

where ¥ (x,1) is the concentration of chemoattractant apd tx’_1s the
positive constant coefficient of chemotaxis. NoFe that mclu«inon of
chemotaxis would necessitate having an equation to describe the

behaviour of the chemoattractant x(x,r). _ .
(d) Diffusion. Cells may move randomly. This contributes a term

J,=—DVn (8)
where D is the positive diffusion coefficient.

Various other physical processes which might be in\iolv_ed iI"l development
can also be incorporated: a full pedagogical discussion is given in the book by

Murray (1989).
Matrix (ECM) equation

The matrix moves by convection caused by forces exerted by cells and its
density is described by the equation

dp/ot=— V.(pdu/cr) 9)

In situations where the cells are secreting matrix, this ‘cquation has to be
augmented by a matrix source term on the right hand side.

Mechanical force balance equation

The cell-matrix milieu is modelled as a linear, viscoclasficj maFeriaI with ‘low
Reynolds number which implies inertiall terms are neghglb]e 1plc0}'r1parlson
with viscous terms and the material is in mechanical equilibrium. The
equation of motion is thus of the form

PATTERN FORMATION MECHANISMS 163
V.o+pF=0 (10)

where o is a stress tensor and pF is an external body force which comes from
the surrounding tissue. As well as the viscoelastic contribution from the
matrix to o, there are several other factors to be taken into account, for
example:

(a) Cell traction. In vitro, it is known that mesenchymal (fibroblast) cells
exert large traction forces which deform the matrix (Harris er al.,
1980). At high cell densities the traction force per cell decreases due to
contact inhibition.

(b) Osmotic pressure. In certain cases, for example, in the developing limb
bud, the ECM is composed of materials, such as glycosaminoglycans
which can exert high osmotic pressure.

In some cases the cell-matrix composite is tethered by elastic-type fibres to
some external layer and this must be accounted for in the body force pF.

Investigations of the pattern-forming capabilities of such MC models (see,
for example, Murray and Oster, 1984a.b; Perelson et al., 1986; Maini and
Murray, 1988) show that they can produce stable spatially heterogeneous
patterns and exhibit travelling wave solutions similar to those obtained from
the RD approach. The study of MC models are only at a preliminary stage
and, in view of their tensor structure, it is almost certain that they can
produce richer pattern structures and a wider range of phenomena than RD
systems. From MC theory, the patterning process can also be couched in
terms of local short-range activation, initiated by the cell traction, and long-
range inhibition but where these are now in terms of forces. A simple detailed
intuitive and mathematical description of lateral inhibition models in de-
velopment is given in Murray (1989).

From a mathematical point of view the onset of a spatially heterogeneous
pattern is broadly similar in both models. As a certain parameter increases
beyond a critical value, the uniform steady state loses stability and evolves to
aspatially heterogeneous pattern. Several parameters can play the role of this
bifurcating parameter, for example the relative rates of various chemical
reactions or the ratio of diffusivities in RD systems and the cell traction
parameter in the MC models. Scale and geometry of the domain also play an
important role. The larger the scale, the richer are the possible patterns.

Let us now consider two specific practical problems each mechanism has
addressed.

CHONDROGENESIS

The vertebrate limb has played a major role in embryological and evolution-
ary studies not only because of its morphological diversification but
also because it is one of the easier systems to study experimentally. The
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mechanism that initiates condensations is still unknown. Figure 1 lilus}rates
the process of development of the early limb bud. Cells are produced in tt?e
progress zone, the area at the tip of the limb_ bud, and as they move ogt of Lﬁ:s
area they condense and these cell aggregations eventually form carulagel.. ;
development proceeds the skeletal pattern becomes more complex as the lim
bud grows, widens and flattens. ‘ ‘ ‘
The RD approach to explain this spatial patterning phenomenon 1s
essentially the following. As cells leave t}_u: Progrcss zone they sccrcle]
morphogens which initially form a uniform dlSlFlbUllOﬂ.‘AS one of the r‘node
parameters passes through a bifurcation value th_e uniform state bcc.gmcs
unstable and evolves to a morphogen concentration pattern with a single
central peak. Cells in the centre of the limb bud interpret this peak as the cuz
to become pre-cartilage cells. As the scale and geometry of the lm_'nb bu
change, the RD mechanism can produce more complex patterns which can
later condensation patterns.
ac?l'ohl:;;:: faorl;:l:cieral MC scenarios. That in Oster et al. (1985) has the_cc]ls
move out of the progress zone, secrete hyaluronic acid_ (HA). a highly
osmotic glycosaminoglycan, which swells the limb bud and initially keeps thle
cells apart. Prior to condensation, it is known that cells secrete hyfalurom-
dase, the enzyme which degrades HA. The model suggests that this could

Humerus

Progress
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|
M/@-—oe@

= S
) &=
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Fig. 1. A scenario showing a possible pat;ernlof bifurc_atio_ns according to the
MC model leading to skeletal pattern formation in the ChICII( limb. (a) Cells n'_n:j)ve
through the progress zone, which is adjacent to the apical ectodgfma:l ri gs-:
(AER), aggregate and condense to form the humerus. _(b) When a critica ch:rc:ss

sectional ellipticity is reached, a bifurcation occurs leading to the (adlus and ulna.
(c) The asymmetry induced in the limb geometry by ce!l_tracuo_ns leads toha
bifurcation on the ulna and a focal condensation qnlthe_radlus. This _Ieadls t(lllt e
digits. (d) The limb bud is now flattened and the dlglts ‘_nlfurcate longitudinally to

give the phalanges. (e) Sketch of the full chick limb skeletal pattern.
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lead to partial osmotic collapse of the internal limb bud which brings cells in
closer proximity to their neighbours. The short-range traction forces then
take over and can induce a bifurcation wherein the uniform distribution of
cells evolve to one where cells aggregate in the centre. These cells then
condense to form cartilage. As with the RD system, scale and geometry
effects can account for subsequent pattern.

Although the mathematical theory behind pattern formation is similar for
both mechanisms, the biological scenarios are quite different. RD relies on a
number of discrete steps which effectively form an “open loop’ system (which
is notoriously unstable):

(i) The formation of a prepattern of morphogen concentration.
(i1) The interpretation of this morphogen concentration by cells.
(iii) A change in limb scale and geometry leading to the more complex
structures.

The MC approach relies on fewer steps. The cellular pattern is formed
directly by the process of aggregation — not a prepattern. This cell aggregate
has the ability to deform the geometry of the limb bud thus inducing
subsequent bifurcations (Oster et al., 1983). Since mechanical deformation
can alter the transcription of cells the MC model is not an open-loop system;
it has the ability for self-correction. The RD approach does not address the
question of the change in geometry and scale of the developing limb bud.

Several experiments have been performed to try and test the above
mechanisms. From the RD viewpoint the first essential step is to identify the
morphogens. To date this has met with only limited success. Calcium and
retinoic acid (RA) have been proposed as two possible candidates but the
evidence is controversial. Indeed, in the case of RA, experiments by Kochar
et al. (1984) suggest that its effects may be due to the observation that RA
greatly changes the ability of cells to synthesize HA. This tends to substan-
tiate an MC approach.

The main body of experimental work centres around grafting experiments.
For example, if cells from the region known as the zone of polarizing activity
(ZPA), which is located in the posterior part of the limb bud, are grafted onto
the anterior of the limb, the skeletal elements are duplicated. It is known that
such grafting experiments result in abnormal widening of the limb bud
(Smith and Wolpert, 1981). Both the above mechanisms would thus predict
an increase in richness of pattern due to the increase in scale.

Alberch and Gale (1983) treated developing frog limb buds with colchi-
cine, a mitotic inhibitor. They found that the resulting limb usually had one
or more digits missing and was smaller in size than a normal limb. This, again
is consistent with both the above mechanisms — a decrease in size resulting in
a decrease in pattern. Further results and a comprehensive theory of limb
development has been given by Oster er al. (1988).

A major criticism of RD theory is that it is very sensitive to initial and
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boundary conditions and to parameter values. This is obviously a major
drawback to any mechanism proposed for a robust developmental process
such as chondrogenesis. Arcuri and Murray (1986) partially answered this
criticism when they showed that with fixed concentrations on the boundary,
RD systems became less sensitive. In the limb bud, the sleeve of HA already
provides such a fixed boundary condition in the MC models.

Recent graft experiments by Wolpert (personal communication) seem to
indicate that there is indeed a prepattern formed before any variation in cell
densities are evident. This would certainly be a major point in favour ofa RD
theory.

SKIN ORGAN FORMATION

Vertebrate skin forms many specialized structures, such as hair, scales,
feathers and glands. A widely studied problem of considerable interest is the
generation of feather germs in chicks (see, for example, Davidson, 1983).
These structures are distributed across the surface of the animal in a
characteristic and regular fashion. As with other organs the developmental
processes involved are not understood. This is currently a problem of
considerable interest since its solution would be a milestone in understanding
embryogenesis.

The chick skin consists of an epidermal layer of columnar, non-motile cells
overlying a dermal layer composed of motile, mesenchymal (fibroblast) cells
in a collagenous extracellular matrix. Each feather germ, or primordium,
consists of a thickening of the epidermis, called a placode, and a condensa-
tion of dermal cells, called a papilla. Davidson (1983) found that in the chick,
initially a primordium became visible in the centre of the dorsal midline. A
row of primordia then appeared along the dorsal midline. Subsequent rows
of primordia then formed on either side of this initial row at intermediate
points: the pattern spread laterally forming a hexagonal array.

Perelson et al. (1986) solved a MC model in one dimension and showed
that, as cell traction increased, an initially uniform distribution of cells could
evolve to a pattern of aggregations. This pattern of cells produces a strain
field which causes cells in neighbouring rows to aggregate at interdigitating
points, thus leading to hexagonal structure as shown in Fig. 2.

It is not easy to reconcile RD theory with such sequential pattern
formation. The mechanism would have to rely on forming a prepattern, to
which cells become competent to respond in a sequential manner. The
process by which pattern forms on the dorsal midline suggests some
prepattern mechanism which determines the initial central condensation.
However, Davidson (1983) took a section of chick pteryla on which pattern

“was forming and cut ahead of the ‘wave’ of laterally expanding primordia.
He found that primordia formed in the skin in front of the cut but their
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Fig. 2. Scenario for hexagonal pattern formation in the chick back according to

MC theory. (a) Section of the chick back illustrating uniform cell density along

the dorsal midline. As these cells mature, their traction increases and the uniform

steady state loses stability and evolves to a heterogeneous spatial pattern of cell

aggregations (b). This line of aggregates imposes a strain field causing aggrega-

tion along neighbouring rows at intermediate points leading to hexagonal
patterning (c).

position was random compared to the previous row behind the cut. This
argues against a prepattern theory.

Both RD and MC theories make predictions on the spacing between
prlm(_)rdia. The RD prediction is in terms of diffusion coeflicients and
reaction rates for chemicals which have yet to be identified and therefore
such predictions cannot be tested. The MC approach predicts that decreasing
the total cell number will increase the spacing (Oster et al., 1983). Davidson
(personal communication) irradiated a section of dorsal pteryla, decreasing
the total cell number, and found that the spacing did indeed increase.

Both the above mechanisms simply concentrate on the dermal pattern.
perma]---epidcrmai recombination experiments strongly suggest that there is
interaction between both layers. Nagorcka er al. (1987) proposed a hybrid
mod;] as a mechanism for scale pattern formation in reptiles. Their model
consisted of a two-component RD system of epidermal origin coupled to a
cell trat‘:tion (MC) model of dermal origin. They showed that such a
mf:chanlsm could produce a pattern consisting of two different sized scales,
with correspondingly different interscalar spacings, superimposed on each
other. Their patterns closely resemble those observed in certain reptiles such
as the armadillo. Coupled MC systems could also produce such patterns.

DISCUSSION

In the last two sections we focused on the ability of RD and MC systems to
gcnqate spatially heterogeneous solutions and showed how they could be
considered as possible mechanisms for certain developmental processes.
They have also been proposed as possible mechanisms for several other
developmental phenomena, for example, butterfly and moth wing patterns

- (Murray, 1981) in the case of RD theory and, in the case of MC theory,
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movements of epidermal cell sheets during the process of gastrulation (Odell
et al., 1981), contraction waves on the surface of vertebrate eggs just after
fertilization (Cheer et al., 1987; Lane et al., 1987) and others (see, for
example, Murray, 1989). In a broader sense, RD theory has been proposed as
the mechanism which accounts for certain regeneration processes, for
example in the alga Acetabularia (Goodwin et al., 1985) where calcium is
proposed as the morphogen: quantitative experimental evidence is presented
to support this hypothesis. RD has definitively been shown to be the
mechanism in the case of spiral wave phenomena in slime mould Dictyoste-
lium (see, for example, the brief review by Tyson and Murray, 1989). MC
theory has been applied to the process of wound healing (Murray er al.,
1988): qualitative comparison of the theory with experiment is encouraging.
The list of proposed applications is now very large.

An important feature of all of these models is the effect of geometry and
scale. Oster et al. (1988) used such ideas to help make more precise the notion
of developmental constraints in the vertebrate limb. They showed that, with
only a limited number of allowable condensation patterns, one could use the
effects of scale and geometry to ‘construct’ the entire limb. Their results have
important consequences for evolution, which suggest that mutation can only
give rise to a limited variety of different limb skeletal structure from a normal
limb.

Although both theories have very rich pattern formation structure, clearly
both suffer from major drawbacks. The existence of morphogens is, in most
cases, still a controversial issue. The problem of how cells interpret a
prepattern cannot begin to be addressed until they are identified. RD
mechanisms are of ‘open-loop’ type, that is, once the prepattern is laid down,
the eventual morphogenetic structure is fixed — there can be no feedback
from the environment to modify the pattern. Such open-loop systems are
unstable and seem an unreliable mechanism for many developmental pro-
cesses which are, in the main, robust and self-correcting.

MC theory is based, to a large extent, on known cellular properties from in
vitro studies. It is a controversial issue as to whether certain of these
properties are exhibited by cells in vivo. In some cases of skin organ
formation it is unclear if cells do actually form aggregations.

The ability of a model to mimic patterns observed in a developmental
process is only the first, but necessary step to its candidacy as a possible
mechanism. A model must be able to make testable predictions. From this
point of view many predictions of RD theory are hard to verify because they
are in terms of properties of morphogens vet to be identified, whereas those
of MC theory are based on parameters which are measurable.

The processes that occur in development are clearly highly complex.
Mathematical models are, necessarily, based on gross simplification. How-
ever, they do tend to focus on particular elements of the process and help
determine the role played by such elements in the overall process. The role of
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theory is to provide a conceptual framework for the experimenter and to
make predictions which encourage, or provoke, experimentation. From this
point of view, mathematical models for development are fulfilling their role
and will certainly play a significant part in the understanding of one of the
major problems in science.
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