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After many years of research, the mechanisms that generate a periodic pattern of repeated
elements (somites) along the length of the embryonic body axis is still one of the major
unresolved problems in developmental biology. Here we present a mathematical formulation
of the cell cycle model for somitogenesis proposed in Development 105 (1989), 119-130. Somite
precursor cells in the node are asynchronous, and therefore, as a population, generate
continuously pre-somite cells which enter the segmental plate. The model makes the hypothe-
sis that there exists a time window within the cell cycle, making up one-seventh of the cycle,
which gates the pre-somite cells so that they make somites discretely, seven per cycle. We show
that the model can indeed account for the spatiotemporal patterning of somite formation
during normal development as well as the periodic abnormalities produced by heat shock
treatment. We also relate the model to recent molecular data on the process of somite
formation.
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1. Introduction

Most metazoan animals have some segmental
organization of their body axis. In vertebrate
embryos, segmentation occurs along the cranio-
caudal (head-tail) axis, and is first seen clearly
when somites form as spheres of cells on each side
of the axis, in an orderly anterior—posterior (AP)
sequence (for a review, see Gossler & Hrabé de
Angelis, 1998).

The initial segmental pattern of the somites is
important because it governs the segmental or-
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ganization of peripheral spinal nerves, vertebrae,
axial muscles, and the metameric distribution of
early blood vessels. Genetic or environmental
factors sometimes disturb somitogenesis, and
there are many clinical conditions which occur as
a result (Zhang & Gridley, 1998; Evrard et al.,
1998).

In the past four decades, our knowledge of
the mechanisms of somitogenesis has increased
considerably. The formation and differentiation
of somites appears to result from three distinct
morphological events progressing in a strict
temporal-spatial order: (1) pre-patterning of the
pre-somitic mesoderm (PSM); (2) somite and
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somite boundary formation; and (3) the differen-
tiation of each somite into anterior and posterior
halves and subsequently into dorsal (dermo-
myotome) and ventral (sclerotome) domains
(Keynes & Stern, 1988; Gossler & Hrabé de
Angelis, 1998).

The pre-patterning of somites appears to
be established before segmentation. Scanning
electron microscopy observations suggest
metameric arrangements of groups of cells,
named somitomeres (see, for a review, Jacobson
& Meier, 1986). The existence of a pre-pattern is
consistent with the finding that reversal of the AP
axis of the PSM leads to reversed somites (see, for
a review, Keynes & Stern, 1988).

There is very strong evidence that somite and
somitic boundary formation is controlled by
a segmentation clock. The first experimental
evidence to support the segmentation clock was
obtained after heat shock was applied to amphib-
ian embryos (Elsdale et al., 1976; Cooke, 1978;
Pearson & Elsdale, 1979; Veini & Bellairs, 1986).
These generate a discrete segmentation abnor-
mality, which appears after a fixed number of
somites formed following the heat shock. When
a single heat shock is applied to chick embryos
(Primmett et al., 1988) several somite anomalies,
which may be uni- or bilateral, appear separated
by relatively constant distances of six to seven
normal somites. The repeated anomalies sugges-
ted that heat shock affects an oscillatory process
within the somite precursors (Primmett et al.,
1988, 1989; Stern et al., 1988). In addition, there
appears to be some degree of cell cycle synchrony
between the cells in the PSM which are designed
to segment together to form a somite (Stern
& Bellairs, 1984). Similar periodic anomalies in
somite formation can also be caused by drugs
inhibiting cell cycle progression (Primmett et al.,
1989). These experimental observations link the
segmentation clock with the cell cycle.

Recently, the study of the expression of c-
hairy-1 and lunatic fringe (I-fng) in the PSM of
chick embryos has provided molecular evidence
for the existence of a segmentation clock (Pal-
meirim et al., 1997; McGrew et al., 1998). During
segmentation, the cells of the PSM go through at
least 12 cycles of c-hairy-1 expression before be-
coming part of a somite, while more cells are
continuously incorporated into the posterior end

of the PSM. Based on this observation, it was
proposed that the segmentation clock controls
the time duration of cells in the PSM before they
form part of a somite (Pourquié, 1999; Schnell
& Maini, 2000). During the time taken for one
somite to form, the expression of ¢-hairy-1 sweeps
along the PSM in the posterior-anterior direc-
tion, narrowing as it moves along. This wave-
front-like expression finally stops and is main-
tained only within the caudal half of each forming
somite. The c-hairy-1 expression is independent
of cell movements; it is an intrinsic cell auto-
nomous property of this tissue (Palmeirim et al.,
1997; McGrew & Pourquié, 1998; Pourquié,
1998). More recently, McGrew et al. (1998) and
Forsberg et al. (1998) have shown that [-fng gene
expression resembles the expression of c-hairy-1
in PSM. In fact, both expressions are coincident
and appear to be regulated by the same segmen-
tation clock.

There is a change in the mechanical properties
of the cells in the PSM before they differentiate
into a somite. There is an increase in cell compac-
tion, cell-cell adhesion and in the expression of
N-cadherin, which is followed by epithelializ-
ation (Keynes & Stern, 1988; Tam & Trainor,
1994) into somites. Additionally, the cells become
polarized around a central lumen (somitocoele).

Although much is known about somitogenesis,
its mechanism is still one of the major unresolved
problems in developmental biology. During the
last three decades, several models have been pro-
posed to explain the formation of somites: the
clock and wavefront model (Cooke & Zeeman,
1976), the wave gradient model (Wilby & Ede,
1975; Flint et al., 1978), a reaction—diffusion-type
model (Meinhardt, 1982, 1986), the cell cycle
model (Stern et al., 1988; Primmett et al., 1989),
the wave and cell polarization model (Polezhaev,
1992, 1995a,b) and a clock and induction model
(Schnell & Maini, 2000). Some of these successfully
account for a number of aspects of somitogenesis,
but fail to explain, or even contradict other ob-
servations (see, for a review Schnell et al., 2000).

The cell cycle model incorporates several
known aspects of somitogenesis better than most
models; for example, it can account for the peri-
odic abnormalities observed after a single heat
shock, the cell synchrony along the PSM, the
change in the mechanical properties of the cells in
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the PSM before they differentiate into a somite,
as well as the cell autonomous character of
somite formation in PSM explants and the trans-
plantation experiments reversing the AP axis.

Criticisms have been made of the cell cycle
model. Palmeirim et al. (1997) and Roy et al.
(1999) argue against a direct role for the cell cycle
in somite formation. Firstly, Palmeirim et al.
(1997) indicated that the cycling times of c-hairy-1
expression, a product of the segmentation clock,
occurs in the chick embryo with a periodicity
similar to the time it takes to form a single somite
(approximately 90 min) rather than the observed
cell cycle length (9 hr). However, we do not yet
know whether the major role of c¢-hairy-1 and
I-fng is in the allocation of cells to individual
somites, which is the subject of the cell cycle
model, or rather in the subdivision of somites
into rostral and caudal compartments. If the lat-
ter is true, then two separate clocks may exist:
one with a 9-hr period, coupled to the cell cycle,
and one with a 90-min period, driving the expres-
sion of c-hairy-1 and Il-fng.

Secondly, Roy et al. (1999) suggest that a re-
evaluation must be made of the relation between
the segmentation process and the cell cycle dura-
tions in vertebrates after finding that in zebrafish
embryos heat shock anomalies occur in periodic
units of five somites which do not closely match
with the cell cycle duration. However, it is worth
noting that the anomalies in zebrafish appear at
exactly twice the frequency predicted by the cell
cycle model. Together with the finding that this
group of teleosts has undergone an additional
round of genome duplication (see Richardson
et al, 1997), one possible scenario is that two
separate genes (and/or two separate clocks linked
to the cell cycle, but half-a-cycle out of phase with
one another) regulate somitogenesis in these ani-
mals. Supporting this suggestion is the finding
that another member of the hairy-enhancer of
split family, her-1, has been characterized as hav-
ing an expression pattern in every other somite
(Miiller et al., 1996), unlike any gene thus far
described in other vertebrates.

Therefore, the cell cycle model is still a realistic
model that captures many of the experiment
observations in most vertebrate systems and,
in particular, is the only model to date that
can explain the heat shock experiments. Hence,

we believe that the model warrants further
exploration.

In the present work, we develop a mathe-
matical formulation of the cell cycle model for
somitogenesis. After an exposition of the descrip-
tive model, we introduce its assumptions and
a mathematical formulation in Section 2. Then
we derive parameter constraints under which the
model must operate (Section 3). In Section 4, we
present a qualitative description of the behaviour
of the model and solve the governing equations
numerically using a finite element method. In
Section 5, we introduce the effects of heat shock
into the cell cycle model and show that it exhibits
the periodic abnormalities observed experimentally.
Finally, we briefly discuss the results of our
model in Section 6.

2. Cell Cycle Model

The cell cycle model of Stern et al. (1988) and
Primmett et al. (1989) links the cell cycle with
somite segmentation. This hypothesis is sup-
ported by the following observations: (1) the
existence of discrete regions of cell synchrony in
the PSM, (2) a cell cycle duration of 9 hr, which
corresponds to the development of six to seven
somites in the chick embryo, and (3) periodic
anomalies caused by heat shock experiments
are mimicked by drugs inhibiting the cell cycle
progression.

According to the cell cycle model, cells des-
tined to form somites leave Hensen’s node strictly
in the order in which they were derived from
founder cells in the node, and they remain in that
order. Hence, there is some degree of cell cycle
synchrony of somite cells at the same level, and
these cells will be arranged along the embryonic
axis in the same order as they are positioned in
their cell cycles; older cells further anterior than
younger ones (Stern et al., 1992).

The formation of a somite is explained by
assuming that there are two successive time
points, P; and P,, a time interval of 90 min apart
perhaps within the M phase of the cell cycle, near
the time of the second last mitotic division before
segmentation. This determination phase com-
prises about one-seventh of the total cell cycle
time. Somite cells recognize the P,;-P, time win-
dow. Since there is some degree of cell synchrony
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FIG. 1. Diagrammatic representation of the cell cycle
model illustrating the two special points P; and P, postu-
lated to exist in the cell cycle, and the three key stages
proposed by the model. Cells at the posterior-most margin
of the PSM (I) are at a younger developmental age than
those undergoing somitogenesis. As these cells mature, they
become competent (I) to respond to the signalling molecule
which is secreted by cells at P,. During this phase cells are
triggered to form somites as they mature to the next stage
(III). At this stage they are no longer able to respond to or to
secrete the signal (refractory stage).

in the cells destined to segment together, some
cells will reach P, before others. These cells pro-
duce a signal to which cells situated between P,
and P, would respond to by later increasing their
adhesion to each other shortly before segmenta-
tion, regardless of their position within the PSM.
The resulting group of cells would actually
undergo segmentation one cell cycle after the
P,-P, time window. After the P,-P, window,
cells become refractory to the signal and/or un-
able to signal (see Fig. 1).

The model proposes that heat shock temporar-
ily blocks the cell cycle, so altering the number
of cells that become adhesive together. Such an
alteration would occur once in each cell cycle in
the segmental plate posterior to the P;-P, time
window, accounting for the repetitive anomalies
resulting from heat shock.

2.1. MATHEMATICAL FORMULATION

To develop a mathematical formulation of the
cell cycle model, we introduce two assumptions:

(i) Cells move up through the PSM, but for
mathematical convenience we take axes fixed
with respect to the cells so that we can consider
the pattern (including the node and the PSM) to
be moving down the rostrocaudal axis. We
assume that the length of the PSM is constant
on average, and that the pattern moves with
constant speed ¢ down the embryonic axis, in
normal conditions. A consequence of the con-
stant speed of the pattern is that mitosis (and
other given points of the cell cycle) occur at
positions fixed in the pattern. We assume that the
speed of the pattern ¢ ~ 0.02 ums~'. This ap-
pears to be reasonable for the trunk region of the
chick.

(i) The signal given by cells reaching P, is like
a pulse, the signalling molecule is short-lived and
diffuses rapidly. Ideally, only those cells between
P, and P, at the time the signal is first given
would respond. Rapid diffusion and/or clustering
of cells is required to ensure that all cells between
P, and P, respond.

To simplify the analysis, we study the model in
one space dimension and on one side of the
embryo. The latter assumes that there is no sig-
nalling between the two parallel axes of PSM.
This is biologically reasonable (Keynes & Stern,
1984; Veini & Bellairs, 1986). We let x denote the
distance in the AP axis, where the origin is taken
to be fixed with respect to a given somite, and
t denotes time. We assume that the key step in
determining a cell’s fate as part of a somite is its
production of a somitic factor, G, and we denote
its concentration by g(x, t). This somitic factor
might be a transcription factor or a precursor of
an adhesion molecule, produced in response to
a diffusive signalling molecule S, with concentra-
tion s(x, t).

In accordance with the assumptions, G is pro-
duced only when a cell has passed P; and its
production is triggered by the chemical signal S.
The model equations are

09 _ (g9 +ns)?

FTiierapy 0(x, t) — ng, (1)
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E=8+g}((x,t)—is+Da—xz, (2)

where
O(x,t) = H(ct — x + x1), (3)
x(x,t) = H(ct — x + X3). 4)

The Heaviside function, H, is of the general form
H(x — x), where

1 if x<o,

H(OC—X)Z{ ()

0 if x>«

for any o, and u, y, p, 1, K, & 4, D, ¢, x{, X, are
positive constants, with x, < x;. Here x; is the
position of P; on the x-axis when t =0, for
i =1,2. Thus, G production can only occur in
cells anterior to Py, and the source term in the
s equation (2) is zero until the cells pass P,.

One of the crucial assumptions in the cell cycle
model is the switch-behaviour occurring in the
kinetics of the somitic factor G. This is captured
in the above mathematical formulation by the
right-hand side of eqn (1). Such kinetics could
arise from linear degradation of G (the — ng
term) and production of G via the term
(g + us)*/(y + pg?*) which represents the autocat-
alysis of G and enhanced G production by S, with
saturation for large g. The term x /(¢ 4+ g) in eqn
(2) assumes that S is inhibited by G, so that cells
which have already been specified as somitic (and
hence have a high level of g) cannot signal. We
assume that S also degrades linearly (the — s
term) and diffuses rapidly.

The embryonic axis lengthens, and the node
and segmental plates move down it at rate ¢, so
the spatial domain is stationary. To be specific,
we consider

0<x<d), t=0,

where d(t) is the position of a point which moves
down the axis with the pattern, at speed ¢. For
points on the axis posterior to x, + ct, g and

s tend to zero, while for points anterior to g and
s tend to some fixed value. This leads to the

following boundary conditions:
g,s—>0 asx —(x, + ct) > + oo,
g, s are bounded as x — (x, + c¢t) > — o0.

In the present paper, we solve these equations
on a closed bounded interval, which we denote
by Q, typically Q = [ — 10, 10]. As an approxima-
tion to these infinite domain boundary condi-
tions we impose zero flux boundary conditions at
x = —10 and 10 (there is no diffusion of s out of
the domain). This ensures that the boundaries do
not play a role in the patterning process. In
the following section, we derive bounds on the
parameter values according to the model
assumptions.

3. Parameter Bounds

Constraints on the model parameter values
have to be derived to ensure that the cells of
a potential somite adhere at about the same time,
resulting in the coordinated segmentation of
a discrete somite, rather than a wave of increased
adhesion travelling down the axis at constant
speed ¢, which would not generate distinct
somites.

The cell cycle model has different behaviours in
three distinct regions along the AP axis, as illus-
trated in Fig. 1.

1. Cells posterior to P; (x > x; + ct) can nei-
ther respond to nor emit a signal. For these cells,
the values of g and s are approximately zero.

2. Cells between P; and P, (x,+ct
< x < X1 + ct) can respond to a signal but are
not capable of emitting one themselves. These
cells can respond to high enough values of s by
enhancing G production greatly. As g increases
for these cells, S production is inhibited resulting
in a rapid decrease in s. Thus, cells in this region
experience a pulse-like signal of S.

3. Cells at P, emit a signal. Cells anterior to P,
(x < x5 + ct) can respond to the signal. These
cells have a high level of G which inhibits S pro-
duction, so their capability of signalling is sub-
stantially reduced and negligible compared with
the amount of signal produced at P,.
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To derive parameter bounds we consider each
region separately after simplifying the model
equations through non-dimensionalization. We
non-dimensionalize the eqns (1) and (2) to allow
us to give an absolute measure of the quantities
involved independent of units of measurement
and to reduce the number of parameters. We
choose:

i . 4 _Knp,
-, x=(x1 — X3)X, =, §= S.
n np A

(6)

In the non-dimensional variables X, f, § and §, the
distance between x; + ct and x, + ct equals 1.
We consider the process on a time-scale in which
g rises from near zero to its equilibrium state, in
this equilibrium both § and § are O(1). Substitu-
ting eqn (6) into eqns (1) and (2) and re-arranging
the terms we can define the following dimension-
less parameters:

A ,uK A 2 A l A
= -, = . K = -, E =& 5
u 2 T=Ip ” np
~ D c X1
D = 5 CA - -)e = 5
/l(x1—x2)2 n(xy—xs) ! X1—X2
~ X2
Xy = .
X1 — X2

This yields the following non-dimensional model
where the hats have been dropped for notational
convenience:

09 _ (g + ps)’

51‘_ y+g2 O(X’t) g’ (7)
ds  (x(x, 1) 0%s
at_K<8+g —stDaa)

where

O(x,t) =H(ct—x+xq), x(x,t)=H(ct—x4+x,),

X1 — X = 1. (9)

Below we indicate how the parameter bounds
are found. The detailed mathematical analysis
leading to these results will be reported else-
where.

3.1. CELLS POSTERIOR TO P,

For this region, x > x; + ¢t and hence the
model eqns (7) and (8) become

dg
E__g’ (10)
0s 52s

The solution of these equations converges to the
steady state (g*, s*) = (0, 0). In order for the sig-
nal S to decay rapidly compared to G, we require

K> 1. (12)

3.2. CELLS BETWEEN P, AND P,

For this section, x, + ¢t < x < x; + ct. The
model equations become

dg (g9 +us)?
0s 52s
E:K<_S+D—5x2>' (14)

It is required that cells between P; and P,
switch from their unactivated state, with g ~ 0, to
a potentially somitic state with a high level of g,
in response to the signal. To obtain a non-zero
stable steady state with g positive, we must take

y <1 (15)

Therefore, if s is raised sufficiently, g will change
from approximately zero to g, = 3(1 + /1 — 4y).

For the mathematical model to capture the
assumption that cells posterior to P; do not
respond to s it is important to ensure that this
region is not affected significantly by the diffusion
of signalling molecules into it even when s is low.
Therefore, g should remain low even if there is
a constant level s ~ 1. After a phase plane analy-
sis of eqn (13) it can be shown that we must
choose

Y V
e 1
u<4:4'u> (16)
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3.3. CELLS ANTERIOR TO P,

For this region, x < x, + ¢t and hence the
equations are

dg (g + )’
0s 1 0%s

In the section anterior to P,, it is required that
cells settle to the homogeneous steady state. It is
important that s rises quickly in cells passing P,,
and then decreases rapidly. Therefore, cells that
experience a concentration of S above some thre-
shold should switch from a low to a high level of
G. To ensure this, the nullcline of s must lie above
the local maximum at (g, Syr) of the g nullcline.
If this passes below the local maximum of the
g nullcline, there will be three positive steady
states in this region, resulting in a high steady
level of s. From eqn (15), we can treat y as a small
parameter, and then find approximate solutions
for gy and s),. These solutions permit us to deter-
mine the necessary condition for the existence of
exactly one positive steady state for cells anterior
to P,, which is, 1/(e + ga) > sy 1.€. to the lowest
order in y:

1 >l
e+y/4 4

(19)

In addition, for cells passing P,, g ~ 0 and
hence s increases rapidly at this point. At a peak
in s, 0%s/0x? < 0, so s cannot rise above 1/¢. The
threshold level s; must therefore lie significantly
below 1/¢, and above the local maximum s,; of
the g nullcline. Hence, we take

1
E>>ST>SM~4l:>E<<1. (20)

IO

In cells between P; and P, that have already
responded to a signal, g ~ gs ~ 1; choosing

exgs ~ 1 (21)

ensures that s is only produced in significant
quantities for cells in which g« 1.

3.4. DIFFUSION

The posterior boundary of a somite, according
to the cell cycle model, is determined by the point
P, rather than by the diffusion of signalling mol-
ecule. If cells fail to respond to the pulse it is
because they have not reached P, in their cell
cycle, not because the signal fails to diffuse far
enough. To ensure that lack of diffusion does not
prevent cells becoming allocated to a single
somite, we take

D>1. (22)

3.5. SUMMARY

In summary, for eqns (7) and (8), we impose the
following parameter constraints:

Cl k>»1,

C2 y<i,

C3 y/du>1,

C4 1/(e + 7/4) > 4.,

C5 ye/du«<1,

C6 e«<gs~ 1, where gs =3(1 +./1 —4y),

C7 D>»1.

4. Spatio-Temporal Analysis

The derivation of the parameter bounds ac-
cording to the model assumptions allows us to
give a qualitative description of the scenario of
signal spread and cell response envisioned by the
model during the formation of somites.

The cells anterior to the point X = x, + ctg
at t =ty have been triggered to segment, that is,
they have large G concentration, but the cells at
X = X, have not responded to a signal. Initially,
all cells will have low levels of signalling molecule
S, and g will be near its high steady state gg for
x < Xy, but near zero for x > X,. Attime t = ¢,
the cells at X, reach P,, and S is produced
rapidly by these cells. The signalling molecule
diffuses quickly along the embryo, causing s to
rise above a threshold (s7).
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All the cells between P, and P, receive a signal
above the threshold level that enhances G pro-
duction, and so these cells switch to the triggered
state with a high level of G. As ¢ increases, it
inhibits S production which results in a fairly
rapid decrease in s. Thus, we have a pulse-like
signal emitted from P,.

In the cells just caudal to P, at t = t,, say for
X1 + ¢ty < x < X4, s will still be high enough for
the cells to respond to the signal by the time they
pass P;. Hence, these cells will be specified as
potentially somitic a short time after the signal is
emitted. In cells posterior to X, s will have fallen
too low for G production to be enhanced to
a sufficiently high level by the time the cells are
able to respond (when they pass P;). These cells
will have to wait until the next signal to be
triggered. The result of this process is that the
cells between X, and X, are triggered at approx-
imately the same time, and hence they should go
on to form a somite together. The parameter
bounds derived in the previous section ensure
that the signal does not persist above the thre-
shold level for too long, otherwise cells being
allocated to one somite would be triggered over
a drawn out period of time.

4.1. NUMERICAL SIMULATIONS

The model equations pose two main difficul-
ties: (1) the Heaviside function present in the
equation for g introduces a sharp discontinuity in
the solution, and (2) the system is of mixed type,
the g equation is hyperbolic, while the s equation
is parabolic. A sophisticated numerical scheme
was developed to solve the model equations in
one spatial dimension based on the finite element
method [details to be reported elsewhere].

Figure 2 shows a typical numerical simulation
of eqns (7) and (8) for a set of parameter values
satisfying the constraints C1-C7. The results
show successive peaks of s, occurring about 20
time units apart, the first near x = 0, the second
near x = 1, and the third near x = 2. The process
begins with a peak in s at the position of P,,
quickly followed by a surge of s throughout the
spatial domain. The level of s then decreases
rapidly to a constant level. In response to this
pulse-like signal, a fairly rapid increase in g oc-
curs between Py and P,. Thus, we have a wave-

(b)
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FIG. 2. Numerical solution for the model eqns (7) and (8)
showing the spatio-temporal dynamics of g(x, t) and s(x, t).
Each peak of s results in an abrupt increase in g which, in
turn, triggers somite formation. Five “somites” are shown.
(For clarity of representation only the first three s peaks are
shown). Parameter values are u=10"% c¢=5x10"2
k=10,e=10"3 D =100,y = 1073

front of the somitic factor (G) moving down the
axis in jumps, as successive groups of cells are
triggered. Note that the level of g rises at approx-
imately the same time in all cells between P; and
P, when a signal is emitted. According to the
model, this results in the coordinated segmenta-
tion of a somite.

We have studied in detail the parameter con-
straints derived in Section 2. If any of these are
violated the model fails to generate the required
spatio-temporal pattern of somites (results not
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shown). Hence, we conjecture that these bounds
are sharp.

5. Effects of Heat Shock Experiments

Single heat shock experiments of Primmett
et al. (1988) in chick embryos resulted in multiple
but discrete segmental anomalies which appeared
approximately 6-7 segments after the last formed
somite at the time of treatment. Up to 4 segmen-
tal anomalies could be observed in an embryo,
including one small somite, one large somite or
two fused somites.

Within the framework of the cell cycle model
heat shock treatment of an embryo has the effect
of increasing the distance between the cells at
P, and those at P,, since it blocks M phase cells
in their cell cycle. Additionally, the model as-
sumes that the heat shock treatment does not
affect the critical level of the signalling molecule,
nor the strength or nature of the signal.

In Fig. 3, we present the results of the numer-
ical solution of eqns (7) and (8) when the embryo
is subjected to a heat shock. It can be seen that
the second jump in g is abnormally small while
the third is abnormally large. The remaining
jumps correspond to normal somites. In this fig-
ure, we also show the signal produced after heat
shock treatment. Note that the pulse in s is much
sharper and higher. Figure 4 shows that the model
can exhibit periodic anomalies due to heat shock.

According to the model the pattern of
anomalies depends on the relation between two
parameters:

1. The number of somites formed per cell cycle
(), which is approximately 6-7 somites.

2. The length of the block caused by heat
shock relative to the time between P, and P, (f5);
we estimate f§ & 0.6 (equal to the time duration of
heat shock divided by the time to form a somite).

The model formulation allows us to investigate
this dependence and to show that, depending on
the exact time and duration of heat shock, the
anomalies may not be strictly periodic.

6. Discussion

In the present paper, we have presented and
analysed a mathematical formulation of the cell
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FIG. 3. Numerical solution of eqns (7) and (8) with para-
meter values as in Fig. 2, illustrating the effects of heat shock.
In this simulation, a heat shock of duration = 0.6 (see text
for details) begins to take effect at time t = 20 resulting in
one abnormally small jump (somite) in g (the second one)
followed by one abnormally large jump (somite). The sub-
sequent jumps are normal (compare with Fig. 2). The signal
s produced after heat shock treatment is also shown (corre-
sponding to the abnormally large somite). Note that this
pulse is much higher and sharper than those in Fig. 2 which
correspond to normal somite formation.

cycle model for somitogenesis proposed by Stern
et al. (1988) and Primmett et al. (1989). Our
analysis indicates that the cell cycle mechanism
can indeed give rise to the periodic pattern of
somites observed in normal embryos and also to
the abnormal patterns observed after heat shock.
We have incorporated cell cycle synchrony along
the PSM as well as the cell-autonomous charac-
ter of somite formation. Simulations could be
done reversing the AP axis in a grafted explant of
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FIG. 4. Numerical solution for the model eqns (7) and (8) illustrating periodic anomalies due to heat shock treatment. Top
panel is a schematic representation of the normal and abnormal somites. The heat shock treatment begins to take effect at
time t = 20 resulting in a sequence of one normal, two abnormal, six normal, two abnormal and one normal somites. Each
somite of the diagram corresponds to one jump in g, as shown in the bottom panel (for ease of illustration we plot the
dynamics of g resulting in the first five somites on one diagram, and those resulting in the next five somites in the neighbouring
diagram. It should be noted that this is the result of one continuous simulation). Parameter values are u = 10~ %, ¢ = 5x 1072,
k=10,6=10"3 9 =103 D = 25. The duration of the heat shock is as in Fig. 2.

the PSM and somites will form according to their
original position. The version of the model we
have studied here does not incorporate cell den-
sity to study the adhesion effect, which is the
focus of other work in progress.

The mathematical formulation of the cell cycle
model allows us to delimit the properties that the
signalling molecule must have through the para-
meter bounds derived in Section 3. Our numer-
ical simulations highlight the importance of the
stability of the signalling molecule S. If it persists
for too long, then cells passing the point
P, would be triggered and the result would be
abnormally large somites. Alternatively, if S is
very short-lived then the somites produced would
be smaller than normal. Hence, the size of the
somites in this model depends crucially on the
stability of S which, from the mathematical for-
mulation of the model, can be seen to depend on
the diffusion coefficient and linear degradation
rate of s.

One important point to make is that several
mouse mutants reveal that although AP subdivi-
sion plays a role in determining somite bound-

aries, this is NOT inextricably linked to the initial
subdivision of the PSM into discrete units. For
example (Kusumi et al. 1998) in most of the
Notch pathway mutants (e.g. DII3/Pudgy), some
sort of somites start forming despite the failure of
the normal AP subdivision mechanism, but by
the time that they should split into AP halves
(sclerotome formation) they fall apart and regular
segmentation disappears. This suggests that the
hairy oscillations (this gene is part of the Notch
signalling system) are more likely to be part of the
AP subdivision mechanism and affect boundary
formation indirectly (or late). In this paper, we
restated and formulated mathematically a mech-
anism which regulates segmentation indepen-
dently of the hairy clock and of AP subdivision.
This model predicts that segmentation occurs
independently from AP subdivision. This is pres-
ently being tested experimentally.

Our mathematical formulation also enables us
to make experimentally testable predictions on
the outcome of heat shock treatments occurring
at different times and on the effects of multiple
heat shock treatments.
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We have formulated the model in one dimen-
sion and have assumed that the parallel axes of
the PSM are independent. Therefore, our model
cannot account for the medial to lateral fused
abnormalities occasionally seen in heat shock
experiments. Such abnormalies also arise in cer-
tain segment polarity gene mutants (van Eeden
et al., 1996, 1998). The basic mathematical model
framework that we have presented in this paper
could be extended to try to account for such
observations.

In somitogenesis, the great experimental chal-
lenge is to understand the possible key compo-
nents of the molecular clock that link the cell
cycles and oscillations observed in the PSM. Fur-
ther research must be carried out to study how
the molecular oscillations are modulated by the
cellular aspect of somitogenesis. At the same
time, it is essential to understand what is the
structure of the segmentation clock, how it is
modulated, and what is the molecular origin of
the clock.

JC would like to thank The Wellcome Trust for
a Prize Studentship in Mathematical Biology. This
research (DMI) is funded by a Marie Curie Fellowship
as part of the Training and Mobility of Researchers
(TMR) programme administered by the European
Commission. SS acknowledges support from the José
Gregorio Hernandez Award (Academia Nacional de
Medicina, Venezuela; Pembroke College, Oxford),
ORS Award (Committee of Vice-Chancellors and
Principals of the Universities of the United Kingdom),
Programa de Confinanciamiento Institucional IVIC-
CONICIT (CONICIT, Venezuela) and Lord Miles
Senior Scholarship in Science (Pembroke College).
D.J.G. would like to thank the Medical Research
Council for a Career Development Fellowship.

REFERENCES

COOKE, J. (1978). Somite abnormalities caused by short heat
shocks to pre-neurula stages of Xenopus laevis. J. Embryol.
Exp. Morphol. 45, 283-294.

COOKE, J. & ZEEMAN, E. C. (1976). A clock and wavefront
model for control of the number of repeated structures
during animal morphogenesis. J. theor. Biol. 58, 455-476.

ELSDALE, T., PEARSON, M. & WHITEHEAD, M. (1976).
Abnormalities in somite segmentation following heat
shock to Xenopus embryos. J. Embryol. Exp. Morph. 35,
625-635.

EVRARD, Y. A, LUN, Y., AULEHLA, A, GAN, L. &
JOHNSON, R. L. (1998). Lunatic fringe is an essential medi-
ator of somite segmentation and patterning. Nature 394,
377-381.

FLINT, O. P, EDE, D. A, WILBY, O. K. & PROCTOR, J.
(1978). Control of somite number in normal and amputated
mutant mouse embryos: an experimental and a theoretical
analysis. J. Embryol. Exp. Morph. 45, 189-202.

FORSBERG, H., CROZET, F. & BROWN, N. A. (1998). Waves
of mouse Lunatic fringe expression, in four-hour cycles at
two-hour intervals, precede somite boundary formation.
Curr. Biol. 8, 1027-1030.

GOSSLER, A. & HRABE DE ANGELIS, M. (1998). Somitogen-
esis. Curr. Top. Dev. Biol. 38, 225-287.

JACOBSON, A. & MEIER, S. (1986). Somitomeres: the primor-
dial body segments. Somites in Developing Embryos, (Bella-
irs, R., Ede, D. A. & Lash, J. W, eds), pp. 1-16. New York:
Plenum Press.

KEYNES, R. J. & STERN, C. D. (1984). Segmentation in the
vertebrate nervous system. Nature 310, 786-789.

KEYNES, R. J. & STERN, C. D. (1988). Mechanisms of verte-
brate segmentation. Development 103, 413-429.

Kusumiy, K., SUN, E. S., KERREBROCK, A. W., BRONSON, R.
T., CH1, D.-C.,, BULOTSKY, M. S., SPENCER, J. B., BIRREN,
B. W., FRANKEL, W. N. & LANDER, E. S. (1998). The mouse
pudgy mutation disrupts Delta homologue DII3 and in-
itiation of early somite boundaries. Nature Genet. 19,
274-278.

MCGREW, M. J., DALE, J. K., FRABOULET, S. & POURQUIE,
0. (1998). The lunatic Fringe gene is a target of the molecu-
lar clock linked to somite segmentation in avian embryos.
Curr. Biol. 8, 979-982.

MCGREW, M. J. & POURQUIE, O. (1998). Somitogenesis:
segmenting a vertebrate. Curr. Opin. Genet. Dev. 8,
487-493.

MEINHARDT, H. (1982). Models of Biological Pattern Forma-
tion. pp. 152-171. London: Academic Press.

MEINHARDT, H. (1986). Models of segmentation. Somites in
Developing Embryos (Bellairs, R., Ede, D. A. & Lash, J. W.
eds.), pp. 179-189. New York: Plenum Press.

MULLER, M., VON WEIZSACKER, E. & CAMPOS-ORTEGA, J. A.
(1996). Expression domains of a zebrafish homologue of
the Drosophila pair-rule gene hairy correspond to primor-
dia of alternating somites. Development 122, 2071-2078.

PALMEIRIM, 1., HENRIQUE, D., ISH-HOROWICZ, D. & POUR-
QUIE, O. (1997). Avian hairy gene expression identifies
a molecular clock linked to vertebrate segmentation and
somitogenesis. Cell 91, 639-648.

PEARSON, M. & ELSDALE, T. (1979). Somitogenesis in am-
phibian embryos. 1. Experimental evidence for an interac-
tion between two temporal factors in the specification of
somite pattern. J. Embryol. Exp. Morphol. 51, 27-50.

POLEZHAEV, A. A. (1992). A mathematical model of the
mechanism of vertebrate somitic segmentation. J. theor.
Biol. 156, 169-181.

POLEZHAEV, A. A. (1995a). Mathematical modelling of the
mechanism of vertebrate somitic segmentation. J. Biol.
Sys. 3, 1041-1051.

POLEZHAEV, A. A. (1995b). Mathematical model of segmen-
tation in somitogenesis in vertebrates. Biophysics 40,
583-589.

POURQUIE, O. (1998). Clocks regulating developmental pro-
cesses. Curr. Opin. Neurobiol. 8, 665-670.

POURQUIE, O. (1999). Notch around the clock. Curr. Opin.
Gen. Dev. 9, 559-565.

PRIMMETT, D. R. N., STERN, C. D. & KEYNES, R. J. (1988).
Heat shock causes repeated segmental anomalies in the
chick embryo. Development 104, 331-339.



316 J.R.COLLIER ET AL.

PRIMMETT, D. R. N., NOrris, W. E., CARLSON, G. ],
KEYNES, R. J. & STERN, C. D. (1989). Periodic segmental
anomalies induced by heat shock in the chick embryo
are associated with the cell cycle. Development 105,
119-130.

RICHARDSON, M. K., HANKEN, J., GOONERATNE, M. L.,
PiEAU, C., RAYNAUD, A., SELWOOD, L. & WRIGHT, G. M.
(1997). There is no highly conserved embryonic stage in the
vertebrates: implications for current theories of evolution
and development. Anat. Embryol. 196, 91-106.

Roy, M. N,, PRINCE, V. E. & Ho, R. K. (1999). Heat shock
produces periodic somitic disturbances in the zebrafish
embryo. Mech. Dev. 85, 27-34.

SCHNELL, S. & MAINI, P. K. (2000). Clock and induction
model for somitogenesis. Dev. Dyn. 217, 415-420.

SCHNELL, S., PAINTER, K. J., MAINI, P. K. & OTHMER, H. G.
(2000). Spatiotemporal pattern formation in early develop-
ment: a review of primitive streak formation and
somitogenesis. Mathematical Models for Biological Pattern
Formation (Othmer, H. G. & Maini, P. K., eds), pp. 11-37.
New York: Springer-Verlag.

STERN, C. D. & BELLAIRS, R. (1984). Mitotic activity during
somite segmentation in the early chick embryo. Anat. Em-
bryol. (Berl.), 169, 97-102.

STERN, C. D., FRASER, S. E., KEYNES, R. J. & PRIMMETT, D.
R. N. (1988). A cell lineage analysis of segmentation in the
chick embryo. Development 104S, 231-244.

STERN, C. D., HATADA, Y., SELLECK, M. A. J. & STOREY, K.
G. (1992). Relationships between mesoderm induction and
the embryonic axes in chick and frog embryos. Develop-
ment Suppl., 151-156.

Tam, P. P. L. & TRAINOR, P. A. (1994). Specification and
segmentation of the paraxial mesoderm. Anat. Embryol.
(Berl.) 189, 275-305.

VAN EEDEN, F. J. M., GRANATO, M., SCHACH, U., BRAND,
M., FURUTANI-SEIKI, M., HAFFTER, P., HAMMER-
SCHMIDT, M., HEISENBERG, C.-P., JIANG, Y.-J., KANE, D.
A., KELSH, R. N., MULLINS, M. C., ODENTHAL, J., WARGA,
R. M., ALLENDE, M. L., WEINBERG, E. S. & NUSSLEIN-
VOLHARD, C. (1996). Mutations affecting somite formation
and patterning in the zebrafish Danio rerio. Development
123, 153-164.

VAN EEDEN, F. J. M., HOLLEY, S. A., HAFFTER, P. & NUs-
SLEIN-VOLHARD, C. (1998). Zebrafish segmentation and
pair-rule patterning. Devel. Genet. 23, 65-76.

VEINI, M. & BELLAIRS, R. (1986). Heat shock effects in chick
embryos. Somites in Developing Embryos (Bellairs, R., Ede,
D. A. & Lash, J. W, eds), pp. 135-145. New York: Plenum
Press.

WILBY, O. K. & EDE, D. A. (1975). A model for generating
the pattern of cartilage skeletal elements in the embryonic
chick limb. J. theor. Biol. 52, 199-217.

ZHANG, N. & GRIDLEY, T. (1998). Defect in somite forma-
tion in lunatic fringe-deficient mice. Nature 394, 374-377.



	1. Introduction
	2. Cell Cycle Model
	FIGURE 1

	3. Parameter Bounds
	4. Spatio-Temporal Analysis
	FIGURE 2

	5. Effects of Heat Shock Experiments
	6. Discussion
	FIGURE 3
	FIGURE 4

	REFERENCES

