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Introduction

Spatial and spatio-temporal patterns occur widely in chemistry and biology. In many
cases, these patterns seem to be generated spontaneously. The best known oscillatory
reaction is the Belousov-Zhabotinsky reaction, in which bromate ions oxidise malonic
acid in a reaction catalysed by cerium, which has the states Ce®t and Ce't. Sus-
tained periodic oscillations are observed in the cerium ions. If, instead, one uses the
catalyst Fe?* and Fe®* and phenanthroline, the periodic oscillations are visualised
as colour changes between reddish-orange and blue (see, for example, Murray, 1993,
Johnson and Scott, 1996 for review). This system can also exhibit a number of differ-
ent types of wave structures such as propagating fronts, spiral waves, target patterns
and toroidal scrolls (Zaikin and Zhabotinskii, 1970, Winfree, 1972, 1974, Miiller et
al., 1985, Welsh et al., 1983, Zykov, 1987). Such oscillatory and wave-like patterns
also arise in physiology and one of the most widely-studied and important areas of
wave propagation concerns the electrical activity in the heart (Panfilov and Holden,
1997). These phenomena have motivated a great deal of mathematical modelling and
the analysis of the resultant systems (coupled ordinary differential equations and/or
partial differential equations) has led to a greater understanding of the underlying
mechanisms involved and suggested control strategies in the case of medical applica-
tions (see, for example, Goldbeter, 1996).

The development of spatial pattern and form is one of the central issues in em-
bryology. Although genes control pattern formation, genetics does not give us an
understanding of the actual mechanisms involved in patterning. Many models of how
different processes can conspire to produce pattern have been proposed and anal-
ysed. They range from gradieni-type models involving a simple source-sink mecha-
nism (Wolpert, 1969); to cellular automata models in which the tissue is discretised
and rules are introduced as to how different elements interact with each other (see, for
example, Bard, 1981); to more complicated models which incorporate more sophisti-
cated chemistry and biology. In this chapter we shall focus on some models from the
latter category which are based on two very different principles of pattern formation.
Broadly speaking there are two ways pattern may form: (1) A spatial pattern in some
chemical (morphogen) may be set up which in turn determines cell differentiation.
Thus the pattern or structure that we observe is due to the underlying pre-pattern
in morphogen. (2) A spatial pattern in cell density is set up and cells in high density
aggregations then differentiate. Thus the pattern we observe is due directly to the
underlying pattern in cell density.

In the next section we consider the most widely studied pre-pattern model, namely,
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reaction-diffusion (RD). The model is formulated and analysed using standard linear
and nonlinear techniques. As these techniques carry over to the other models in this
chapter, they are considered only for the reaction-diffusion model. The properties
of the spatial patterns exhibited by the model are presented and some recent results
for modified RD models are discussed. Sections 2 and 3 discuss respectively, cell-
chemotactic and mechanical models, which are based on (2) above, namely, they
hypothesize that patterning occurs due to cell motion. The models are formulated
and in Section 2.2 propagating patterns are considered.

Section 4 considers some examples of the application of these models to biology.
Specifically, we focus on skeletal patterning in the vertebrate limb, pigmentation
patterns in reptiles and avian skin organ formation. The coupling of patterning

models is also discussed. Conclusions are presented in Section 5.

1 Reaction-Diffusion Models

1.1 Model Formulation and Linear Analysis

Let ¢(x,t) be the concentration of a chemical at position x € R? and time t € [0, 00).
Consider an arbitrary volume V' C R®. Then

rate of change of chemical in V = — flux + net production i.e.

if cdv=— [ F,ds+f f(c)dv (1.1)
dt Jv av v

where F is the flux of chemical per unit area and f(c) is net chemical production per
unit volume. Using the divergence theorem, (1.1) becomes

L{%E+V.F—f(c)}dv=o, (1.2)

As this is true for all arbitrary volumes V, it follows that

. c 1.3
E——V-F+f()‘ (1.3)

We now need an expression for the flux of chemical in terms of chemical concentration.
We use Fick’s Law, which states that chemical flux is proportional to the concentration
gradient, i.e.

F = -DVe (1.4)
where D, the diffusion coefficient, is assumed constant (positive). This models flux

from high concentrations to low concentrations. Substituting (1.4) into (1.3) we
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obtain the reaction-diffusion equation
8
6-? = DV + f(c). (1.5)

There are many ways to derive (1.5). For example, Turing (1952) considered a one-
dimensional row of discrete cells with chemical flow between cells, moving from cells
with high chemical concentrations to cells with low chemical concentrations. His
model was a system of coupled discrete-differential equations and, when averaged
over continuous space, gives (1.5). Alternatively, his system could be viewed as a
finite difference discretization of (1.5).

Note that in obtaining (1.5) we have assumed that D is constant and that the net
production term, f, depends only on c. More generally, D may also be a function
of ¢ (density-dependent diffusion) and both D and f may also have spatio-temporal
variation.

To complete the model formulation we need to specify initial conditions, ¢(x,0) =

co(x) and boundary conditions. The latter may typically be written in the form
61(n.V)e+ (1 — b1)c =6, on OV (1.6)

where n is the outward normal to the surface 8V of the volume V, and 8, and 6,
are constants. For example, if §, = 1, 6, = 0 then we have zero flux (Neumann)
conditions. If, on the other hand, we set 6, = 0, then we have fixed (Dirichlet)
boundary conditions. If the model was to be solved on a ring, then the appropriate

boundary condition would be periodic, c(.[)} = ¢(L), where L is the circumference of

the ring.
For a system of interacting chemicals (1.5) generalises to
d
a—?:DVzu-l-f(u}, (1.7)

where u is a vector of chemical concentrations, u = (uy,us, ..., un)7;
f = (_fl{u),fg(u},.,.,fn(u])T and models chemical interaction; and D is an n X n
diffusion matrix. In the simplest examples, D is a diagonal matrix. More generally,
D can have off-diagonal terms to model cross-diffusion.

The classical reaction-diffusion (RD) system which will be analysed in this section

is a system of two chemicals, u and v, reacting and dilfusing as follows:

du

i D\ V*u + f(u,v) (1.8a)
v 5
T D,V*v + g(u,v). (1.8b)
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We will assume zero flux boundary conditions. The functions f and g are rational

functions of u and v (see examples later).

Definition. A uniform steady state of (1.8) is a state (u,v) = (uo,vo) where uo and

vp are constants in time and space, satisfying (1.8) and the boundary conditions.

Zero flux boundary conditions are trivially satisfied by any (uo,ve), and equations
(1.8) are satisfied by
f(u0,v0) = g(uo,vo) = 0.
As u and v represent chemical concentrations, we consider only non-negative solutions

to these equations.

Definition. Diffusion-driven instability (or Turing instability) occurs when a steady

state, stable in the absence of diffusion, goes unstable when diffusion is present.

We now carry out a linear stability analysis to derive the conditions under which
a Turing instability can arise.

Let u = ug+ %, v = vo + ¥ where @ and ¥ are small perturbations from the steady
state values ug, vo of u and v respectively.

Substituting into (1.8) and using a Taylor expansion (ignoring quadratic and

higher order terms), the equations for i and ¥ become

%‘: = D,\V%i+ f i+ f,¥ (1.9a)
o] .
e D,V + gyt + gub (1.9b)

with zero flux boundary conditions, where the partial derivatives f, fu,gu, 9. are
evaluated at (uo,vo). We look for a separable solution to (1.9) of the form

i = ae(x), 7= beMp(x) (1.10)
where
Vip+k2p=0 (1.11)

and ¢ satisfies the boundary conditions. The property (1.11) reduces the partial
differential equation system (1.9) to an ordinary differential equation system and is
equivalent to looking for a Fourier series solution.

Substituting (1.10) into (1.9) leads to the pair of simultaneous equations

A Dy - f. —fo a\ (0
( g A+&H—%)(b)_(0) (112)
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which will have non-trivial solutions (a,b)T if and only if A satisfies the dispersion
relation

Az'_''{fm'*'gv_"cz[-ﬁ'l -+ )Dz)}A + h{kz)zo (113}
where
h(kz) = -EJI-KJ!IB"I T [Dlgu 35 D’qu)kn + fugv = fugu- (114)
The uniform steady state will be linearly stable if R1 A(k?) < 0 V k? > 0 and linearly
unstable if 3 k* > 0, such that Rl A(k?) > 0. For diffusion-driven instability we
require, firstly, that Rl A(k?) < 0 for k* = 0, that is, the uniform steady state
is stable in the absence of diffusion. Hence we require the roots of the quadratic
equation

'\2(0) 75 (f“ + gl’)’\(n) + fugu = fvgu =0 (115)

to have negative real part. This occurs iff

.fu‘l'gu < 0 and fﬁgu_fv9u>0- (1]6)

Secondly, we require there to exist a positive k* for which A(k?) has positive real

part. Given (1.16), this can only occur if h(k?) < 0 for some k* > 0. Hence we require

Dygy + D2 fu > 0, (117}
D, fu
so that h(k?) has a minimum at a positive value of k? (kfmin = %i), and
112
Digu + Dafu > 2\/DiDs(fuge — fu94) (1.18)

so that this minimum is negative.

Therefore, the conditions for diffusion-driven instability are:
(C1) futg.<0

{02) fugv e fllgu >0

(03) Dlgu + Dl.fu > 0

(C.4) Dig, + Dafu > 2,/Dy Da(fugy — fugu)

Under these conditions, at the onsel ol instability, A is purely real so Lthal the insta-
bility is stationary. [If (1.13) has complex conjugate roots with a positive real part,

then the instability is oscillatory.]

Remark 1: (C.1) and (C.3) = D, # D,.
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Remark 2: (C.1) and (C.3) imply that f, and g, have opposite signs. This obser-
vation, together with (C.2), implies that, to an arbitrary relabelling of species, any
two-component kinetic mechanism that can lead to diffusion-driven instability must

give rise to a Jacobian in kinetic terms at (ug,vo) with the following sign structure:

K,E[: 1]1{;[; J‘r] (1.19)

Definition. A kinetic mechanism for which the Jacobian is of type K, (type K.)
is said to be a pure (cross) activator-inhibitor mechanism at (uo,vo). Note that the

type of a mechanism may vary with (ug, ve).

Remark 3: (C.1)-(C.4) ensure that there exist wavenumbers k* > 0 such that
A(k?*) > 0. For the uniform steady state to be unstable, at least one of these wavenum-
bers must lead to an admissible solution. That is, the corresponding function ¢ must
satisfy the boundary conditions. Hence (C.1)-(C.4) are necessary but not sufficient

conditions for diffusion-driven instability.

Example. Suppose we are on the one-dimensional domain [0, L]. Then, for zero flux
boundary conditions, the functions ¢ are cos “f=, that is, the admissible wavenumbers,
k, are k, = 7, n = 1,2,3, ...

Remark 4: The onset of instability is termed a bifurcation point. If instability is to
an oscillatory solution it is termed a Hopf bifurcation. Note that a Hopf bifurcation
can only occur in (1.8) at k = 0, that is, the bifurcation can only yield temporally
oscillating solutions when the stationary point of the associated space-independent
equations loses its stability (A full statement of the Hopf bifurcation theorem can be

found in any standard bifurcation textbook).

Consider now the mechanism K,. Here g, < 0 so that u inhibits v, while f, > 0,
so that v activates u. Furthermore, condition (C.1) = |fu| > |gu|, so from (C.3)
D, > D,. That is, the activator diffuses more slowly than the inhibitor. This is an
example of the classic property of many self-organising systems, namely short-range
aclivation, long-range inhibition.

In Turing’s original model, f and g were linear so that, if the uniform steady
state became unstable, then the chemical concentrations would grow exponentially.
This, of course, is biologically unrealistic. Since Turing's paper, a number of models

have been proposed wherein f and g are nonlinear so that when the uniform steady



158

state becomes unstable, it may or may not evolve to a bounded, stationary, spatially
non-uniform, steady state (a spatial pattern) depending on the nonlinear terms.

These models may be classified into four types:

(i) Phenomenological Models: The functions f and g are chosen so that one of the
chemicals is an activator, the other an inhibitor. An example is the Gierer-
Meinhardt model (1972):

du yu?
—_ = — i —
dt “ '6 ® v
source linear autocatalysis in u/
degradation inhibition from v
(1.20)
d
d—:l — 511.2‘ — nv
activation linear
by v degradation

where a, 3,7, § and n are positive constants.

(ii) Hypothetical Models: Derived from a hypothetically proposed series of chemical
reactions. For example, Schnakenberg (1979) proposed a series of trimolecular

autocatalytic reactions involving two chemicals as follows

k
Xet A B25Y x4V 2aX.
k,

Using the Law of Mass Action, which states that the rate of reaction is directly
proportional to the product of the active concentrations of the reactants, and
denoting the concentrations of X,Y, A and B by u,v,a and b, respectively, we

have
f(u,v) = kea — kyu + kqu?v, g(u,v) = ksb — kqu’v (1.21)

where ki, ..., kq are (positive) rate constants. Assuming that there is an abun-

dance of A and B, a and b can be considered to be approximately constant.

(iii) Empirical Models: The kinetics are fitled to experimental data. For exam-
ple, the Thomas (1975) immobilized-enzyme substrate-inhibition mechanism
involves the reaction of uric acid (concentration u) with oxygen (concentration
v). Both reactants diffuse from a reservoir maintained at constant concen-

tration o and v, respectively, onto a membrane containing the immobilized

(iv)
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enzyme uricase. They react in the presence of the enzyme with empirical rate
v
K“_m_"'__...+u+‘:' TR, 50 that

Vinuv

Ko +u+ /K,
(1.22)

Vinuv

Korutak, Jv)=Blv—v)-

flu,v) = a(ue—u)—

where a, 3, V,n, K,n and K, are positive constants.

Actual Chemical Reactions: Although Turing predicted, in 1952, the spatial
patterning potential of chemical reactions, this phenomenon has only recently
been realised in actual chemical reactions. Therefore, it is now possible, in
certain cases, to write down detailed reaction schemes and derive, using the

Law of Mass Action, the kinetic terms.

The first Turing patterns were observed in the chlorite-iodide-malonic acid
starch reaction (CIMA reaction) (Castets et al., 1990, De Kepper et al., 1991).
The model proposed by Lengyel and Epstein (1991) stresses three processes:
the reaction between malonic acid (MA) and iodine to create iodide, and the
reactions between chlorite and iodide and chloride and iodide. These reactions
take the form

MA+I, 5 IMA+ 1™ + H*

1
ClO; + 1~ — ClO; + 51
ClO; +41~ +4H* » CI” + 21, + 2H,0.

The rates of these reactions can be determined experimentally. By making the
experimentally realistic assumption that the concentration of malonic acid, chlo-

rine dioxide and iodine are constant, Lengyel and Epstein derived the following

model:
Ou 4duv
S oamm R g 2
%t 1 — U T a + V*u
v uv 5
5 =k [kg(u—— 1+u=) + eV v]

where u, v are the concentrations of iodide and chlorite, respectively and ky, k3, k3

and c are positive constants.

Murray (1982) calculates and compares the parameter space determined by
(C.1)-(C.4) for instability in the Gierer-Meinhardt, Schnakenberg and Thomas
models.
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Remark 5: A key problem in the verification of Turing structures is the required
variation of diffusion coefficients. For a general reaction-diffusion system, the ratio
may be changed as follows: consider a standard two-species reaction-diffusion system
of the form

Bu
5 = f{u,v)—}—Dleu,
v
_B_t = g(u}v} + DZV?’U,

where u is the activator and v the inhibitor. We make the additional assumption that

the activator is involved in a reaction of the form:

T
U+S=C.

T2

Assuming that both S and C are immobile, the RD system is now modified to:

du

-3'2 = f(uiv)_T1ﬂ3+TgC+ Dlvzu
v

T g(u,v) + D;V*v

de

i TIUS — TC

where s and c are the concentrations of S and C, respectively, and 7,7, are rate
constants. If r; and r; are large, then using singular perturbation theory, ¢ can be
approximated in terms of u by ¢ = ru, where r = syr; /r; and we have assumed that
the concentration of S remains close to its initial value, s,.

On addition of the first and third equations above, we obtain the following equa-
tion for the activator:

(1+ r)lz—:: = f(u,v) + D, V*u
thus when » > 1 the diffusion of the activator is greatly reduced.

This demonstrates how the formation of an immobile complex can reduce the
effective diffusion rate of the activator species. It was this type of approach that was
first used by Lengyel and Epstein (1991) to explain how Turing structures develop in
the CIMA reaction. In this case, starch forms a stable complex with triiodide ions
via the reaction

S+I"+L=S8I;

and the high molecular weight of the complex reduces the rate of diffusion.
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Remark 6: A characteristic of Turing patterns is the intrinsic relation between the
average diffusion coefficient of the reactants and the wavelength of the pattern. This
characteristic differentiates Turing patterns from other patterning phenomena. Tur-
ing demonstrated that near the bifurcation from a uniform steady state to Turing pat-
terns, the wavelength of the pattern is predicted to be V27T D, where D = /D1 D3,
and Dy, D, are the diffusion coefficients. T is the period of the limit cycle when the
system is at the onset of .Hopf bifurcations (temporally-varying pattern).

Using two types of gel, and varying the concentrations of the gels, it is possible
to experimentally test if Turing’s rule is obeyed for the CIMA reaction (Ouyang et
al., 1995). With the above variations, pattern wavelengths can be measured when D
is varied over a factor of three. The corresponding plot of average diffusion coeffi-
cient against the experimental wavelength confirms Turing’s prediction. Experimental
measurement of the period of limit cycles at the onset of Hopf bifurcation is also in

good agreement with the theoretical predictions.

1.2 Nondimensionalised system

To reduce the number of parameters in a model, appropriate non-dimensionalisation

may be used. For example, in the Schnakenberg model (1.21), set x* = 7, 7 = 3

u* =3, v* = 3. Then (1.21) becomes

du* kT T I TN

3‘; & ’U“ — kyTu® + kTUVu** + _Ll?V 2y (1.23a)
dv* ksT 2 %2 DgT *2_*
61-» = 7-!]— k4TU w v + —LT’V v (123]3)

Choosing T = ,:'—], U=V = \/;':—‘;, L= ,}%, reduces this system to (dropping * for

notational convenience):

a—za—u-}—uzu%—vzu (1.24a)
i
v - 5
3 =f —ulv + V% (1.24b)
=

where a = aﬁf‘ff-:—, B = bf-:,;'ii and § = %T. The number of parameters has been
reduced from eight to three. Of course, the nondimensionalisation is not unique.
1.3 Properties of Spatial Patterns

Conditions (C.1)-(C.4) determine domains in parameter space wherein diffusion-

driven instability is possible. From linear analysis, a number of predictions can be
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made on the properties exhibited by spatially patterned solutions to the reaction-
diffusion system (1.8):

P.1 Pattern complexity depends on domain size:
Under the conditions (C.1)-(C.4), there exists a range of wavenumbers, k, of pos-

sible spatial patterns satisfying
K2 < k? <kt (1.25)

where k? and k? are solutions to Rl A(k?) = 0, and Rl A(k?) > 0 for k? € (kZ,k}).
The values of k3 depend on the parameters. On one-dimensional domains with zero
flux boundary conditions, or Dirichlet conditions fixed at the spatially uniform steady
state, admissible wave numbers are of the form k = where L = domain length.
Therefore as L increases, n must increase in order for %3~ € [k?, k2]. That is, pattern
complexity increases with L. On the two—dlmenmonal domain [0, L.] x [0, L,] with

zero flux boundary conditions, the spatial component of the linear solution takes the

form
nwe mmry
= cos cos 1.26
where n and m are integers (at least one of which is non-zero).
Hence admissible k are now of the form k2 = %;- - ’E%: w2, Therelore, if the
a ¥

domain is long and narrow, i.e. L; > L, then (1.25) will only be satisfied if m = 0,

i.e., the pattern depends only on the = coordinate.

P.2 Phase relationship between solutions:

At a primary bifurcation point, from equation (1.12),

_fb
a= Dk~ fo (1.27)

Therefore, for a pure activator-inhibitor mechanism sgn a = sgn b, while for a cross
activator-inhibitor mechanism sgn a = — sgn b. Hence solutions for the pure (cross)
activator-inhibitor mechanism are in (out of) phase, at least in the vicinity of the

primary bifurcation point.

1.4 Nonlinear Analysis

All the above results are based on linear theory. As the solution begins to grow,
however, nonlinear terms become important and linear theory is no longer valid, i.e.

linear theory holds on a short time scale but breaks down on a long time scale. It
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is possible to calculate the solution in the vicinity of a primary bifurcation point as
follows (for full details see, for example, Fife, 1979, Britton 1986, Grindrod, 1996):

Consider the two species RD system in the one space dimension [0, ]

a H*u
5 = fw) +D5

- (1.28)

10 :
with zero flux boundary conditions, where D = 0§ ] Suppose that & is the

bifurcation parameter with critical value §. such that the uniform steady state up
loses linear stability for § < 8. Assume that at this point, ¢ = cosmz is the first
mode to have positive growth rate in time for some integer m.

Set § = 8. — b€, where £ < 1 and 8, is a constant, and expand any equilibrium

solutions via:

u(z) =uo + i e"u,(z) (1.29)

n=1
where ¢ is a positive constant to be determined, and u, = (un,va)"
Substituting (1.29) into (1.28) and expanding in Taylor series, we have

| 1
f(u) = f(uo)+ etdf(uo).u; + e*(df (uo).uz + Euff.,.. + uyvrfuy + §vffw)

1 1
+gsf(df(uu).u3 + —ulusz + (wyvz + Hz‘”l)fm. + 51-’11-'21'“

1 1
+ ;ulfuuu + 2“ ”lfuue '+' ﬂ'l”ffuvu + fuuu)
+0(e*),

where df (uo) is the Jacobian of f evaluated at 1o, and f,,, f,, etc. denote the vectors
obtained by partially differentiating f componentwise, evaluated at uo.
Equating powers of ¢ we find that { = 1. Denoting by L the linear opeartor

o?
Lu = { 3 - + df(llu)}
we find that at O(e/?),
Lu1 = 0.
Thus u; = Aacosme where a is an eigenvector of the matrix
Lo = df(up) — m*D

and A is a real constant to be determined. At O(e), Luz = R, which can be solved
to give u, = Bacosmz + bcos 2mz, where B is some constant and b can be found

in terms of the components of a and the constant A.
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At O(e%/?) we have
Ll.ls = Ra
where R contains secular terms. Using the Fredholm Alternative, the solvability

condition is that Ry must be orthogonal to a* cos mz as functions in L,((0,7), R?)
where a* is an eigenvector of the adjoint of L,,. That is,

f' Rj.acosmads = 0.
0
This leads to an equation of the form

0= A(6, +14%)

where the Landau constant ! can be found in terms of the parameters of the system

(but is independent of the bifurcation parameter 4,). Hence we have the solution

6. — 4 4
u=uy+ —6—-|Agiacos mz + O(48, — §), (1.30)
1
where A? = —6&, /1 (if the latter is positive). Thus, I < 0 yields the existence of a

stable spatially period pattern for d1 > 0 (a supercritical bifurcation), while I > 0
yields the existence of an unstable spatially periodic pattern for 8, < 0 (a subcritical
bifurcation). See, for example, Sattinger (1972).

Remark 1. Note that this analysis holds only in the vicinity of a bifurcation point,
that is, for € small, and is termed a weakly nonlinear analysis. To study solution
behaviour far away from the steady state one must use other techniques, for exam-
ple, numerical continuation and bifurcation techniques. The software package AUTO
(Doedel, 1986), for example, discretizes the stcady state equations using finite differ-

ences and solves the resulting nonlinear algebraic system.

Remark 2. This type of analysis can be carried out on domains of more than one
space dimension. In this case, the problem of degeneracy can arise. For example,
consider the domain [0, 2] x [0, 2] with zero flux boundary conditions and assume
without loss of generality that the first unstable mode occurs at the wavenumber
k = 1. Then

u, = a(A, cosz + A, cos v)

where A, and A, are arbitrary constants to be determined. Note that 4, = 0, A, #0
corresponds to a ‘stripe’ parallel to the z axis, A; # 0, A, = 0 corresponds to a ‘stripe’

parallel to the y axis, while if both A, and A, are non-zero and in particular, equal,
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then we have a ‘spot’. Extending the above weakly nonlinear analysis to such a ca.se
in two dimensions Ermentrout, 1991, showed that both types of solution could cx_ls.t
but that they were mutually exclusive as stable patterns. Specifically, in a symmetric
system with no quadratic terms and only cubic terms, stripes a.re.always selt.zctedlo‘ver
spots. Spots can only stably exist if quadratic terms are present in the nc.mlmr:.amti‘es.
However, Benson et al., (1997), have shown that when a spatially varying diffusion
is included it is possible to force an RD system that would exhibit stable spots to

exhibit stable stripes.

1.5 Inhomogeneous Domains and the Role of boundary con-
ditions

The linear analysis presented in Section 1.1 holds for the case of spatially uniform

parameters and zero flux boundary conditions (or Dirichlet conditions, fixed at the

spatially uniform steady state). Here we consider two cases where neither of these

conditions hold.

(a) Inhomogeneous domain. Let us consider a one-dimensio.nal domainT T €
[0, 1], where the diffusion coefficients of one of the chemicals is spatially non-uniform.
For simplicity, let us assume that in the general two chemical RD syster.n we have
nondimensionalised the equations such that D, = 1, and that D, = D(z) is the step
function .
D(“’)z{ Dt, t<z<1
where £ € (0,1) and D~ < D*. ’
The requirements for (o, vo) to be stable to spatially homogeneous perturbations
remain as before. To derive the analogues of (C.3) and (C.4), we linearise the rm.:-dcl
about the steady state (uo,vo), and look for separable solutions of this lil:tearlﬂcd
system, in the form v — uy = eMX,(z), v — vo = €*X,(z). Substituting into the

linearized model gives coupled ordinary differential equations for X, and X,:

Xy 4+ (a—A)X, +bX,=0 (1.31a)
[D(2)X!) + cXu + (d— A) X, = 0; (1.31b)

here prime denotes d/dz and, for notational simplicity, we denote by a,b,c,d, the

values of f,, f,, gu, g, respectively, at (ug,ve). We consider these equations separately
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on [0,£) and (¢,1]. In the former case, adding (1.31a) to s~/D~ times (1.31b) gives:

[b+ (d— A)s~/D"]

Xu+ _qu+|: _I\ £ Xu v| — U
( s~ X,) a + - + @=A¥cs- D] X 0 (1.32)
We choose s~ such that: b3 (8

+(d—A)s™ /D~ _

a—A+cs~/D- i (k39

which is a quadratic equation for s~, with roots s; and s; say. Equation (1.32)
then becomes a single equation in X, + 37 X,, for j = 1,2, with general solution
Cjcos(aj z) + Djsin(ajz). Here C; and D; are constants of integration, and o} =
[@a =X +csj/D7]?, j = 1,2. We therefore have two simultaneous equations for
Xu(z) and X,(z) in [0,£). Solving these and applying zero flux boundary conditions
at ¢ = 0 gives:

cos(£az)

Xu(z) =

1 [(Pu—kal‘['.,)s;

Gr=s) | eoEay) M-

cos{a;m)] (1.34a)

Bt [{r.. + 83 T,) (Tu + s7Ty)

s —57) | cos(as) cos(a; z) — W cos{ai’m)] (1.34Db)
on [0,€), where 'y, = X,(¢), ['v = X,(£). In (1.34), we are assuming that s] # s;
and cos(§aj) # 0 for 1,2; these special cases are discussed in Benson et al., (1993).
Similarly, on (¢,1):

o= L [(Tutsfl)s} — (Ty + s3T,)st
Xule) = oy | oy conlaf (1 - ) - et B o - ))]
(1.34c)

o1 [(+sny (Tut 5iT)
Xle) = G L= ey =5 = D gy ot ==

(1.34d)
By design, this solution is continuous at z = ¢, but we also require it to satisfy

continuity of flux, that is:
: B R, 7 . v . "
zl_lﬂl_ X (z) = 31_1’:?+ X.(=) il_)]}'l_ D™ X (z) = ,,li,r?+ D*X!(z). (1.35)
Substituting the solutions (1.34) into (1.35) gives:
PA)u + QNI =0

R(A)T, + S(A)T, =0,
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where
P(A) = (s{Ty —s7T7)/(s7 —s7) + (51T — s3T1)/ (s — 87)
Q) = sisp(Ty —T7)/(s5 — s7) + sfof (T = TYF)/(s5 — 1)
R(A) = D™ (T{ —=T3)/(s; — s7) + D*(T} = T5)/(s7 — 1)
S(A) = D™ (s Ty —53T7)/(s2 —s7) + D+( 1T — 83 T+)/(31 — s7)

and T; = aj tan(éaj), Tff = aftan((1 — ¢)ay), for j = 1,2. Now from (1.34),
I, =T, = 0 implies that X,(z) = X,(z) = 0. Thus for non-trivial X, and X,, we
require:

F(A) = P(O)S(A) — QA)R(N) = 0. (1.36)

This is the dispersion relation, relating growth rates of instabilities to the model
parameter values. The model system will exhibit diffusion-driven instability provided
(C.1) and (C.2) are satisfied, and provided this dispersion relation has a solution
with positive real part. Our derivation of (1.34) assumes that cos(éa7), cos(éaz),
cos((1 — €)ay), cos((1 — €)as) and (s — s7) are all non-zero. Similar analysis can
be done in the cases when one or more of these is zero, but the solutions for u and v
cannot in general satisfy continuity of flux at z = £. One notable exception to this,
however, is the homogeneous case D~ = D*. The solutions of the dispersion relation
given by the standard analysis (see above) satisfy af = nr for some n € [1,2,3,...}
and either j = 1 or j = 2. Thus with £ = 1/2, half of the eigenvalues X are not roots
of (1.33), since cos(nm/2) = 0 when n is even. These roots can be retrieved, however,
either by investigating the above special cases, or by taking more general values of £:
the value of ¢ is irrelevant when D~ = D+,

A typical functional form of F()) is illustrated in Fig. 1.1 (see Maini et al., 1992
and Benson et al., 1993 for full details).
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Figure 1.1: A typical functional form of the dispersion relation F(A) defined in

(1.36) for Schnakenberg kinetics. (See Maini et al., 1992, Figure 2, for full details).

Reproduced from Maini et al., 1992, by permission of Oxford University Press.

(b) Mixed boundary conditions. For boundary conditions of the form (1.6), a
uniform steady state will not, in general, exist and therefore the linear analysis of
Section 1.1 cannot be carried out. Here we consider a special case where a uniform
steady state does exist but each chemical satisfies a different boundary condition.
Consider the one-dimensional domain [0,1] and suppose that u is fixed at ug on the
boundary, while v satisfies zero flux boundary conditions. The linearised system (1.9)

now has solutions of the form

—
< g

) = eM®(z)

where
Z A, sin(mmz)
="z ; (1.37)
E B, cos(nmz)

n=0
By contrast, in the classical linear problem with scalar homogeneous Neumann con-

ditions, the n*" eigenfunction is of the form

An
P = ( B, )cns(ﬂrr:t:), (1.38)
Substituting (1.37) into the linearised system we obtain

i [A+ t.l(m'.rr)z — a]Ay, sin(mmz) = i bB, cos(nmrz)

m=1 n=0
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(1.39)
i[.\ + v8(nm)? — d| B, cos(nmz) = Y cAnsin(mrz).
n=0 m=1
Multiplying through by sin(mmz) and integrating over [0,1] leads to
A+ v(mr)? — a]An = 3 bBranm
(1.40)

cA,, = E[,\ + v8(nm)? — d| Brotnm
n=0
ﬁhcre

- (cos(nre), sin(mmz))

d(f.0) = [ fe)olz)de

System (1.40) is an infinite system of linear equations for the infinite number of
unknowns Am, Bn, m = 1,2,3,...,n = 0,1,2,3,.... To solve this system we make a
finite dimensional approximation (FDA) by considering only values of m up to M

(sin(mmrz), sin(mmz))

and truncating the sums at n = M — 1. This leads to a system of 2M equations for
the 2M unknowns (A, A3, ..., Ap, Bo, Bi, ..., Bu—1). We may rewrite the truncated

system as the generalized eigenvalue problem
Px =)Qx (1.41)

where x = (A4, Aa, ..., Ay, By, ..., By—1) and P and Q are 2M x 2M matrices which
have the block structure
P, -1 0
e=[m n] e[ al]

Here P; and Q; are M x M matrices given by

_ 0 if 19
(Pa)i = { v(mm)?—a if i=j
(Pz).',' = _505—1,5 Py=cl
(Pa)i; = (v8(7 —1)*n® — d)j1
(Qa)i; = aj-g

where 1,7 = 1,2,..., M, and I is the M x M unit matrix.
The solution of (1.41) leads to 2M eigenvalues ); with corresponding eigenvectors

x;. Thus the M-dimensional approximation to the solution is

(%)= ) e
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where (Ay;, Asi, .., Ami, Boiy Bui, .., Bar-1):) is the eigenvector with eigenvalue ;.
As the dimension of the FDA is increased, the values of the previously calculated
eigenvalues and eigenvectors will change and more eigenvalues and corresponding

eigenvectors will be generated. We use the following criteria as stopping tests.

(i) The approximation for a chosen ); and its corresponding eigenvector must con-
verge as the dimension of the FDA is increased. In the case of the eigenvectors
this also means that higher order terms are insignificant. For any given ); there
is an M, such that the computed eigenvalue and eigenvector are sufficiently

accurate for M = M..

(ii) The eigenvalues introduced for M > M, have real part negative, and thus

correspond to temporally decaying solutions of the linearised system.

If both these criteria are satisfied, then we are assured that the FDA only ignores
exponentially decaying terms in time and insignificantly small terms in the trigono-
metric expansion of the spatial component of the solution to the linearised problem.
Furthermore, if some of the eigenvalues obtained by the FDA have positive real part,
then the uniform steady state is unstable and we postulate that the solution will
evolve to a spatially varying solution of the form (1.42) with temporal growth rates
given by the real part of the positive eigenvalues (assuming, of course, that a bounded
solution exists). This procedure is illustrated in Dillon et al., (1994).

We can gain some insight into the connection with the Neumann problem as

follows. Note that the system (1.40) may be reduced by eliminating A,, to

i[(/\ + v(mn)? —a)(A + vé(nm)? — d) — bejanm B, = 0 (1.43)

n=0

form=123

gy dy e

This may be written as

i{)z + [v(mn)? + dv(nm)® — trace K| + 6v*(mn)?(n7)? — [av(mn)?

n=0

+ dv(nm)?] + det K}Bpapm =0,

b
d

As anm = 0 for n + m = 2p, the infinite system represented by (1.43) can be

e[ 0 ][2]

where K is the Jacobian matrix [ *
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Here B, = (Bo, B;...)T and B, = (B, B3...)T. Thus det Q()) = det Q;(A) det
2()) and the eigenvectors decompose into those with only B; # 0 for j even and
those with only B; s 0 for j odd.

The above analysis can be used to locate bifurcation points as a certain parameter
p is varied using the method of bisection as follows: we choose a low dimensional FDA,
a value of the parameter p, say p;, at which all eigenvalues have real part negative
and another value p,; at which at least one eigenvalue has positive real part. Assume,
without loss of generality, that p; > p;. Clearly, a certain number of eigenvalues must
cross the axis in (p;,p2). By examining the signs of the eigenvalues at the midpoint
(p1 + p2)/2 of the interval we can easily determine in which half of the interval the
bifurcation point lies. We can continue this procedure to find the bifurcation point
to the required degree of accuracy. By going to a higher dimensional FDA we may

obtain a more accurate value of the parameter at the bifurcation point.

2 Cell-Chemotactic Moaels

2.1 Mod_el Formulation

The model involves two dependent variables, cell density, n(x,t), and chemoattractant
concentration, ¢(x,t), where x and ¢ are the spatial coordinate and time, respectively.

Following Section 1.1, these variables satisfy the equations

aa—? = -V.J,. + f(n,c) (2.1)
dc
v -V.J.+ g(n,¢c) (2.2)

where J,,,J. and f(n,c),g(n,c) are cell, chemical flux and net production, respec-
tively. It is assumed that two processes contribute to cell flux: random motion, and

motion in response to gradients in chemical concentration. Hence
d
Jo=J, + 15 (2.3)

where J¢ = — D, Vn, that is, Fickian type motion with diffusion coefficient D,(> 0),
and J¢ = x(e)nVe, modelling chemotactic motion. The function x(c) measures
chemotactic sensitivity and can take a number of forms. For example, the simplest
form for x(c) is a constant. This assumes that the sensitivity of cells to attractant is
independent of attractant concentration. If cell sensitivity to c is known to decrease

with ¢, then one possible form for x(c) is a/c where « is a constant (Keller and Segel,
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1971). The action of cell surface receptors has been modelled by setting x(c) = =y
where a and o, are constants (Lapidus and Schiller, 1976; Ford and Lauffenberger,
1991). This modelling approach is phenomenological. Recently, Othmer and Stevens
(1997) have derived macroscopic chemotaxis equations based on microscopic rules
using a random walk approach. They show how specific assumptions at a microscopic
level can give rise to the types of phenomenological macroscopic models mentioned
above.

Typically, net cell production is assumed to follow logistic growth, that is, f(n,c) =
ra(N —n) where r and N are non-negative constants. Hence, at low cell densities,
growth is exponential, while at high cell densities (approaching N), cell growth tends
to zero.

The chemical is assumed to diffuse according to Fick’s Law, hence J, = —-D_ Ve,
where D is the (non-negative) diffusion coefficient. Net chemical production is com-
posed of two parts: production by the cells minus degradation. There are a number
of ways to model these terms depending on the biological situation. As an example,
chemical production may be a saturating function of cell density, modelled by the
term ﬂi;‘n-, where S and § are positive constants. Here, chemical production rate
per unit cell Ef—_n’ decreases with cell density, to account for the process of contact
inhibition whereby at high cell densities various metabolic pathways are turned off.
Degradation may be simply of the form —vc, where 7y is the rate of linear degradation.

The system (2.1)-(2.2) may be analysed in an analogous fashion to that of (1.8)
and shown to have the ability to produce spatial pattern. In this case, activation
is due to cells producing chemical which attracts more cells by chemoattraction,
while inhibition is due to cell depletion in the neighbourhood of a cell aggregation.
However, the nonlinear flux term means that the model is not as well behaved as
the standard RD system and cell-chemotactic models can exhibit blow-up (see, for
example, Childress and Percus, 1981 and Othmer and Stevens, 1997). A detailed
numerical bifurcation analysis of a version of (2.1)-(2.2) in two spatial dimensions
was carried out by Maini et al., (1991). Their results are considered in Section 4.3.
The model can also exhibit propagating patterns and these will be the focus of study
in the next section.
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2.2 Propagating Patterns

We consider here the non-dimensionalised version of (2.1)-(2.2) studied, in one spatial
dimension, by Myerscough and Murray, 1992:

dn 8*n 8 dc
] 2.4
F i ("ax) (2ids)

8c % n
- - 2.4b
8t 8z? Yiiw 1+n ¢ ( )

Here, it has been assumed that the chemotactic sensitivity is constant (a) and that,
on the timescale of interest, there is no net change in cell density.
Equations (2.4) have a one parameter family of homogeneous steady states
g
1+mng
where ng, the average cell density, is a constant parameter. If we assume zero flux
boundary conditions, then the initial cell density determines no, which can then

be considered as a fixed parameter. Linearising (2.4) about (2.5), and solving the

(2.5)

n=mng, €=cp=

resulting equations gives the dispersion relation

ﬁ =0. (2.6)

Note that in this case A = 0 at k = 0, so the standard weakly nonlinear theory
presented in the previous section does not automatically apply (see Grindrod et al.,
1989).

If the system is set initially to a spatially uniform steady state and then a pertur-
bation in cell density is imposed at one end, a regular pattern of standing peaks and

+ [ (Da + 1) + 1A + & | Do (k2 + 1) —

troughs is generated progressively. The wavelength of the pattern and its speed of
spread appear constant. Myerscough and Murray analysed this propagating pattern
with a method based on that developed by Dee and Langer (1983). At the lead-
ing edge of the pattern, the amplitude of the disturbance is small and linear theory
applies. Therefore, the solution to (2.4) at the leading edge may be written as the

integral of Fourier modes
n(z,t) = f ™ A(K) explikz + A(K*)¢]dk (2.7)

where A(k?) is given by (2.6) and A(k) is determined by the initial conditions.
This solution is valid at the leading edge and, assuming that the speed of propa-

gation is v, a constant, we have

(vt t) = f: A(K) expltg(k)]dk (2.8)
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where g(k) = ikv + A(k?). Using the method of steepest descents (see, for example,
Murray, 1984), this integral can be evaluated asymptotically for large ¢ and = to yield
F(k*)

TV

where F is a function of k which is not important for this particular analysis and k*

explt(ik*v + A(k*?)] (2.9)

is a saddle point of g(k) in the complex k-plane (i.e. a solution to 3 = 0), chosen so
that Re(ik*v + A(k*?)) > Re(ikv + A(k?))|xca Where a is the set of all saddle points
other than k*.

As the envelope of the pattern is constant in shape far from the initial perturba-
tion, it is assumed that Re(g(k*)) = 0. This is called the marginal stability hypothesis.
Hence, v and k* satisfy the equations:

. dh
=0 (2.10)
and
Re(ik*v + A(k*?)) = 0. (2.11)

Now consider the pattern in the moving frame of the envelope. In this frame, we see

an oscillating pattern at the leading edge with frequency of oscillation
Q= Im(g(k)). (2.12)

This is the frequency at which nodes are created at the front of the envelope. As-
suming that peaks do not coalesce and are conserved, this is also the frequency of
oscillation far from the leading edge. If k' is the wave number of the pattern far
behind the leading edge, then = kv, so
. A(k*?
k' = Re(k*) + fmu. (2.13)

v

This method assumes that the equations are weakly nonlinear in the vicinity of the
leading edge and that the behaviour of the solution is determined by the leading edge.

Myerscough and Murray carried out a comparison of the analytical results with
numerical simulations and found that for small amplitude solutions there was good
quantitative agreement but for large amplitude solutions the agreement was only
qualitative. In the latter, nonlinear effects play a crucial role. For example, peaks
produced near the leading edge tend to grow and coalesce, hence invalidating the
peak counting argument.

An application of the type of propagating patterns discussed in this section is
presented in Section 4.3.
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3 Mechanical Models

3.1 Model Formulation

The mechanical model proposed by Oster et al., (1983) has three dependent variables:
n(x,t), p(x,t) and u(x,t) which represent, respectively, cell density, matrix density
and matrix displacement at position x and time t. The cell and matrix equations
take the general form (1.3) and we consider them first.

The cell equation is

on
i ~V.J +rn(N —n) (3.1)

where J is cell flux and cell growth is assumed to be of logistic form. In this case, cell

flux is due to three processes.
(i) Random motion, modelled as usual by J¢ = —DVn

(ii) Haptotaxis: Cells move by attaching cell processes to adhesive sites within
the matrix and crawling along. As cells exert forces on the extracellular matrix
(ECM) they generate adhesive gradients which serve as guidance cues to motion.
The movement up such gradients is termed haptotaxis. Assuming that the
number of adhesive sites is proportional to ECM density, we have that J, =
anVp, where a is the haptotactic coefficient, assumed to be a non-negative

constant.

(iii) Advection: As the matrix is deformed, cells may be carried or dragged passively
along. This is termed advection and contributes a flux J, = n%?, where u is

the displacement of a material point of ECM.

Hence, the total cell flux, J, is given by J = Jqg +J4 +J., so that the equation for
cell motion is
on

_— 2., —
5t DV?*n —aV.(nVp) - V. (n

bu

at) +ra(N —n) (3.2)

The matrix equation is much simpler as the only contribution to matrix flux is ad-

vection, and matrix secretion is assumed negligible. Hence, p satisfies

bp du
O _ _g (,2® 3.3
" ("J Bt) (&3)

To derive the equation for the matrix displacement, u(x,t), we first note that for

cellular and embryonic processes, inertial terms are negligible in comparison to viscous
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and elastic forces, that is, motion ceases instantly when the applied forces are turned
off. Hence the traction forces generated by the cells are balanced by the viscoelastic

forces within the ECM. Therefore the equilibrium equations are
V.o+pF =0 (3.4)

where o is the composite stress tensor of the cell ECM milieu and pF accounts for
body forces.

Oster et al., (1983) model the cell-matrix composite as a viscoelastic material with
stress tensor

o =0, + 0, (3-5)

Here o, is the usual viscoelastic stress tensor (see, for example, Landau and Lifshitz,
1970),

Oe a6 E v
"”_fﬁ?Jr“’EIJ"'LHu(H 1—2u91)J (%6)
viscous - Etic

where: § = V.u is the dilatation, € = 1[Vu + VuT] is the stress tensor, I is the
unit tensor, y;,p, are the shear and bulk viscosities, respectively, and E,v are the
Young's modulus and the Poisson ratio, respectively.

The stress due to cell traction is modelled by

_ Tmp
T 14 A

where 7 and A are positive constants. This satisfies the conditions that there is

(3.7)

Tn

no traction without matrix and that traction per cell decreases with increasing cell
density (contact inhibition).
If the cell-matrix composite is attached to an external substatum, for example a

subdermal basement layer, then the body force will be
F = su (3.8)

where s is the modulus of elasticity of the substrate to which the composite is attached.

With appropriate boundary conditions [for example zero flux on n and p, with u
fixed], (3.1)-(3.8) define a simple version of the more complicated mechanical model
presented by Oster et al., (1983). The model equations can be analysed in much the
same way as the RD system discussed in Section 1 but due to its complexity it is less
amenable to analysis and further simplifying assumptions need to be made.

Linear and nonlinear analyses, plus numerical simulation, show that models within
this general mechanical framework can exhibit steady-state spatial patterns (Perelson
et al., 1986) and spatio-temporal patterns (Ngwa and Maini, 1995).
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4 Biological Applications

4.1 Developmental Constraints

Although the models discussed in Sections 1-3 are based on very different biological
hypotheses, they share many common mathematical features. In particular, in the
vicinity of primary bifurcation points from the uniform steady states, linear analysis
predicts spatial patterns that are eigenfunctions of the Laplacian operator with the
appropriate boundary conditions. Moreover, the mechanism of “short-range activa-
tion, long-range inhibition” that leads to patterning in RD systems may be generalised
to the cell-chemotaxis (CC) and mechanical models discussed in Sections 2 and 3. In
the CC model, short-range activation is due to chemoattractant secretion by cells
increasing with cell density resulting in chemical gradients attracting cells to centres
of high cell density. In turn, this creates zones of recruitment separated by regions
of virtually zero cell density which inhibit these zones from growing even further. In
the mechanical models, short-range activation is due to cell traction dragging cells to
areas of high cell density while the long-range inhibition is due to the elastic restoring
forces of the external tethering and the paucity of cells in surrounding regions.

Therefore, taking into account these mechanistic and mathematical similarities,
it is not surprising that these models exhibit many similarities in their patterning
properties. In other words, many of these properties are mechanism independent and
are therefore developmental constraints that patterns must satisfy, regardless of their
origin (Oster et al., 1988).

We now illustrate the application of the above models to three very different types
of biological pattern formation. In light of the above discussion it should be noted

that more than one model could account for each of these patterning processes.

4.2 Skeletal patterning in the vertebrate limb

The formation of skeletal patterning in the vertebrate limb has been the focus of
a great deal of experimental and theoretical research (for a review, see Maini and
Solursh, 1991). Recently, it has been shown that a number of Hox genes are switched
on in a precise spatio-temporal manner in the developing chick limb. Although these
are exciting advances, they still beg the question of how this patterning of activity is
initiated. RD theory, as a model for the generation of such robust processes as digit
formation, has been heavily criticised. For example, Bard and Lauder (1974) showed

that the qualitative form of the model solutions could be greatly influenced by minor
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perturbations in the system such as a small change in length. In such an application,
an essential requirement for a model is that it must be able to produce a limited
number of patterns in a very robust way. In this respect, the models discussed in this
chapter are almost too sophisticated because they exhibit a vast variety of patterns,
many of which are never observed. Hence, one is forced to turn the question of
pattern formation on its head and ask, how can one not generate so much pattern?
One way to address this issue is to investigate the role of boundary conditions. The
key point here is that certain types of boundary conditions preclude many patterns
from forming while extending the domains of stability of the remaining patterns. This
has been shown for an RD system in one dimension (Dillon et al., 1994). Figure 4.1
shows a comparison of the patterns formed under zero flux boundary conditions with
conditions in which the boundary is a sink for one of the morphogens while the other
still satisfies zero flux. The model now selects only patterns that are internal to the
domain, and exhibits a patterning sequence that is consistent with that observed in
the limb. The insight gained here then, is that the boundary plays an active role in the
patterning mechanism, rather than simply being a passive impermeable membrane.

In 1990, Wolpert and Hornbruch performed an experiment in an attempt to prove
that limb development in chick could not possibly arise as a consequence of a RD
or mechanical mechanism of the sort discussed in this chapter. They removed the
posterior half of a host limb bud and replaced it by the anterior half of a donor limb
bud so that the resultant double-anterior recombinant limb bud was the same size as
a normal limb bud. This experiment was performed at a sufficiently early stage in
development that no pattern was visible. The limbs developed two humeri instead
of one. This contradicted both models, due to the fact that the model solutions are
size-dependent, that is, if the domain size is unaltered, the patterns produced are
unaltered.

Figure 4.1: Subintervals of (0,1) in which the v component of a typical RD system

exceeds a fixed threshold as a function of length scale, L, for the cases (a) Neumann
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boundary conditions on both species, (b) Neumann boundary conditions for u, homo-
geneous Dirichlet boundary conditions for v. (See Dillon et al., 1994, for full details).
Reproduced from Dillon et al., 1994, by permission of Springer-Verlag.

However, this result is consistent with the theory if the model is modified. The
nondimensionalisation in Section 1.2 shows that diffusion and length scale are inti-
mately linked. Therefore, if we assume that the diffusion coefficient of the morphogen
varies appropriately across the domain, this essentially sets up an internal scaling,
where the length scale in one part of the domain can be made sufficiently small that it
cannot support Turing structures. Therefore, although combining two anterior halves
results in a limb bud of normal size, it might actually consist of doubling the pattern-
ing sub-domain and hence result in more complicated patterns. The prediction of the
modelling was that there must be a variation of diffusion across the anterior-posterior
axis of the chick limb (see Fig. 4.2 and Maini et al., 1992). This actually agrees
with experimental results which show that gap junction permeability varies across
the antefior-posterior axis of the chick limb (see, for exampl€, Brimmer et al., 1991).

The above results are all for a one-dimensional domain. Recently, we have shown
that the crucial patterning selection properties of different types of boundary con-
ditions and internal scaling by spatially varying diffusion coefficients can be carried
over to two-dimensional domains, producing patterns consistent with those observed
in the limb (Myerscough et al., 1997).
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Figure 4.2: (a) Steady state solution for v(z) to the Schnakenberg RD model with
a spatially-varying diffusion coefficient of the form D(z) = cocoshédz/coshs. (b)
Solution for the case where the D(z) is symmetrical about z = 1/2 but identical
to the case (a) on (1/2,1]. For a suitable choice of threshold concentration (- - -)

the prepattern in (a) specifies a single structure whereas that in (b) specifies two
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structures even though the domain size has remained unchanged. (See Maini et al.,
1992, for full details). Reproduced from Maini et al., 1992, by permission of Oxford
University Press.

4.3 Pigmentation patterns in reptiles

The steady-state patterns exhibited by the cell-chemotactic (CC) model presented
in Section 2 have been extensively studied in two dimensions and shown to be con-
sistent with many characteristic skin pigmentation patterns on snakes (Maini et al.,
1991, Murray and Myerscough, 1991). However, here we focus on a different type of
patterning, namely propagating patterns, with particular application to the pigmen-
tation patterns of brown/black and white stripes on hatchling alligators. The white
stripes are due to an absence of melanocytes (Murray et al., 1990) and therefore it
appears that a cell movement model in which high cell density results in pigmented
regions while low cell densities lead to an absence of pigmentation, is a more realistic
model than one based on reaction-diffusion. The pattern is initiated from the head
and propagates down the head-tail axis. Murray et al., (1990) showed that a CC
model of the form illustrated in Section 2 can produce such propagating pattern (see
Fig. 4.3). Note that the sharpness of the peaks is characteristic of CC models.

U\ ,
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x

Figure 4.3: Propagating patterns exhibited by the CC model of Section 2 (Murray et
al., 1990). Reproduced from Murray et al., 1990, by permission of The Royal Society,

London.

4.4 Skin Organ Formation

During morphogenesis regular patterns often develop behind a frontier of pattern
formation which travels across the prospective tissue. A simple example of such

patterning was considered in Section 4.3. More complicated patterns can arise in,
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for example, the structure of feather primordia. A feather primordium consists of a
thickening (placode) of the epidermis overlying an aggregation of cells (papilla) in the
dermis. The primordium initiates the formation of a feather. On the dorsal surface of
the chick, feather primordia form in a specific sequence. Firstly, a row of primordia
form along the dorsal midline. Subsequent rows form lateral to this initial row with
the primordia in each row roughly 180° out of phase with those in the previous row,
so that a rhombic pattern appears. This patterning process requires the interaction
of both epidermis and dermis.

Perelson et al., (1986) considered a version of the mechanical model of Section 3
and showed that it could give rise to sequential patterning in the dermis consistent
with that observed experimentally. Once the initial row of pattern is set up due, for
example, to the uniform steady state going unstable, it, in turn, sets up a strain field
that causes cell aggregations in the adjacent rows to be situated 180° out of phase
with those of the dorsal midline. ' _

A more biologically realistic model was proposed by Cruywagen and Murray
(1992) which includes tissue-tissue interaction. This model encorporates many of
the key features of the models discussed in Sections 2 and 3 by coupling chemical
interaction with mechanical effects in a mechanochemical model. Briefly, dermal cells
secrete a chemical which diffuses into the epidermis where it stimulates cell traction.
Epidermal cells secrete a chemical which diffuses into the dermis where it acts as a
chemoattractant. Cruywagen et al., 1992, show that tissue-tissue interaction is essen-
tial for this model to produce pattern and that the form of the full two-dimensional
pattern is determined by the pattern along the dorsal midline. In other words, the
specification of a simple quasi-one-dimensional pattern is all that is required to de-

termine a complex two-dimensional pattern (see Fig. 4.4).
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Figure 4.4: Sequential pattern formation in a tissue-tissue interaction mechanochem-
ical model. Regions of high cell density are shaded. (a) Initially, a single row of spots
of high cell density is specified at one end of a rectangular domain. As the system
evolves, more rows are added sequentially as the pattern propagates across the do-
main; (b) and (c) show density profiles at subsequent times. (For full details, see

Cruywagen et al., 1992). Reproduced from Cruywagen et al., 1992, by permission of
Oxford University Press.
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4.5 Coupled Pattern Generators

In Section 4.4 we considered a coupled mechanical-chemotaxis system. This model
coupled the mechanical properties of the epidermis, with the chemotactic properties of
dermal cells. Each tissue on its own was unable to produce patterns. The coupling was
crucial to pattern formation: the dermal-epidermal interaction triggered “activation”
in the epidermis by initiating cell traction; the epidermal-dermal interaction triggered
“activation” in the dermis through chemotaxis. Here we briefly consider a coupled
RD-CC model in which each model on its own can produce pattern. In this case the
coupling enhances the complexity of the patterns formed (Painter et al., in prep.).
Suppose that a cell population responds to two chemicals which themselves form

a RD system. A possible model for this situation is the following:

2—1: = D,V*n — V.{nxu(u,v)Vu + nx,(u,v)Vv} (4.1a)
Ou 3
Bt = D,V?*u + f(u,v,n) (4.1b)
dv 0
i D,V*v + g(u,v,n) (4.1c)

where n, v and v are cell density and chemical concentrations, respectively, D, D1, D,
are diffusion coefficients and yu, X» are cell chemotactic responses to gradients in u
and v, respectively.

For simplicity, let us assume that f and g do not depend on n, and that the time
scale for the chemical dynamics is much faster than that of the cell dynamics. Then,
in the appropriate parameter space, v and v will evolve to spatially-varying steady
state patterns. If we restrict our attention for the moment to the one-dimensional

domain z € [0, 1], the steady state equation for n is

‘ d&#n d du dv
=H e e et 2
0 }.'),,d;52 e (nx.,(u, v) = - nx‘,(u,v)dz) (4.2)

where u and v are at their steady states. Imposing zero flux boundary conditions,

this equation can be integrated twice to give

1 du dv
n(z) = kexp (D—j:] (qu + X"E) dz) (4.3)

where k can be evaluated using conservation of cell density.
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One way to measure complexity of pattern is to calculate the number of turning

points for a particular pattern. Critical points for n(z) are given by

8 B 4.4
xuda: X"dz:ﬁ ’ @

For the parameter regimes wherein the subsystem (4.1b)-(4.1c) is close to a primary
bifurcation point, we can use nonlinear analysis (Section 1.5) to derive analytic ap-
proximations for u and v. We can then substitute these expressions into (4.4) and,
for the different chemotactic sensitivities described in Section 2, find if (4.4) has
more solutions (corresponding to more complex pattern) than the number of critical
points for the chemical concentrations. In this way, we can precisely measure how
the complexity of pattern is enhanced by different modes of coupling.

The above analysis applies only to a one-dimensional domain and in the vicinity of
a primary bifurcation point. A more extensive investigation of the solution properties
of this model can be carried out using numerical simulations. Fig. 4.5 illustrates some
typical patterns. Fig. 4.5a shows a one-dimensional pattern corresponding to thick
and thin stripes. This kind of pattern can be generated by a pure CC model (Maini et
al., 1991). However, the pattern in Figure 4.5b cannot, to our knowledge, be exhibited
by a simple pattern generator. Note that this pattern captures the intricate features

of some animal coat markings, such as those on the jaguar.

(&)

Figure 4.5: Patterns exhibited by coupling pattern generators. (a) A one-dimensional

pattern in cell density corresponding to thick and thin stripes. (b) A two-dimensional

pattern in which the intensity of shading represents cell density.
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5 Conclusions

The study of coupled systems of reaction-diffusion equations was inspired by a math-
ematician wishing to understand the mechanisms underlying biological pattern for-
mation. This led to the prediction that interacting chemicals could, under special
conditions, lead to patterns in chemical concentrations. It has only recently been
discovered that this is indeed the case and many patterns predicted by Turing type
models have now been found experimentally (see Maini et al., 1997, for a review of
recent experimental results on spatial pattern formation in chemistry).

Since Turing’s seminal paper, a number of other mechanisms have been proposed
as pattern generators, most notable being the chemotactic and mechanical models
described in this chapter. As mentioned in Section 4.1, many features of the patterns
exhibited by these models are generic. This has the advantage of allowing one to make
some general preditions irrespective of the detailed biology, but has the disadvantage
of not allowing us to distinguish between‘bic;logical mechanisms. There are some
exceptions to this. For example, as discussed in Section 4.3, cell movement seems
to play a key role in reptile pigmentation patterns suggesting that RD models are
probably not appropriate. However, in such circumstances, a study of the simplest
and most mathematically tractable model can still yield valuable insight due to the

mechanism-independent mathematical properties of many of the patterns.

Acknowledgement: I would like to thank Brenda Willoughby for typing this manuscript.
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