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Abstract. We study a reaction diffusion model recently proposed in [5] to
describe the spatiotemporal evolution of the bacterium Bacillus subtilis on
agar plates containing nutrient. An interesting mathematical feature of the
model, which is a coupled pair of partial differential equations, is that the bac-

terial density satisfies a degenerate nonlinear diffusion equation. It was shown
numerically that this model can exhibit quasi-one-dimensional constant speed

travelling wave solutions. We present an analytic study of the existence and
uniqueness problem for constant speed travelling wave solutions. We find that

such solutions exist only for speeds greater than some threshold speed giving
minimum speed waves which have a sharp profile. For speeds greater than

this minimum speed the waves are smooth. We also characterise the depen-
dence of the wave profile on the decay of the front of the initial perturbation

in bacterial density. An investigation of the partial differential equation prob-
lem establishes, via a global existence and uniqueness argument, that these

waves are the only long time solutions supported by the problem. Numerical
solutions of the partial differential equation problem are presented and they
confirm the results of the analysis.

1. Introduction. Many biological systems exhibit the phenomenon of self organ-
isation, whereby complex spatiotemporal patterns emerge from the biochemical
processes occurring within the system (for review see, for example, Murray [15]).
One very widely studied system is the spatiotemporal patterning behaviour in bac-
terial colonies. Not only does this serve as a model paradigm for patterning in
higher organisms, its study also has important implications in biotechnology and
related areas.
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Bacterial colonies grown on the surface of thin agar plates can develop various
types of spatial patterns including rings, spots, disks and patterns with a dense-
branching morphology (DBM). The nature of the pattern exhibited depends on
the particular bacterial species used and the environmental conditions imposed.
The spatio-temporal patterns generated by the bacterium Bacillus subtilis were
investigated in Kawasaki et al. [5] using a reaction diffusion type model, and the
authors presented the first demonstration of branching pattern formation of bacte-
rial colonies in the framework of a reaction diffusion system. Closer investigation
of these patterns revealed that, although the colony grows on the two-dimensional
surface of the agar plate, each tip elongates in one dimension apart from occasion-
ally branching. The authors therefore considered a one-dimensional version of their
model and showed, using numerical simulations, that the model exhibited travelling
wave solutions with a constant speed that closely approximated the speed of the
solution profile to the full two-dimensional problem.

This model has a very interesting mathematical structure, involving nonlinear
degenerate diffusion in a coupled system of reaction diffusion equations. To our
knowledge, there is little theory on travelling wave solutions in such coupled sys-
tems. The aim of this paper is to: address the existence and uniqueness problem for
this type of solution, determine speed selection, investigate the role of initial con-
ditions, and study robustness. These are key issues from the biological viewpoint.
In fact, we consider a simplified version of the model in which one of the diffusion
coefficients is set to zero, so that the system is now an ordinary differential equation
coupled with a nonlinear degenerate diffusion reaction equation. Surprisingly, we
find that this simplified version of the model captures much of the behaviour of the
full system, in particular the wave speed predicted by our analytic study is in close
agreement with that exhibited by travelling wave solutions to the full system.

We briefly describe the model proposed in Kawasaki et al. [5] (section 2) and in
section 3 carry out a detailed analysis of the travelling wave solutions of the sim-
plified version of the model. The partial differential equation problem is considered
in section 4 and in section 5 we show how our analysis can be extended to other
models of similar form. The results are then discussed in the context of the original
paper (section 6).

2. The Model. Kawasaki et al. [5] considered a model of the form

∂n

∂t
= Dn∇

2n− knb (2.1)

∂b

∂t
= ∇ ·Db∇b+ knb (2.2)

to describe the spatiotemporal dynamics on a planar surface of bacterial cell density
b(x, y, t) and nutrient concentration n(x, y, t) at spatial position (x, y) and time t.
The model equations assume that the nutrient diffuses in a Fickian sense with con-
stant diffusion coefficient Dn and is consumed by bacteria at a rate k. The bacteria
are assumed to have diffusion coefficient Db = σ0nb, where σ0 is a positive con-
stant and the nonlinearity accounts, in a phenomenological way, for experimental
observations on bacterial motion.

They showed, via numerical simulation, that this model gave rise to a vast array
of patterns in different parameter regimes. They focussed on the formation of dense
branching patterns and investigated how the model parameters controlled the rate
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of branch tip elongation. Considering a branch as a one-dimensional structure, they
argued that a simplied version of the model,

∂b

∂t
= σ0

∂

∂x
[b
∂b

∂x
] + b(1− b/K) (2.3)

where K is a positive constant, could approximate the motion. They were then able
to quote analytic results on the travelling wave speed of this type of equation and
compare the results with those observed in the full two-dimensional simulations.
We refer the reader to the original paper for full details.

Here we consider the one-dimensional version of the model and carry out a more
detailed analysis. Specifically, denoting the nutrient concentration and bacterial
density by n(x, t) and b(x, t), respectively, at position x and time t, we consider a
nondimensionalised version of the model taking the form:

∂n

∂t
= Dn

∂2n

∂x2
− nb (2.4)

∂b

∂t
= Db

∂

∂x

(

nb
∂b

∂x

)

+ nb (2.5)

where {(x, t) : x ∈ R, t ∈ R+} and Dn and Db are the non-dimensionalised
diffusion coefficients of n and b, respectively. Here there is a slight abuse of notation
as b, n, x and t now represent non-dimensional quantities.

This system has a continuum of spatially uniform steady states of the form
(n, b) = (ns, 0), (0, bs), where ns and bs are arbitrary constants. The laboratory
set-up consists of a nutrient-enriched agar plate on which an initial innoculum of
bacteria is placed. Therefore the appropriate steady state to consider initially is
the one (which we denote by S) given by

n = 1, b = 0 for all −∞ < x <∞. (2.6)

The biological interpretation of this condition is that the nutrient is at a uniform
concentration level of 1 (nondimensionalised) and there are no bacteria present. We
then assume that at time t = 0 there is an initial innoculum of bacteria at x = 0,
that is a (small) perturbation to the original state is made at t = 0 to the b values
in a region localized around x = 0. We take conditions to be uniform at infinity so
that

∂n

∂x
→ 0,

∂b

∂x
→ 0 as |x| → ∞, for all t > 0. (2.7)

In the following we shall assume that Dn = 0. This is in effect modelling the
case of so called “hard agar”. The implications of this assumption will be discussed
in section 6. Without restriction we shall take Db = 1. Our main aim is to explore
what are the possible long time stationary states of this system. Specifically, given
the experimental and numerical evidence for travelling wave solutions presented
in [5] we start by considering the possible constant speed travelling wave solutions
to the system described by equations (2.4)–(2.7).
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3. Permanent-form travelling waves. To discuss the permanent-form travel-
ling wave solutions (TWS) that can arise as large time structures within the system
of equations (2.4)–(2.5) under the conditions (2.6)–(2.7) we introduce the travelling
coordinate y = x−vt, where v is the (constant) wave velocity. Because this system
is invariant for symmetric initial conditions to a change of coordinates x → −x
we can choose to take v > 0 in the above coordinate transformation. Substituting
n(x, t) = (ñ(x− vt), b̃(x− vt)) into (2.4)–(2.5) transforms the latter into travelling
wave coordinates:

vn′ = nb (3.1)

(nbb′)
′
+ vb′ + nb = 0 (3.2)

where ′ denotes derivative with respect to y and, for notational simplicity, we have
dropped the tildes. Equations (3.1)–(3.2) are to be solved subject to the following
boundary conditions ahead of the wave

n→ 1, b→ 0 as y →∞ (3.3)

so that the wave is propagating into the fresh nutrient region of the plate while
behind the wave

n→ ns, b→ bs as y → −∞, (3.4)

that is, the nutrient concentration and bacterial density have relaxed to spatially
uniform values after the wave has passed. Here ns and bs are constant and, from
equations (2.4)–(2.5), at least one of them is zero (steady state value). Also note
that for physically realistic solutions we require that n, b ≥ 0 (see Section 4.2 for a
mathematical proof that this is indeed the case for the model). Simple integration
of (3.1) with respect to y shows that, under these conditions, v is non-negative,
consistent with our assumption on the wave speed. We note that our numerical
solutions, presented later, confirm this result.

Here we have adopted the standard approach of establishing the existence of
travelling wave solutions of the full partial differential equation system by looking
for heteroclinic trajectories of the associated ordinary differential equation system
with appropriate boundary conditions.

3.1. Properties of the travelling wave solutions. General properties of TWS
for systems having kinetics of the form in (2.4)–(2.5), but with constant diffusion
coefficients for both species, have been given in [2, 10, 13]. Some of these properties
are preserved in the present case and we shall recall them without proof. However,
the presence of the nonlinear diffusion term leads to some significant differences in
general. We start with a list of all these properties.

P1 There are no TWS with n ≡ 1 or b ≡ 0.

Proof: This follows directly from [10].♦

P2 There exists y0 ∈ R such that nb(y0) 6= 0.

Proof: This follows from P1, equation (3.1) and boundary condition (3.3).♦
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P3 Of the continuum of spatially uniform steady states (ns, 0), (0, bs) for the initial
value problem (2.4)–(2.5), we require that ns = 0, bs = 1 for travelling waves.

Proof: If we integrate with respect to y both sides of equation (3.2) once and apply
boundary conditions (3.3)–(3.4) we obtain

vbs =

∫ ∞

−∞
(nb)dy > 0 (3.5)

and thus bs > 0 via P1 and the fact that v is non-negative. But nsbs = 0 so that
ns = 0. Now if we integrate equations (3.1)–(3.2) from −∞ to y (some finite value)
we have

nbb′ + v(b− bs) + vn = 0. (3.6)

By taking y → ∞ here and using boundary condition (3.3) we finally get vbs = v
giving bs = 1. Therefore equation (3.2) can be replaced by equation (3.6) with
bs = 1.♦

P4 n is monotone increasing and b is monotone decreasing.

Proof: For the case of n this results directly from (3.1) and the definition of TWS.
From the b equation we have

b′ =
−v

n
−

∫ y

−∞(nb)ds

nb
≤ 0 (3.7)

for nb 6= 0. Suppose now that nb(y1) = 0 for some y1 ∈ R. Two cases may
arise from (3.6), namely either n(y1) = 0, b(y1) = 1 or n(y1) = 1, b(y1) = 0.
The first situation is impossible. This is easily seen since from the monotonicity
of n we have that n(y) = 0 and therefore from (3.6) b(y) = 1 for all y such that
−∞ < y ≤ y1. We can take without restriction y1 such that n(y) > 0 for all y > y1.
From equation (3.1) and the uniqueness theorem for initial value problems we have
that n(y) ≡ 0,∀y ∈ R. Hence we have a contradiction with boundary condition
(3.3). For the second possibility assume that there exists y2 such that n(y2) = 1
and b(y2) = 0. The monotonicity property of n and the boundary condition (3.3)
then means that n(y) = 1 for all y > y2. From P3 we can chose y2 such that
n(y) < 1 for all y < y2. Then equation (3.6) implies that b(y) > 0 for all y < y2.
Hence we can apply the above monotonicity property since we have nb nonzero.♦

From P4 we deduce that 1 ≥ n(y), b(y) ≥ 0, for all y ∈ (−∞,∞).

By using the above properties we can re-write the system (3.1)–(3.2) as

n′ = nb/v, nbb′ = v(1− n− b)

which is singular on the vertical and horizontal axes of the n − b plane. The
singularity can be removed by using a standard re-parametrization [17, 18]. Let z
be such that dz/dy = nb for nb(y) > 0 for all y. In terms of z and keeping the same
′ sign notation for the derivative with respect to z (for notational simplicity) the
above re-written form of (3.1)–(3.2) becomes:

n′ =
(nb)2

v
(3.8)
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b′ = v(1− n− b), (3.9)

which is not singular. Moreover, given that 1/(nb) > 0 for n > 0 and b > 0, the
dynamics given by (3.1)–(3.2) and that associated with (3.8)–(3.9) are the same
in the first quadrant. Thus, we are interested in analysing the dynamics given by
(3.8)–(3.9) with the boundary conditions (3.3)–(3.4) together with those given by
P3.

P5 Let (n(z), b(z)) be a travelling wave solution to equations (3.8)–(3.9). Then
n(z) + b(z) ≥ 1 for all z ∈ R.

Proof: This follows easily from equation (3.9) and P4 if we note that 1− n− b =
b′

v ≤ 0.♦

P6 The velocity, v, of the travelling wave solutions satisfies v ≥ v0 = 1√
6
.

Proof: This can be seen by first differentiating equation (3.9) once with respect to
z to obtain

b′′ = −v(n′ + b′) (3.10)

From equations (3.8) and (3.9), the above can be rewritten as

b′′ + vb′ + b2
(

1− b−
b′

v

)2

= 0. (3.11)

Integrating this equation with respect to z from −∞ to∞ and using the bound-
ary conditions (3.3)–(3.4) with bs = 1 we find that

v ≥
1

6v
, (3.12)

that is, v ≥ 1√
6
.♦

An important consequence of P6 is that the waves can only exist for speeds
greater than a minimum (strictly positive) speed. However, we shall see later that
the bound given in P6 is not the best one achievable.

We now discuss the correspondence between the solutions of the systems (3.1)–
(3.2) and (3.8)–(3.9). Clearly if every solution pair (n, b) to (3.1)–(3.2) is nonzero
everywhere then (3.1)–(3.2) would be equivalent to (3.8)–(3.9). Let us analyse what
happens if this is not the case. Then there would be a y∗ ∈ R such that

nb(y∗) = 0. (3.13)

In view of equation (3.6) it is clear that this implies that (n + b)(y∗) = 1. Two
possibilities may arise from equations (3.6) and (3.13) which we analyse in turn.

Case 1: n(y∗) = 0 and b(y∗) = 1. This case is actually impossible (this was already
established in the proof of P4).

Case 2: n(y∗) = 1 and b(y∗) = 0. Then P3 and P4 imply that n(y) = 1, b(y) = 0
for all ∞ > y ≥ y∗. Also from (3.2) we find that b′(v + nb′) = 0 at y∗ so that
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limy→y−∗
b′(y) ≡ b′(y−∗ ) = 0 or b′(y−∗ ) = −v (we do not know if b′(y∗) exists, that is,

we are considering weak solutions (continuous and piecewise differentiable) rather
than classical solutions). Now suppose that b′(y−∗ ) = 0. With this hypothesis we
note that neither n nor b can decay exponentially for y close to y∗. Otherwise we
could arrive at a contradiction in the same way as we did in Case 1 above. Next

we see from equations (3.1) and (3.6) that dk

dyk (n)(y∗) = 0, dk

dyk (b)(y
−
∗ ) = 0 for

all k ≥ 1, k integer (by induction on k from repeated differentiation of equations
(3.1) and (3.6)). But we know from monotonicity that b(y) ≡ 0 ∀y > y∗. Thus
b′(y+∗ ) = 0. Therefore for the case b′(y−∗ ) = 0, b′(y∗) exists and by induction b is of
class C∞ around y∗ so we can also rule out algebraic decay around y∗. This shows
that the case b′(y−∗ ) = 0 is impossible. We note in passing that this also implies
that b is not an analytic function on R.

The above argument shows that in Case 2 the only possibility is b(y∗) = 0, b′(y−∗ ) =
−v. We investigate this possibility below.

3.2. Phase plane analysis of equations (3.8)–(3.9). We now consider the sys-
tem of equations (3.8)–(3.9) with the boundary conditions (3.3)–(3.4). We shall
see in due course that the behaviour of this simpler system is entirely equivalent to
that of the full initial system (3.1)–(3.2) even if we remember that (3.8)–(3.9) was
obtained from (3.1)–(3.2) only in the case nb(y) 6= 0. Also it is clear that in this
case all the properties above for TWS to (3.1)–(3.2) remain valid for (3.8)–(3.9).

Our aim is to establish the existence of an integral connection between the two
steady states R = (0, 1) and S = (1, 0) of system (3.8)–(3.9) which enters S along its
stable manifold (whose existence is established). This will be shown to correspond
to a sharp type solution for the original system (3.1)–(3.2). First we will analyse
the local dynamical behaviour of system (3.8)–(3.9) around the two equilibrium
points. We then go on to study the change in the phase plane as the parameter v
is varied from v > 0 small (when no connection between R and S is possible) up to
v →∞ (when all the connections from R enter S along a certain centre manifold,
which is explicitly calculated). Finally, we show that the direction of any trajectory
leaving R changes monotonically with increasing v. These properties will allow us
to ascertain that there is only one positive speed vmin > 0 for which a connection
from R to S is via the stable manifold.

Any TWS of (2.4)–(2.5) under the conditions (2.6)–(2.7) corresponds to an in-
tegral path of the system (3.8)–(3.9) connecting the two stationary states R =(0,1)
to S=(1,0)1. By simple direct calculation one can see that R is a non-hyperbolic
point and the eigenvalues of the Jacobian matrix associated with the system (3.8)–
(3.9) at R are λ1 = 0, λ2 = −v. The corresponding eigenvectors are e1 = (1,−1)
and e2 = (0, 1). Clearly e2 points towards R locally around R so that any TWS
must originate from R along the e1 direction. Because of the nature of this point
we need to use the Centre Manifold Theorem to obtain the equation of this path
locally around R. We find that

n = 1− b+
1

v2
(1− b)2 + . . . . (3.14)

Similarly, we find that S is a non-hyperbolic point. The eigenvalues of the Jaco-
bian matrix associated with the system (3.8)–(3.9) at S are λ3 = 0, λ4 = −v, with

1Because of this equivalence we will use the term TWS to also denote the appropriate hetero-

clinic trajectory in the n− b phase plane.
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the corresponding eigenvectors e3 = (1,−1) and e4 = (0, 1). Any TWS must end
at S = (1,0). Now both e3 and e4 point towards S around S so that we now have
two possible ways to enter S. If the TWS enters along e3 then the decay is along
the central manifold whose equation is given locally by

b = 1− n+
1

v2
(1− n)2 + . . . (3.15)

(we note that (3.14) and (3.15) are symmetric because the right-hand sides of equa-
tions (3.8) and (3.9) are symmetric in n and b respectively, that is (n, b)→ (b, n)).

If the decay to S is along e4 then it does so such that db
dn → −∞ for z →∞. A

short calculation similar to the one in [13] shows that the local form of the trajectory
is

b = v
√

2(1− n) + .... (3.16)

On eliminating the variable z from (3.8)–(3.9) we obtain the following ordinary
differential equation for the trajectories of this system:

db

dn
=

v2(1− b− n)

(nb)2
(3.17)

for nb 6= 0. However, from the preceding paragraph we know that nb = 0 for some
finite z value would only be possible with b′(y−∗ ) = −v, n′(y∗) = 0. This implies
that db

dn → −∞ for y → y−∗ which is also a property of the dynamical system given
by equation (3.17). This remark coupled with the analysis from the last paragraph
in section 3.1 shows that the systems (3.1)–(3.2) (or (3.1) and (3.6)) and (3.8)–(3.9)
in the form (3.17) have equivalent behaviour, i.e. both sustain sharp and smooth
TWS and no other type of waves and there is a one-to-one correspondence between
these two types of solution and the two systems.

For the analysis which follows we shall focus on the triangular region T given by
(see figure 1):

T = {(n, b) : 0 ≤ n ≤ 1 and (1− n) ≤ b ≤ 1} . (3.18)

We now examine the behaviour of the field associated with the system (3.8)–(3.9)
along the boundary of T . Along the line n = 1 we have that n′ > 0, b′ = −vb < 0.
On b = 1 we have n′ > 0, b′ = −vn < 0 whilst on b = (1 − n), n′ > 0, b′ = 0.
Furthermore, on the line n = 0 we have that b′ > 0 for b < 1 and b′ < 0 for b > 1.
On b = 0, n′ = 0, b′ = v(1−n) which is positive in n < 1 and negative in n > 1. Due
to this local behaviour along the T boundary we note that any allowable solution
must leave T only across the line n = 1.

We next look at the behaviour of the trajectory Rv originating from R=(0,1)
for v positive but close to zero. In this case either from equation (3.14) or from
equation (3.15) we would find that locally n (or b) becomes greater than 1 which is
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e
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2

e
3

e
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R = (0,1)

S = (1,0)

Figure 1. A sketch of the phase plane for system (3.8)–(3.9) show-
ing the triangle T (vertices (0, 0), (1, 0) and (1, 1)) and illustrating
the relevant trajectories and field directions (see text for full de-
tails).

in contradiction with the conclusion of P4. In fact from P6 we already know that
there are TWS only for v ≥ v0 ≥

1√
6
.

The next key step is to see from P5 and equation (3.17) that

db

dn
< 0 (3.19)

so that db
dn decreases as v increases for fixed (n, b) in T and away from R and S

(where n + b = 1). This then implies that any trajectory Rv originating from R
must move down below its previous position in the (n, b) plane as v increases for
fixed n and b. However, for the same reason the opposite is true for any trajectory
Sv which enters S tangential to e4 (the same conclusion holds if Sv would have
entered S along e3). For fixed values of n and b, Rv must move above its previous
position so as to satisfy (3.19). This fact then establishes that if there is at least
a trajectory connecting R to S then it is unique. In particular there is a unique
connection from R to S entering S along e4.
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An alternative way to see this is to note that the angle θ(v) formed for the vector
field defined by (3.8)–(3.9) and the positive (in the clockwise direction) n axis is
given by

θ(v) = tan−1
(

v2(1−b−n)
(nb)2

)

.

This is a monotonic decreasing function of v for all interior points of T . The unique-
ness result immediately follows.

We have already shown that for small values of v there are no TWS. In fact any
such trajectory will leave T across the boundary n = 1 after which it terminates
at infinity. However, because of the monotonicity properties of the trajectories de-
scribed above we deduce that if there is a solution connecting R to S and entering
S along e4 then this is the TWS with the minimum speed vmin. All the other solu-
tions (if they exist) must therefore enter S along the central manifold (3.15). This
last fact is easy to prove. To see this we need to show that any trajectory Sv termi-
nating at S does so along the centre manifold (3.15) for v > vmin. This is readily
established because Sv cannot escape along the boundary b = 1−n and if it would
not terminate at S then it would intersect the boundary n = 1 at some interior
point. This fact then would produce a contradiction by employing arguments simi-
lar to those used to establish the existence of the solution with minimum speed vmin.

All that remains now is to prove that a connection between R and S exists which
gives the TWS with the minimum speed. We do this by studying the behaviour of
the stable manifold Sv of S as b is increased away from 0. The method we employ is
similar to the technique used in [2] (even though they dealt with a scalar equation).
First we remark that for v close to 0, Sv must cross the line b = 1 − n. We next
examine the behaviour of Sv for v >> 1 and show that, in this case, Sv intersects
the line b = 1. Then from a continuity argument it is clear that there must be a
finite value of v for which Rv and Sv coincide, thus concluding the proof. We put
N = 1− n and work in the (b,N) phase-plane. Therefore we have

dN

db
=

(1−N)2b2

v2(b−N)
(3.20)

for which Sv is given, from equation (3.16), by

N =
b2

2v2
+O(v−2). (3.21)

This approximation suggests the change of variable

N =
N0

v2
(3.22)

where N0 is a function which will be determined below. Equation (3.20) now
becomes

dN0

db
=

b2(1− N0

v2 )
2

b− N0

v2

and N0 ∼
b2

2
as b→ 0+. (3.23)

If v >> 1, then from equation (3.23) an asymptotic expansion is suggested for
N0 of the form
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N0 = N1(b) +
N2(b)

v2
+ ... (3.24)

where the functions N1, N2, ..., can be determined from substituting (3.24) into
(3.23) and solving at each order in turn. We find

N0(b) =
b2

2
+

1

2

(

b3

3
−
b4

2

)

1

v2
+ .... (3.25)

It is therefore clear from equation (3.25) that we have N0(1) < 1 and thus N
crosses the line b = 1 in b > 0 which is what we wanted to establish. This then
ends the proof of the existence and uniqueness of the TWS to system (3.8)–(3.9).

We conclude this part by noting the following characterization of the minimum
speed vmin: v = vmin is the minimum value of v > 0 such that Rv(Sv) remains in
the triangle T .

Finally it is worth commenting on the behaviour of the n solution in the case
of the minimum speed solution which results from the preceding analysis. The
issue here is related to whether there is any sharp decay in the n profile. A quick
calculation shows that this is not the case, however. Indeed suppose that y∗ is such
that b(y−∗ ) = 0, b′(y−∗ ) = −v. Then equation (3.1) implies that n is locally given
by

n ∼ e−(y−y∗)
2/2, for y < y∗. (3.26)

with n = 1 for y ≥ y∗. Hence from (3.16) n is smooth at y = y∗ (i.e. n = 1, dn
dy = 0

for all y ≥ y∗).

This minimum speed can be computed numerically on using the methods de-
scribed in Merkin et al. [13]. We integrate equation (3.17) with the local form given
by equations (3.14) and (3.16) by applying a shooting method as implemented by
the NAG routine DO2AGF. Figure 2 shows a plot of the resulting numerical so-
lution. The minimum speed was found to be vmin = 0.700. This value of the
minimum speed is in very good agreement with the value of the speed for the
wave solutions obtained by solving the full partial differential equation problem
(2.4)–(2.7). Finally we conjecture that vmin = 1√

2
.

We now proceed to study the partial differential equation (PDE) problem posed
by equations (2.4)–(2.7).

4. The Partial Differential Equation Problem (2.4)–(2.7). We now investi-
gate the local and global existence of solutions to the partial differential equation
problem (2.4)–(2.7) and then explore the numerical solutions obtained from various
initial conditions. In particular we will see that all the TWS (i.e. the travelling
waves with speeds v ≥ vmin = 0.7) predicted by the theory from the previous sec-
tion are realizable as long term solutions to (2.4)–(2.7) provided the appropriate
initial condition is chosen.
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Figure 2. Plot of the numerical solution to equation (3.17) with
minimum speed vmin = 0.700 in the (n, b) phase-plane, with local
forms at (0, 1) and (1, 0) given by equations (3.14) and (3.16),
respectively. The dashed lines represent n+ b = 1 and the normal
to the n-axis at n = 1.

4.1. Local existence and uniqueness. In general the initial value problem posed
by the system (2.4)–(2.7) is well posed although the solutions are not necessarily
classical because of the density dependent diffusion coefficient of the b species in
equation (2.5). For initial data with compact and/or semi-infinite support it is
possible to show that the solution exists and is piecewise classical in (−∞,∞) ×
[0, T ). However, a proper analysis of this question is very technical and falls outside
the primary scope of this work, namely the analysis of the travelling wave solutions.
It will be presented elsewhere. For the remainder of this section we shall assume
that if the initial data is smooth, with compact support, then the initial value
problem (2.4)–(2.7) has a unique solution which is at least piecewise differentiable
in (−∞,∞)× [0, T ) for some T > 0.

4.2. Global existence theory. We now show that the solutions (n, b) whose ex-
istence was assumed above for all (x, t) with −∞ < x < ∞, 0 ≤ t < T can be
continued for any 0 ≤ t <∞. There is however a difficulty with the PDE problem
(2.4)–(2.7) in that the second equation has a density dependent diffusion equation
and as such there is no immediately available comparison principle. Nevertheless
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this can be overcome in a simple way.

We first establish that any solution to system (2.4)–(2.5) with Dn = 0 and
boundary conditions (2.6)–(2.7) which has positive initial data remains positive for
any positive time. Moreover it is easy to establish an upper bound for n directly.

R1 Let n(x, t), b(x, t) be a solution of our PDE problem for (x, t) ∈ (−∞,∞) ×
[0, T ). Then

0 ≤ n ≤ 1, 0 ≤ b (4.1)

for all (x, t) ∈ (−∞,∞)× [0, T ).

Proof: The proof is carried out in two steps:
A) The region Ω = {(n, b) | n, b ≥ 0} is a positively invariant region for the
PDE system with initial condition taken as a small perturbation to the uniform
steady state (2.6) for all (x, t) ∈ (−∞,∞)× [0, T ). By considering the kinetic term
g = (−nb, nb) and taking due regard of the behaviour as |x| → ∞ along the lines
described by Merkin et al. [12] we see that the system (2.4)–(2.5) is g-stable and
the result follows by applying Theorem 14.11 from Smoller [20].

B) The upper bound for n in (4.1) is readily obtained by the same method as above
(or by direct scalar comparison principle) and from the initial condition (2.6) the
result follows easily.♦

From R1 it follows that in order to establish global existence we need to ascer-
tain that b is a priori bounded as well. To do this we shall establish a maximum
principle for the equation of the form satisfied by b.

R2 Suppose that u satisfies the problem

∂u

∂t
=

∂

∂x

(

u
∂u

∂x

)

(4.2)

for −∞ < x <∞ with u(x, 0) = u0(x) being a positive, compact supported function
on R. Suppose also that

∂u

∂x
→ 0 as |x| → ∞, t > 0. (4.3)

Then the solution to the problem (4.2)–(4.3) is bounded.

Proof: The proof follows from King and Needham [7] (Prop. 3.1). ♦

From R3 it is easy to obtain in a standard way a comparison principle for an
equation having the spatial operator of the form as in (4.2). A particular form for
which this theory is amenable is the form satisfied by the b species in (2.5) because
we know that n is already positive and a priori bounded on the domain. Let us
denote by b the solution to the problem
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∂b

∂t
=

∂

∂x

(

b
∂b

∂x

)

+ b (4.4)

with the same boundary and initial data as in (2.6)–(2.7) for the PDE system (2.4)–
(2.5). Then by the above comparison principle we have the following bound for b:

R3 b ≤ b, for all (x, t) ∈ (−∞,∞)× [0, T ).

Now it remains to show that the solution to equation (4.4) is a priori bounded
on the domain. This follows easily by noting that we have

b ≤ uet (4.5)

for all (x, t) ∈ (−∞,∞)× [0, T ) and where u is the solution to the problem (4.2)–
(4.3) which we know is a priori bounded.

Results R1–R3 establish a priori bounds for n, b and the global existence of
the solutions to our PDE problem follows by an application of Theorem 14.4 from
Smoller [20].

We note that the above results essentially say that the PDE problem (2.4)–(2.7)
has a unique pair of solutions (n, b) which exist for all positive times given suitable
initial and boundary conditions. We then deduce, via the results established in sec-
tion 3, that the travelling wave solutions are the only long time solutions supported
by the PDE problem (2.4)–(2.7).

4.3. Numerical solutions of the PDE problem. In this section we solve numer-
ically the system (2.4)–(2.7) and explore the possibility of travelling wave solutions
for speeds greater than vmin=0.700.

A property of all the solutions to be presented here is that any spatially localised
input of bacteria results in the formation of symmetrically propagating structures,
of non-zero bacterial density, to the left and right directions simultaneously. This
property is clear from the structure of the governing equations (2.4)–(2.5) and
boundary conditions (2.6)–(2.7) which are all invariant to the change of coordinate
x → −x. This enables us to solve the problem on the semi-infinite spatial do-
main: K = (x : 0 ≤ x < ∞). Therefore we solve the PDE problem (2.4)–(2.7) on
K × [0, T ). The boundary condition at x = 0 is the symmetry boundary condition.
The numerical solutions have been obtained in two different (independent) ways.
The first method uses a standard fully implicit Crank-Nicolson finite-difference dis-
cretization algorithm with the resulting nonlinear algebraic equations being solved
by employing a Newton-Raphson iteration with LU decomposition for the linear
matrices. This algorithm has been used successfully before for a similar problem
(but with constant diffusion for b, see Merkin and Needham [10], Merkin et al. [13]).
The present situation of density-dependent, nonlinear diffusion poses no new diffi-
culties except for the cases when b = 0. In such cases the resulting equations become
only time-dependent and so the integration is quicker. Care has been taken that
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Figure 3. Plot of the numerical solution of the full PDE problem
(2.4)–(2.7) for time = 20.0 obtained from the initial conditions
n(x, 0) = 1, b(x, 0) = 0 for all x such that 0 ≤ x <∞ and b(0, 0) =
1.0, n(0, 0) = 1.0. For details of the other conditions see text. All
the solutions in figures 3, 4a-b and 5 were first obtained on the
spatial domain 0 ≤ x ≤ l and then repeated on the 0 ≤ x ≤ 2l
where l = 200h, h = 0.1 to insure that they are independent of the
length of the physical domain. We also checked that the choice h =
0.1 leads to sufficiently accurate simulations by obtaining solutions
with h = 0.05, h = 0.2. In all these cases the solutions obtained
are graphically indistinguishable.

at these points we do not introduce additional errors by the truncation which has
been implemented such that the condition b = 0⇐⇒ |b| ≤ 10.0−10 is satisfied. The
second method uses the method of lines with the resulting time-dependent equa-
tions being solved by a Runge-Kutta routine. The solutions obtained by these two
different methods have been checked against each other in all the cases analysed
and the agreement was found to be very good (better than the graphical accuracy).
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Our simulations show that a large set of initial conditions initiates a travelling
wave propagating with the minimum speed (for example any compactly supported
initial perturbation in b). This wave is of sharp type as expected from the theory
in section 3. In figure 3 we show such a situation for the case when the initial con-
dition is b(x, 0) = 0 for all 0 < x <∞ with b(0, 0) = 1. The numerical solution also
confirms the speed of the wave to be vnumerical = 0.693 which is in good agreement
with the minimum speed (vmin = 0.700) given by our theory in section 3. We have
computed this speed by two independent methods so as to check the accuracy of the
calculations against each other. The first method used simple linear interpolation
to locate the position of the front after which the speed was computed by a simple
difference formula. The second method is based on computing the front location
by an integral method, thus being more accurate, which is similar to the one used
in Merkin et al. [13]. The results are illustrated in figure 4a) where we plot the
position of the travelling wave fronts evolving from the initial-value problem for the
case v = vmin. This figure clearly shows that the front position describes a straight
line in time with constant slope giving the minimum speed. Figure 4c) shows a
plot of the speed of the wave with time showing the approach from below to the
minimum speed value v = vmin = 0.700.

It is interesting to see whether the other TWS established by the theory in
section 3 (i.e. the faster, smooth waves) are also realisable as solutions to the PDE
problem. This is indeed the case and in figures 5 and 6 we show the transition from
the sharp type wave to the smoother waves for three different initial conditions in
b. The initial conditions have decay of the form b = e−γx. For this decay we have
numerically obtained that the speed of the waves follows the “dispersion relation”:

v =

{ 1
γ , γ <

1
vmin

vmin, γ >
1

vmin

(4.6)

The above relation can be justified in a simple way. Note that the leading edge of
the wave front has n ∼ 1, b ∼ 0. So that from equation (2.5) we have, by linearising
at the leading edge of the TWS,

∂b

∂t
= b, (4.7)

because all the spatial terms contribute only to higher order terms. If initially
b = e−γx then a TWS evolves of the form b(x, t) = e−γ(x−vt). By substituting this
in (4.7) we find that v = 1

γ . However, it is clear that this relation can only subsist

for v ≥ vmin leading to (4.6) above.

5. Other similar models. In this section we indicate briefly that the analysis
presented above for the model system (2.4)-(2.7) is applicable to other problems.
In fact in Kawasaki et al. [5], the authors mentioned a possible extension of (2.4)–
(2.5) of the following form

∂n

∂t
= Dn

∂2n

∂x2
− nb (5.1)
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Figure 4. a) Successive positions of the TWS for the case v =
vmin. b) Plot showing the approach to the constant minimum
speed value v = vmin = 0.700 of the sharp front.
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Figure 5. a) Plot of the numerical solution of the cell density
profile from the full PDE problem (2.4)–(2.7) for time = 15.0 ob-
tained from the initial conditions n(x, 0) = 1, b(x, 0) = e−1.5x for
all x such that 0 ≤ x < ∞. b) Same as in a) but for the initial
data: n(x, 0) = 1, b(x, 0) = e−1.2x for all 0 ≤ x <∞.
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1, b(x, 0) = e−0.8x for all x such that 0 ≤ x <∞.

∂b

∂t
= Db

∂

∂x

(

nbm
∂b

∂x

)

+ nb, (5.2)

where m > 1.
Our theoretical treatment developed above is directly applicable to equations

(5.1)–(5.2). Figure 7 shows a plot of the minimum speed of the TWS (still of sharp
type) for the problem (5.1)–(5.2) as a function of m for a range of values of m ≥ 1
obtained from the above travelling wave analysis using numerical integration with
the NAG DO2AGF routine. These results are in very good agreement with numer-
ical simulations of the full partial differential equation system (results not shown).
Note that from this figure we see that the front speed converges to zero from above
as m→∞. This is intuitively obvious because with 0 ≤ b ≤ 1 we have that bm → 0
so the flux term for bacteria tends to zero. Similar calculations can be done for the
model with bacterial diffusion taking the form (bmbx)x for m ≥ 1.

6. Conclusions. One of the most intriguing problems in biology concerns spatio-
temporal pattern formation. It is now well-known that a number of different types
of bacterial colonies exhibit very rich patterning behaviour, for example, spread-
ing disks, rings, spots, dense-branching morphologies with finger-like protrusions.
Several models have been proposed to describe these behaviours see, for exam-
ple, Woodward et al. [21], Mimura et al. [14], Ben-Jacob et al. [1], and references
therein). Many of these models are very sophisticated, involving the interaction of
a number of chemotactic agents, or the production of wetting agents. The simplest
model proposed for this type of behaviour is that of Kawasaki et al. [5], in which it
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Figure 7. Plot of the minimum speed of the sharp type wave front
as a function of m for a range of values of m with m ≥ 1 obtained
from numerical integration of the travelling wave equations corre-
sponding to system (5.1)–(5.2). Note the asymptotic convergence
of the speed to 0 as m→∞.

is shown that reaction diffusion models can produce the DBM type of behaviour,
and this is the model on which we have chosen to focus, as it provides the challenge
of developing travelling wave theory for coupled PDE systems with degenerate dif-
fusion. We note that the behaviour observed by Kawasaki et al. is an extension of
the branching patterns observed by Meinhardt [11] in a generic activator-inhibitor
reaction diffusion model.

By simplifying one of the equations, we have been able to carry out a detailed
analysis on the existence and uniqueness of travelling wave solutions showing, in
particular, the existence of sharp type solutions. We have also derived a minimum
wave speed. A problem that we have not addressed here is that of asymptotic
stability of the travelling wave solution of sharp type. Our numerical simulations
do suggest stability of this solution, but a mathematical analysis of stability remains
to be done. Our analysis, which is on a coupled system of one ODE and one PDE
gives results very similar to those obtained for the system of two coupled PDEs
(and those obtained in Kawasaki et al. [5]). It would be of interest to determine
under what general conditions this agreement holds.

We note that similar conclusions regarding sharp type travelling wave solutions
have been previously reported for scalar nonlinear diffusion problems (Sherratt
and Marchant [19]). To our knowledge there is no work on similar problems for
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a coupled system of equations (see also the equation (6.1) below). We note that
the singular space operator in equation (2.5) fits into the more general class of
cross-diffusion and chemotactic type models. The analysis of travelling waves in
chemotactic systems began with the classical paper of Keller and Segel [6]. More
recently Feltham and Chaplain [3] have determined analytically the properties of
the associated travelling wave solutions in some special cases.

At this point it is worth commenting on a feature of equation (4.6). Clearly the
dispersion relation (4.6) gives a continuous function (of γ) which is non-differentiable
at γ = vmin. This is in contrast to the Fisher equation, for which the correspond-
ing dispersion relation is differentiable everywhere. Indeed, for this latter case we
know from Larson [8] that the behaviour of the solution to the system with linear
diffusion in both n, b is dependent of the form of the initial data. If, say, initially
we have b(x, 0) ∼ eσx, 0 < σ ≤ 1, then as x → ∞ we have the selected speed as
v = σ + 1/σ ≥ vmin = 2.

As we mentioned already our treatment can be applied for more general degen-
erate diffusion equations of the form

∂b

∂t
=

∂

∂x

(

D(n, b)
∂b

∂x

)

+ nb (6.1)

with D(n, b) positive for the case when both n and b are positive, but zero when n
and/or b are zero. It is clear that any such equation will give rise to a dispersion
relation like (4.6), i.e. continuous but nondifferentiable at v = vmin. From the
above we can state that the non-differentiable property of the dispersion relation
is an indicator that the system supports sharp type solutions through degenerate
diffusion terms of this type. In fact we conjecture that this is true whenever there is
at least a parameterized set (depending on one parameter) of initial data for which
the dependence of the speed on this parameter is a continuous but non-differentiable
function. However, much more detailed work on this is required.

We have also considered equations (2.4)–(2.7) under different initial conditions
for the nutrient level, i.e. we set

n(x, 0) = ν0. (6.2)

As expected the speed of the resulting sharp TWS has a monotonic dependence on
this parameter with the wave speed vanishing for low nutrient levels and increasing
exponential-like (unbounded) with increasing initial nutrient value, ν0. The re-
sults (illustrated in Figure 8) agree with those in Kawasaki et al. [5], showing that
our simple caricature system (2.4)–(2.7) can capture the key features of the more
complicated system studied in the original paper, at least in one spatial dimension.

If we require the conservation of total mass in our system (i.e. d
dt (n+b) = 0) then

a scalar equation in b can be obtained from (2.4)–(2.5) by replacing n in equation
(2.5) with 1− b. This results in the equation:

∂b

∂t
=

∂

∂x

(

(1− b)b
∂b

∂x

)

+ (1− b)b (6.3)

with the same initial and boundary conditions (2.6)–(2.7) for b. We have solved
equation (6.3) numerically and found that the behaviour is in good qualitative
agreement with that given by our original, more complicated system (2.4)–(2.7).
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Figure 8. Plots of the speed of sharp TWS as a function of differ-
ent nutrient levels ν0. The top curve corresponds to the solutions of
(2.4)–(2.7) modified with the initial condition (6.2) and the lower
curve to the solutions of the scalar equation (6.3). Note that at
high levels of nutrient concentration, experiments have shown that
that cell response saturates. Therefore the model equations (2.4)–
(2.5) are not valid in this regime.

The resulting speed of the sharp TWS obtained as solution to (6.3) corresponding
to the same different nutrient levels ν0 is also plotted in Figure 8. Note that
although this procedure was applied in the original paper their scalar equation was
further simplified (by assuming that n = ct). Nevertheless we show here that a
more realistic form is still capable of capturing all the behaviour shown by the
full system (2.4)–(2.7). Note that the travelling wave solution dynamics of doubly
degenerate diffusion equations (of which (6.3) is a particular case) has been studied
in detail by Sánchez-Garduño [16]. Here a possible generalisation of the problem
posed by equation (6.3) would be the study of the existence of travelling waves for
the problem

∂b

∂t
=

∂

∂x

(

g(b)
∂b

∂x

)

+ (1− b)b (6.4)

where g satisfies g(0) = g(1) and g > 0 in (0, 1) but not necessarily with g′(0) >
or g′(1) < 0. Recent techniques introduced by Malaguti and Marcelli [9] may offer
possibilities for studying this type of equation.

As mentioned above, there are now a number of models, based on very different
biological assumptions, which can exhibit patterns that are consistent qualitatively
with those observed experimentally. This is the first step in the modelling pro-
cess. It is now necessary to carry out a detailed quantitative study to determine if
these models exhibit the appropriate patterns for realistic parameter values. This
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procedure may well distinguish between models, allowing us to have a fuller un-
derstanding of the underlying processes involved in bacterial motion, and is the
subject of present experimental research.

Finally, we note that in this paper we have extended and generalised previous
analyses for a scalar equation to the more general system

nt = −f(n, b); bt = [D(n, b)bx]x + f(n, b) (6.5)

whereD(n, b) has more than one zero and may be degenerate, f is smooth, bounded,
non-negative and has two zeroes. Thus, our analyses provides a basis on which to
build a more thorough mathematical understanding of more biologically realistic
models.
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