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This volume contains the proceedings of the U.S. Australia workshop
on Complex Interconnected Biological Systems held in Albany, Western
Australia January 1-5, 1989. The workshop was jointly sponsored by the
Department of Industry, Trade and Commerce (Australia), and the Na.-
tional Science Foundation (USA) under the US-Australia agreement.

Biological systems are typically hard to study mathematically. This is
particularly so in the case of systems with strong interconnections, such as
ecosystems or networks of neurons. In the past few years there have been
substantial improvements in the mathematical tools available for study-
ing complexity. Theoretical advances include substantially improved un-
derstanding of the features of nonlinear systems that lead to important
behaviour patterns such as chaos. Practical advances include improved
modelling techniques, and deeper understanding of complexity indicators
such as fractal dimension.

Game theory is now playing an increasingly important role in under-
standing and describing evolutionary processes in interconnected systems.
The strategies of individuals which affect each other's fitness may be incor-
porated into models as parameters. Strategies which have the property of
evolutionary stabilty result from particular parameter values which may be
determined using game theoretic methods. Since the main feature of living
systems is that they evolve, it seems appropriate that any model used to
describe such systems should have this feature as well. Evolutionary game
theory should lead the way in the development of such methods.

The workshop brought together researchers in Australia and the USA
who had worked on these problems or on methodologies which would be
suitable for solving them. The participants included applied mathemati-
cians, control theorists, mathematical biologists, and biologists. Each par-
ticipantwas invited to give an informal presentation in his or her field of
expertise as related to the overall theme. The formal papers (contained
in this volume) were written after the workshop so that the authors could
take into account the workshop discussions, and relate their work to that
of other participants. To further encourage this exchange, each paper con-
tained in this volume was reviewed by two other participants who then
wrote formal comments. These comments, with the author's reply in some
cases, are appended to each paper. We feel that these comments and replies
form a very valuable part of this volume in that they give the reader a share
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Workshop in Albany by devoting a section of his paper (section 6) to re-
examining an aspect of his model using a different mathematical approach.

Nick Caputi Two Dimensional Pattern Formation

Quite complicated biological situations can be modelled by relatively simple
mathematical formulations and this paper is an excellent example of such
an approach. The subtle competitive interaction between plant strains,
involving the added complication of time lags in seed survival and per-
sistence, has been modelled by Pakes as a system of difference equations.
This model is easy to understand and describes the competition in terms
of seed production and survival in a seed population which persists in the
soil from year to year.

The model succeeds in fitting field data, from different locations, quite
well and can also be used to make predictions. This is obviously valuable for
future development of clover strains in any pasture breeding programme.
Relatively simple descriptions give a strong insight into the way probable
biological mechanisms interact and provide a comprehensible theoretical
framework to test hypotheses and the sensitivity and importance of various
measurable field parameters.

Unfortunately, it takes a fair number of years to evaluate the predictive
capabilities of such models because they describe a microcosm of Evolu-
tion and are thus often, of their very nature, long term descriptors and
predictors. Nevertheless, the class of models analysed by Pakes is pretty
convincing as to the probable competitive mechanisms at work. The de Wit
replacement principle is neatly linked into the dynamics and the fit with
extant data and intuition persuades one that the models capture important
aspects of the real world situation.

In a Chemotactic System

M.R. MYERSCOUGH,P.K.MAINI,lD. MURRAY,

K.H. WINTERS

Abstract

Phil Diamond

Chemotaxis is known to be important in cell aggregation in a variety
of contexts. We propose a simple partial differential equation model for
a chemotactic system of two species, a population of cells and a chemo-
attractant to which cells respond. Linear analysis shows that there exists
the possibility of spatially inhomogeneous solutions to the model equations
for suitable choices of parameters.

We solve the full nonlinear steady state equations numerically on a two
dimensional rectangular domain. By using mode selection from the linear
analysis we produce simple pattern elements such as stripes and regular
spots. More complex patterns evolve from these simple solutions as param-
eter values or domain shape change continuously. An example bifurcation
diagram is calculated using the chemotactic response of the cells as the bi-
furcation parameter. These numerical solutions suggest that a chemotactic
mechanism can produce a rich variety of complex patterns.

1. Introduction

There are numerous biological phenomena which involve organisation
or pattern formation in one, two or three spatial dimensions. Examples of
these include spatial distribution of species in ecology, the spatial spread of
an epidemic and pattern formation (morphogenesis) during development.
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Mathematical models describing these phenomena will necessarily have a
spatial component.

Spatial models for developing systems should produce one of two types
of behaviour. The model may either be robust or produce a variety of spa-
tial patterns for comparatively small changes in initial conditions or model
parameters (sensitive). Robust models are required to describe the mor-
phogenesis of systems such as the skeletal system where essentially the same
pattern is always produced in every individual. Models which produce a
variety of pattern are suitable, for example, for describing pigmentation
pattern. There can be a wide variation of pigment markings between in-
dividuals in the same species or closely related species but the patterns
are all generated by the same mechanism. We investigate in this paper a
simple mechanism which can produce a variety of complex patterns in a
population of motile cells.

Migration, localisation and aggregation of cells leading to spatial pat-
tern play an important role in many developing systems. Examples of
such systems include skeletal structures in the vertebrate limb (Hinchliffe
and Johnson 1980), slime mould aggregration (Loomis 1975) and the neu-
ral system and pigmentation cells (Le Douarin 1982). We consider here a
simple model for motile cells whose aggregation is driven by chemotaxis
and investigate what type of patterns such a system can produce in two
dimensions.

Chemotaxis is the process whereby motile cells migrate in response
to a gradient of some chemical substance. The cells may either migrate
towards high concentrations of this particular substance (chemoattraction)
or away from high concentrations (chemorepulsion). Chemotaxis is known
to operate in the aggregation of slime mould amoebae and in the localisa-
tion of leukocytes in tissue where bacterial inflammation is occurring (Alt
and Lauffenburger 1987). We consider here a population of motile cells
responding to a chemoattractant. This chemoattractant is produced by
the cells themselves and so promotes aggregation and localisation of cells
in clusters of high cell density.

be removed from the population in some other way. The chemoattractant
is produced by the cells themselves, diffuses through the cells' environment
and decays linearly. These factors may be captured in a mathematical
formulation as follows:

Equation for cell density

Equation for chemoattractant concentration

ae
at DcV2e

dif fusion

Sn
+ p+n

production
by cells

,e
linear
decay

(lb)

where the operator V2 represents ~ +~, Dn and Dc are diffusion coef-
ficients for the cells and the chemoattractant respectively, a is the chemo-
tactic coefficient, f is the mitotic rate of the cells, N the carrying capacity
of the cells' environment, Sand p determine the rate of synthesis of the
chemoattractant and I its rate of decay. We can write these equations in
non-dimensional form by setting

n.
n = 71'

D=~j

1£.
c= S'

Sa.
a = "'IJ';=f'

t = It; x=x[ii;
;:;R Nr - ~. N = 7.1

- I ' fJ

(2)

which gives
an
at = D\l2n- a\l . (n\lc) + rn(N - n)
ac 2

{

n

}at=\lc+ l+n-c.

(3)

2. Mathematical Model We consider a finite domain where neither cells nor chemoattractant can
cross the boundary of the domain. Hence Neumann boundary conditions
apply, namely

We propose a simple model based on the models for slime mould ag-
gregation which were first proposed by Keller and Segel (1970). The model
comprises a population of motile cells of density ii and a chemoattractant
of concentration e. The cells undergo both random and chemotactic motion
and are able to divide and, where cell density is high, to differentiate, die or

s(x) . \l c(x, t) = s(x) . \In(x, t) = 0, x E aV (4)

where s(x) is the outward unit normal to the boundary av.

an = DnV2n - aV . (nVe) + fn(N - n)at
random chemotactic replication (la)
motion motion and removal
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Equations (3) have one homogeneous steady state,

(5)

The dispersion curve is illustrated in Figure 1. When u(k2) > 0 the homo-
geneous solution is unstable to small perturbations provided the solution
domain allows disturbances of wave number k = Ikl. The homogeneous
solution is stable for k2 very small or very large. For k2 small the per-
turbation from the homogeneous steady state has a long wavelength. The
gradient of chemoattractant is so low in this case that cell death and re-
production smooths out any deviation from the homogeneous steady state
before chemotactic cell migration can take effect. For very large P the
perturbations have a small wavelength and on such a small length scale
random cell motion quickly disrupts cell pattern and hence eliminates any
chemotactic effect. When u = 0, k2 satisfies

Dk4+{rN+D- (1:~)2}k2+rN=0. (8)

For unstable modes to exist at least one root of (8) must be real and non-
negative. This implies that

Na
rN + D < ,. . ..,~, and

{ }

2 (9)

rN + D - (1 :~)2 > 4rND.

On a finite domain a number of discrete modes given by k2 will be unstable.
By a suitable parameter choice we can cause only one mode to be linearly
unstable (see Figure 2). Patterns of this wavenumber will then dominate
the subsequent evolution of the system. To isolate the mode kl we choose
our parameters so that the maximum value of u( k2) occurs at kl and is
zero, i.e equation (8) holds and has equal roots in k2. Therefore we require

Na
rN + D - ,. . ..,~ = -2v(rN D). (10)

We take the negative square root in agreement with (9) so that kl is non-
negative. Substituting (10) into (8) we have

kl =v(rNj D). (11)
On a rectangular domain of dimensions Lx x Ly we can use (10) and (11)
to select a pattern with l half wavelengths in the x direction and m half
wavelengths in the y direction by choosing the parameters such that (10)
is satisfied and

n ~ no = Nand C =Co = Nj(1 + N).

Setting n = no + u, C= Co+ v with lul, Ivl « 1 in equations (3) we get
the linearised system,

~; = DV2u - aNV2v - rNu

QV 2

{

U

}at= V u + (1+ Np - v .

(6)

We set (u, v) <Xeik'x+qt in (6) and obtain the dispersion relation as the
appropriate solution of

u2+((D+l)k2+rN +1)U+Dk4+{ rN + D - (1 :~)2 } k2+rN = O. (7)

a

0

Figure 1. Dispersion curve u( k2).

k2

{

£2 m2

}11'2 L~ + L~ = ..j(rNj D).
We refer to this pattern as the (l, m) mode.

(12)
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(1

k2

bifurcation from the uniform steady state occurs the Jacobian is singular.
Thus we could identify bifurcation points from the uniform steady state.
We then computed the eigenvector corresponding to the zero eigenvalue of
the J acobian matrix at these bifurcation points and used it as a first guess
for the solution on the non-trivial branch. Continuation proceeds along the
branch. We are also able to step off a branch of solutions in the 0' - IInll
plane and by continuation in another parameter such as S, r, N or domain
size or shape to investigate how the solutions change with respect to this
new bifurcation parameter. This is illustrated in Figure 3. Computations
were performed using the ENTWIFEfinite element package on the CRAY-IS
at Harwell. Further details of the numerical methods are given in Riley and
Winters (1987).

0

Rnli

D\12n - 0'\1. (n\1c) + rn(N - n) = 0

\12c+
{

~ -c
}

= 0
l+n

(13)
a

Figure 2. Mode isolation. Dispersion curve showing isolated mode kl.

3. Steady State Pattern

We solved the steady state equations

on a 1 x 4 rectangular domain V . A norm IInllwas defined on the solutions
to (13) by

IInll= J1) IN- nl dxdy.
J1) dx dy

Using this norm the trivial solution is the homogeneous steady state solu-
tion n =N, c = N/(1 + N). We solved equations (13) numerically using
the finite element approximation with nine- noded rectangular elements in
a standard Galerkin formulation. To investigate bifurcation behaviour and
follow solutions we evaluated the Jacobian of (13) on the trivial branch

. ,using 0' as the bifurcation parameter. At points on the trivial axis where

(14)
Figure 9. Bifurcation branches in three dimensions: A, bifurcation branch

in the 0' -lInll plane; B, bifurcation branch in the A -lInll plane
obtained by stepping off A at point C. Here A represents any
one of the parameter set.

To produce various patterns we selected each mode using (10) and (12)
to give a good estimate of the appropriate parameter values. By allowing
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Cl'to vary we found numerically the exact point where bifurcation from
the homogeneous steady state into each mode occurred. Using numerical
continuation we stepped along the non-trivial branch until the solution
was sufficiently far from the uniform steady state for the pattern to be well
developed. Figures 4,5 and 6 show some of the patterns we obtained in this
way. The modes where f = 0, e.g. (0,2) and (0,3) all give lateral stripes
(Figure 4). Longitudinal stripes are given by the modes with m = 0, e.g.
(2,0) (Figure 5).The modes (0,4) and (1,0) are degenerate as they have the
same value of k2 on a 1 x 4 domain. In order to select these modes we had

to alter the domain size slightly so that the modes lost their degeneracy and
could be separated. A variety of regular spots and blotches were produced
in the modes where f and m are both non-zero (Figure 6).

::,':,i,::\:\:,\,:::\,\'\:iii:i:::H'

(a)

~
increasing cell density

Figure5. Longitudinal stripe patterns: (2,0) mode.

(b)

results do suggest that a chemotactic model can produce basic pattern el-
ements. These basic elements correspond to the patterns produced by the
eigenfunctions of the linearised system. The model is also able to produce
more complex patterns. For example if we start with the (1,2) mode and
continuously increase Cl',areas of high cell density form into spots and each
spot divides to give a pair of spots. Changing the domain size and shape
also produces interesting patterns. We elongated the domain in the y di-
rection by stepping off the (0,4) branch and continuing with LII as the
bifurcation parameter. Secondary peaks appeared in the interstices of the
original peaks (Figure 7). These interstitial peaks grew until, when the do-
main length had doubled, they were the same height as the original peaks.
Growth of the domain can also change the symmetry of the pattern and
transform asymmetric spots into symmetric spots or bands. If we start
with a pattern on the (1,2) solution branch and step off that branch in
the Cl'-lInll plane using Lx as the continuation parameter the asymmetric
spots move to the centre of the domain and the pattern becomes symmetric
(Figure 8). These examples of changing domain shape illustrate the im-
portant effect of growth on pattern and suggest that if growth takes place
while the pattern formation mechanism is still operative but on a timescale

~
increasing cell density

Figure4. Lateral stripe patterns: (a) (0,2) mode; (b) (0,3) mode.

Because we are calculating the steady state solution we can say noth-
ing about the stability of the patterns in Figures 4, 5,and 6. However the
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(a)

(b)

~

increasing cell density

Figure 6. Spot patterns: (a) (1,1) mode; (b) (1,2) mode.

slower than cellular motile behaviour, such as chemotaxis, it will have an
important bearing on final pattern.

In this section we have described some of the steady state patterns
produced by the model. In the next section we investigate systematically
the richness of possible pattern as just one parameter Cl:is varied.

PATTERN FORMATION IN A CHEMOTACTIC SYSTEM 75

(a)

0 4

(b)

0 4

(c)

0 4

Y

8

4. An Example of a Bifurcation Diagram
Figure 7. Schematic diagram of the cross-section in the y direction of cell

density patterns as Ly increases: (a) Ly = 4; (b) Ly =7.6; (c)
Ly = 8.

We found the first few primary bifurcation points as Cl:increased for the
parameter set given in Table 1. We continued along each of these branches.
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(a)

(b)

IInll
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0.8

et

0.4

A

0

15 20 25

Figure 9. Bifurcation diagram. Ordered pairs refer to the mode on that
branch. Letters A-M refer to Figure 10 which shows solutions
on the branches.

~

increasing cell density

Figure 8. Effectof changing domain width Lx on (1,2) mode: (a) L~ = 1;
(b) Lx = 2.7.
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The results are illustrated in Figure 9. The first branch to bifurcate from
the trivial solution was the (0,2) mode solution. The cross-sections of
this solution parallel to the y direction are shown in Figure 10(a). As the
solution reaches the region marked B interstitial peaks start to form. This
solution comes closer and closer to the (0,4) branch and finally joins onto
it via a secondary bifurcation.

A

Table 1. Parameter values for the bifurcation diagram. B

Cell carrying capacity N
Diffusion coefficient D

Linear growth rate r

1

0.25

1.52

(a)

As Q increases the next branch to bifurcate from the trivial solution
after the (0,2) branch is the (0,3) branch. As Q continues to increase the
solutions on this branch form sharper and sharper peaks (Figure 10(b».
This is what we might anticipate as Q controls the aggregative force on the
cells.

The next primary bifurcation gives the (0,1) branch. This branch
loops round and joins back to the trivial branch. A different choice of
norm makes it clear that this is in fact a pitchfork bifurcation where the
two branches of the pitchfork join on to each other. It is not a double
bifurcation as it appears to be using the norm defined by equation (14).
The general form of the solution on the branch is shown in Figure 10(c).

The next branches to bifurcate from the trivial branch are the (1,0)
and (0,4) solutions. These have the same bifurcation point as they are
degenerate and because of the choice of norm follow the same path in the
Q - IInllplane. The cross-sections of these solutions at some points along
the branch are shown in Figure 10(d).

The last two primary bifurcation branches which we investigated were
the (1,1) branch and the (1,2) branch. Like the (0,3) branch these just
give steeper and sharper peaks in cell density as Q increased (Figure 10(e)
and (f».

We have given no indication of which branches on the bifurcation di-
agram are unstable and which are stable. At least some of the branches
will be unstable. We shall investigate this question in a future publica-
tion. In other parameter regimes they may produce stable pattern. This
diagram is also incomplete in that secondary bifurcations may occur which
we have not investigated. Nevertheless this bifurcation diagram highlights
and gives a useful insight into the complexities of pattern produced by this
model and the way the different modes may interact with themselves and
each other.

~/\~
y

(b)
~/
~ 1

y

Figure 10. Cross-sections and shaded diagrams of solutions on the non-
trivial branches in Figure 9: (a) (0,2) branch; (b) (0,3) branch;
(c) (1,0) branch; (d) (0,4) branch; (e) (1,0) branch; (f) (1,1)
branch; (g) (1,2) branch.
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Figure 10. (contd).

PATTERN FORMATION IN A CHEMOTACTIC SYSTEM

K~ ~
(c) l~

(f)

:.:JI~
y

(d)
IA~
\")\ J\

~'/L' ~
Figure 10. (contd).

5. Conclusion

y The model for cell aggregation by chemotaxis which we have used here
is a very simple one. We have shown that it produces a number of patterns
in cell density. Some of these patterns, for example those in Figure 8 we
cannot predict using linear analysis. It seems likely that this system of
equations can generate other complex patterns in other parameter regimes
and that even this very simple model can produce a rich variety of two
dimensional pattern.

(e) II
x x Acknowledgements: Part of this work was funded by the Underlying

Programme of the U.K. Atomic Energy Authority. MRM acknowledges an
Overseas Research Studentship (ORS) Award.
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REFERENCES patterns of cell aggregation. The fact that the equations are so relatively
simple in character has meant that the authors have been able to carry out
a detailed analysis of the bifurcation diagram which enables a much fuller
understanding of the way in which one pattern changes into another when
the dimension of the region of interest change.

One of the most exciting aspects of mathematical biology is the the
interaction between tbe mathematical modeller and the experimental bi-
ologist. Most modelling is carried out after a biologist has completed an
experiment and is looking for a mechanism to describe the observations.
This paper seems to point the way to a set of experiments on cert~in pattern
formation in chemotactic systems and as such is in the tradition of good
Applied Mathematics where, the mathematics enriches the experimental
discipline, in this case, biology.

Harrison, L.G. (1987). What is the Status of Reaction-Diffusion Theory
Thirty-four years after Turing? Mini Review. Journal of Theoretical Biol-
ogy 125, pp. 369-384.

Turing, A. (1952). The Chemical Basis for Morphogenesis, Philosophical
Transactions of the Royal Society, London B237, pp. 37-72.

[1] Alt, W. and Lauffenburger, D.A. 1987 Transient behaviour of a chemo-
taxis system modelling certain types of tissue inflammation. J. Math.
Bioi. 24, pp. 691-722.

[2] Hinchliffe, J .R. and Johnson, D.R. 1980 The Development of the Ver-
tebrate Limb. Clarendon Press, Oxford.

[3] Keller, E.F. and Segel, L.A. 1970 Initiation of slime mould aggregation
viewed as an instability. J. theor. Bioi. 26, pp. 399-415.

[4] Le Douarin, N.M. 1982. The Neural Crest. Cambridge University
Press.

[5] Loomis, W.F. 1975 Die/yostelium discoideum: A Developmental Sys-
tem. Academic Press, New York.

[6] Riley, D.S. and Winters, K.H. 1987 The onset of convection in a porous
medium: a preliminary study. Harwell Report AERE R 12586.

PARTICIPANT'S COMMENTS

I liked this paper very much, and have practically nothing to con-
tribute to it. I should only point out that the approach opens some inter-
esting possiblities for ecologists: the patchy distribution of flora and fauna
has intrigued ecologists ever since. Here is a method which may, in the
least, describe, and reproduce known distributions of animals and plants.
Wouldn't it be wonderful to recreate a coral reef with such a method?

Sean McElwain

Y. Cohen

This paper continues the development of mathematical models of pat-
tern formation started by Turing (1952) with his seminal paper on chemical
morphogenesis. That work provided the opening for one of the most ex-
citing areas of mathematical biology today and Harrison (1987) provides
an excellent review of the field. Turing's initial work has been developed
by a number of researchers into a more complete mathematical theory and
such topics as animal coat markings and the formation of cartilage con-
densations during early limb morphogenesis are currently areas to which
considerable research effort is being directed.

This paper predicts that biological systems in which chemotaxis plays a
major role can, under certain very reasonable assumptions, display regular


