Modelling Biological Pattern Formation:
The Role of Domain Growth

One of the central puzzles in developmental biology concerns the formation of spatio-
temporal patterns during early embryogenesis. Although genes ultimately determine spa-
tial structure and form, the study of genetics alone may not be sufficient to reveal the
mechanisms which regulate production of patterns. These must arise due to interaction
of underlying physical and chemical processes and, as such, are open to investigation via
mathematical modelling. Here, we review some of the most common mathematical models
for biological pattern formation and present some recent results from studies that include
domain growth.

1 Introduction

The revolution in molecular genetics has led to unprecedented advances in
understanding development, leading to the unravelling of mechanisms by
which differentiated structures emerge from the interaction of genes and
their products. A major question, despite the identification of the genes
involved, is to account for spatial organisation, illustrated by the adaptive
and regulatory properties of developing organisms. To understand how mor-
phology is determined and regulated it is necessary to postulate mechanisms
that may plausibly coordinate the spatio-temporal emergence of structure.
In this review we consider various models, based on simple physical princi-
ples, which can generate spatial pattern from initial homogeneity, and that
have been proposed for biological pattern formation. In particular we will
comment on the role of growth of the underlying domain on the pattern
formation process.
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2 Models for Biological Pattern Formation

In the biological context a pattern refers to any instance of a heterogeneous
distribution of gene product, differentiated tissue, cell population or spatial
distribution of an organism. A multitude of different morphologies in many
different areas of biology have been the subject of mathematical modelling.
Several biological systems have attained status of paradigm in theoretical
work in this field, including the segmentation of the insect embryo [23, 57],
limb development [33, 12], the formation of animal coat markings [41, 39, 36],
butterfly wing patterns [39, 61, 60] and the arrangement of hair follicles
and feather primordia in skin [43, 42]. Certain unicellular organisms have
also been studied experimentally and theoretically in the context of pat-
tern formation, for example the generation of whorls in the marine alga
Acetabularia [17] and the branched and star-shaped morphologies of Mi-
crasterias [28, 19, 20]. For these species, where each organism has only one
nucleus, it is most apparent that structure must develop through spatially
distributed physical processes occurring within the cell. At the other end
of the scale, patterns in population density (often called ‘patchiness’) are
studied in ecological settings [59, 38, 46, 34].

These examples raise an important theoretical consideration. For the
patterning of animal skins some degree of variability is often displayed be-
tween members of the same species and even between closely (genetically)
related animals. However, the mechanisms regulating segmentation and
limb development, for example, must be able to reliably generate the same
number of pattern elements despite normal biological variation, for example
in the size or geometry of the region in which the pattern develops. Models
whose purpose it is to describe the mechanisms of spatial organisation in a
particular biological system must be able to account for whichever of these
alternative features is observed.

Two general categories for models of pattern formation have been de-
scribed, namely cell motility and chemical prepattern models. Cell move-
ment models consider the aggregation of cell populations subject to chemical
signals or mechanical forces, where it is supposed that cell differentiation oc-
curs in response to increased cell density (see the book by Murray [39] and
references therein). The aggregation of cells may occur in response to a gra-
dient in the distribution of a chemical signal (chemotaxis, [31], see figure 1)
or due to mechanical cues: for example the advective forces exerted by motile
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Figure 1: (a) Numerical solutions for a cell-chemotactic model showing the final steady
state solution for cell density for three different parameter sets. (b) The regular spot
pattern on the leopard snake Bitis atropos atropos. Reproduced from [41] with permission.
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cells on a substratum or via cellular motion up a gradient in adhesivity of
the extracellular material (haptotaxis, [48, 39]).

In this review we will be primarily concerned with models of the chem-
ical prepattern type. Here it is argued that a pattern is first established in
the concentration of certain chemicals (termed morphogens), and subsequent
cellular differentiation into different tissue types occurs according to whether
or not the local concentration exceeds some threshold. It is implicitly as-
sumed that the chemical pattern is established on a faster timescale than the
response of the cellular machinery, so that the formation and interpretation
of the pattern decouple.

The idea of threshold-mediated response to morphogen concentration
gradients is developed in Wolpert’s notion of positional information [65,
66]. Much of this work considers cellular response to (possibly multiple)
simple gradients. Crick [8] established that gradients could form on realistic
timescales over distances of a millimetre or less under the mechanism of
passive or facilitated diffusion of morphogen from a localised source.

Theoretical approaches may also be divided into discrete (cellular) and
continuum descriptions. Diffusive coupling between cells is by no means
the only mechanism of cellular communication found in biology. Much is
known at the molecular level about intercellular signalling. Cells can demon-
strate active regulation of signals and passage of substances, which are ig-
nored in diffusion-based models. In some instances, known as juxtacrine
signalling, signalling molecules are held in the cell membrane and bind to
receptors on adjacent cells only. Lateral inhibition, for which ligand bind-
ing down-regulates ligand and receptor expression, generates fine-grained
patterns where the wavelength is typically around two cell diameters (on a
one-dimensional array of cells high and low expression levels of the ligand
are found on alternate cells) (see figure 2). This mechanism is observed in
the Delta- Notch signalling pathway [6], and typically selects a subset of cells
from an initially equivalent field which adopt a different cell fate.

A recent model due to Owen et al. [51, 52| considers lateral induc-
tion, where signalling results in up-regulation of ligand and receptor ex-
pression (positive feedback), and its analysis has demonstrated that longer
wavelength patterns may be generated in a mechanism with only nearest-
neighbour cell communication. In two dimensions spot and stripe patterns
may be generated by this model.
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(a)

(b)

(c)

Figure 2: Examples of periodic steady-state patterns of cells in the Delta- Notch model
of [6]. Black denotes cells that adopt primary fate (low Notch activity), white denotes
cells which adopt secondary fate (high Notch activity). With permission.
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3 Reaction-Diffusion Theory

In 1952, Turing [62] proposed that pattern formation during morphogen-
esis might arise through an instability in systems of reacting chemicals,
driven by diffusion. The resulting chemical prepatterns would be subse-
quently interpreted as positional information by competent cells, with cell
fates determined via prepattern-dependent differentiation. A set of two or
more chemicals is required to interact in a well defined manner in order
that heterogeneous patterns may arise in their concentrations. Significantly,
for the spatially homogeneous state to be stable in the absence of diffusion
yet unstable to spatial perturbations of particular wavelengths (diffusion-
driven instability) a disparity is required between the diffusivities of the
chemicals. The pattern forming interaction between two such chemicals has
been described in terms of short range auto-catalytic activation and long
range (lateral) inhibition [16]. The model equations for two such interacting
chemicals, u(z,t) and v(z,t), are given by

ou

- — 2
5 = DuVut f(u,0) (1)
6’U o 2
5= D, Vv + g(u,v) (2)

where the kinetic functions f and g describe the nonlinear reaction between
the chemicals. Linear stability analysis [39] of the homogeneous steady state
of the equations (u*,v*), where f(u*,v*) = g(u*,v*) = 0, shows that the
inhibitory chemical must have larger diffusivity than the self-activating one.
The problem is completed by specifying initial data and boundary conditions
on the solution domain.

This mechanism for spatial and spatio-temporal pattern formation is of
great theoretical interest as it represents a spontaneous spatial symmetry-
breaking phenomenon in a simple physical system. Any thermodynami-
cally closed system, where there is no transfer of matter or heat into or
out of the system, must evolve towards thermodynamic equilibrium. Pat-
tern formation in such systems can be only transient. However, Nicolis
and Prigogine [44] showed that if nonequilibrium (or far-from-equilibrium)
thermodynamic conditions are maintained in an open reactor, e.g. by pro-
viding a constant supply of reactant, then heterogeneous patterns may be
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sustained. In the mechanism described by Turing these patterns have an
intrinsic wavelength which does not depend on the physical size of the reac-
tor (unlike the bouyancy-driven instability in the Rayleigh-Bénard system
or the Taylor-Couette flow instability for a rotating fluid [9]), and Turing
patterns tend to demonstrate periodicity. Turing’s theory has found appli-
cation in fields far removed from developmental biology—see for example
the book by Walgraef [64].

Turing’s ideas have been applied to a wide variety of pattern formation
problems in biology. The model can exhibit a wide range of steady-state
spatial patterns depending on the parameter values, domain size and geom-
etry, and the form of the nonlinearities in the kinetics f and g (for example,
quadratic nonlinearities favour the selection of spots over stripes, which are
the dominant pattern for the case of cubic nonlinearity [15]). It has been
used to account for many of the paradigm model examples mentioned in the
Introduction. The model also exhibits propagating spatial patterns initiated
by a localised perturbation. Such patterns arise in reptilian coat markings
and can also be reproduced by the chemotactic mechanism [40].

However, the theory has received important criticism on several fronts.
Firstly, although many molecules have been identified which appear to act
as diffusive signals, some of which may act as morphogens in the Wolpertian
sense, no set of chemicals has been demonstrated conclusively to operate in
the manner that Turing described in a biological system. In fact, it is only
relatively recently that Turing patterns have been realised under controlled
conditions in artificial chemical systems (discussed in the following section).

We have already hinted at a second major difficulty for Turing’s theory of
pattern formation in biology. In many situations the number of pattern ele-
ments (for example the number of wavelengths generated in one dimension)
is critical. Turing patterns have been shown to display strong sensitivity to
the size and geometry of the solution domain. This criticism, which has come
to be known as the robustness problem, was first brought to light concern-
ing the segmentation of Drosophila. Kauffman [24] suggested that periodic
gene expression patterns observed during the early development of insects
could be explained by a reaction-diffusion model, which appeared to give
qualitatively similar patterns on spatial domains of regular and symmetric
geometry. Subsequent work [3] showed that patterns which do not resemble
those occurring naturally are obtained for minor perturbations of the size
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and shape of the domain. In fact it was later discovered that the segmen-
tation of the Drosophila embryo is achieved in a rather different manner, in
that each individual element of the apparently periodic pattern is separately
controlled and regulated, and the pattern is generated in a cascade of gene
switching [1].

The root of this problem is in the fact that for domains of anything
but very small aspect ratio (the ratio of domain size to intrinsic pattern
wavelength) there are many different patterns which may be admitted as
solutions, the number increasing as the domain size is increased, and the
selection between these different patterns depends sensitively on initial data
and domain geometry. Bard and Lauder [2] drew the same conclusion,
finding in a series of numerical experiments that patterns in discrete cel-
lular simulations are sensitive to the number of cells, concluding that only
unpredictable mosaic patterns are possible. More recently Saunders and
Ho [57] have considered segmentation of growing systems, concluding once
again that reaction-diffusion does not constitute a reliable pattern gener-
ation mechanism. Dillon et al. [12] have shown that the multiplicity of
solutions may be reduced by varying the boundary conditions. Recently
we have suggested that the consideration of domain growth during pattern
formation may have important consequences for the robustness issue [7].

An alternative way of viewing the robustness problem is to argue that
the simple reaction-diffusion mechanism fails to demonstrate the regulatory
properties that we described earlier. While for given initial conditions it
may be possible to select the desired pattern by judicious choice of domain
size, in general, biological systems are subject to natural variation in such
parameters and reliable pattern generation requires a certain degree of scale
invariance. To achieve this regulatory property, various modifications to the
theory have been proposed, requiring some form of feedback from the domain
size to the parameters in the function describing the reaction rates [49,
21]. Gierer and Meinhardt have shown that patterns may be orientated
by a gradient in parameters appearing in the kinetic functions (which they
call source density), exploited in a model for the regenerative properties of
Hydra [16, 35]. Before turning to consider domain growth we discuss the
realisation of chemical patterns in laboratory experiments.
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4 Chemical Pattern Formation

Travelling waves in chemical systems have been known for some time in
the Belousov-Zhabotinsky reaction, however, reactions demonstrating the
stationary patterns predicted by Turing have only been discovered within
the last decade. General reviews of spatio-temporal phenomena in chemistry
can be found in Epstein and Showalter [14] and Johnson and Scott [22] and,
for spatial patterns, Maini et al. [32].

The experimental realisation of Turing patterns was precipitated by the
development of gel reactors where reactants undergo diffusive transport
through an aqueous gel, which serves to suppress any convective motion.
First introduced by De Kepper and Boissonade in Bordeaux, the Gel Strip
reactor has two reservoirs containing chemically inert sets of reactants which
are allowed to diffuse into a thin rectangular ribbon of gel from opposite
sides. In the middle of the ribbon both sets of chemicals are present and
may react. The concentrations in the two reservoirs can be held constant to
maintain nonequilibrium conditions. The first unambiguous experimental
observation of Turing patterns was reported by this group in the Chlorine-
Iodide-Malonic-Acid (CIMA) reaction [4, 11], see figure 3. Here the gel was
loaded with starch primarily to aid visualisation. Starch, a large molecule
with low mobility in the gel matrix, forms a complex with iodide, one of
the reacting species, effectively reducing its diffusion coefficient to provide
the necessary conditions for Turing patterns to form. Subsequent observa-
tions were reported by Ouyang and Swinney [50] using a variation on the
design, the Gel Disk reactor, where patterns form in the plane perpendicu-
lar to the concentration gradients so that larger patterned domains can be
observed. A vast amount of theoretical work has been done to develop an-
alytical models of these complicated reactions, the aim being to reproduce
the phenomena and to calculate phase and bifurcation diagrams describing
the chemical systems.

Stationary patterns have also been recorded in the Ferrocyanide-Iodide-
Sulfite (FIS) reaction when initiated with sufficiently large perturbation
away from equilibrium. Here pattern formation is achieved by propagating
chemical (redox) fronts which halt when they approach each other. In this
case labyrinthine patterns [29] have been observed as well as self-replicating
phenomena [30], where a localised spot grows, divides and separates, repeat-
ing to fill domain. Other phenomena include breathing spot patterns, where
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Figure 3: Different types of Turing patterns in the CIMA reaction (see [50] for full
details). With permission.

the spot radius oscillates [18]. Recently, similar structures have also been
reported in the CIMA reaction [10].

5 Domain Growth

During development, pattern formation in the embryo is often accompa-
nied by growth and movement of tissue, motivating consideration of domain
growth in models of developmental patterning. What may not be immedi-
ately clear is whether underlying growth, which is expected to take place
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over much longer timescales than the generation of pattern via reaction and
diffusion, can be considered to decouple from the pattern formation mech-
anism, as are other cellular processes. Furthermore, the incorporation of
domain growth may influence pattern selection; how the final pattern ob-
tained will depend on the manner in which the domain grows [9].

We now review several examples where growth is thought to play an im-
portant role in the pattern formation process, investigating the basic prop-
erties of reaction-diffusion models under two types of underlying domain
growth.

5.1 Apical Growth

In many developmental systems tissue growth is restricted to a region to-
wards a tip or boundary region (rather, growth in this region is much greater
than elsewhere). Patterning takes place behind the advancing tip. Exam-
ples of such apical growth include the vertebrate limb bud, where rapid cell
proliferation is maintained in the progress zone, a region of undifferentiated
mesenchyme beneath a bounding ridge (the apical ectodermal ridge) at the
tip of the limb bud. The progress zone is thought to be maintained by
signals produced in specialized regions of the tissue (from the apical ecto-
dermal ridge and the zone of polarizing activity, a region at the posterior
margin of the limb bud), and the rapid proliferation remains localised close
to the border of the limb bud during outgrowth. Similarly, in plants growth
typically occurs at the apex of an outgrowing shoot (at the shoot apical
meristem), from which organs such as leaves and flower buds originate.

For a proliferating region that retains a constant cell population the
rate of outgrowth will be determined by the proliferation rate and the cell
population size. In one dimension this results in linear outgrowth of the
apical region, and can be modelled as a moving boundary phenomenon.
Thus for the reaction-diffusion mechanism, described above, equations (1)-
(2) are defined on the spatial domain

z € [0,4+rt] 3)

where /£ is the initial length and r is the product of the proliferation rate
and the spatial extent of the proliferating region. Boundary conditions,
for example no-flux conditions, are prescribed at x = 0,£ 4+ rt. We may
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transform to a stationary spatial domain, £ = z/(£ + rt) € [0, 1], giving for
u(§,t) and v(&,1)

ou D, 0d%u ré  Ou

B (04t 08 (+rt)0E
ov D, % r§(  Ov

B (410208 [@rroE 9w v). ®)

f(u,v) (4)

Under the assumption that domain growth is slow in comparison to the
diffusion and rate of reaction of the chemicals, the domain growth rate pa-
rameter r is small. Solution behaviour under these conditions is shown
in figure 4. The reaction schemes have been chosen to illustrate both the
generic behaviours observed for two-component reaction-diffusion systems,
splitting and insertion of new peaks in the activator solution, depending on
the nonlinearities of the kinetic functions.

Meinhardt [37] has considered a similar model in two spatial dimensions
for the generation of the arrangements of leaves found on plant stems (phyl-
lotaxis). In computer simulations the growing plant stem is idealised as a
cylindrical domain with the addition of cells parallel to the axis of the cylin-
der. Various of the commonly observed morphologies for leaf primordia may
be generated by varying the diffusion constants and the growth rate r. A
similar model has also been developed for the pigmentation patterns of some
sea shells, which also grow from a narrow region near the leading edge of
the shell [36].

5.2 Domain Expansion

In general, all cells within a tissue may undergo proliferation producing de-
formation and expansion of the tissue. Domain expansion has previously
been considered in reaction-diffusion models for the branching morphology
of growing Micrasterias [28] and for the emergence of tooth primordia in
the alligator [27]. Here experimental evidence suggests that the spatial po-
sitioning and order of appearance of tooth primordia is determined in part
by tissue growth throughout the jaw. Recently it has been suggested that
reaction-diffusion prepatterns may be important in the growth and develop-
ment of growing solid tumours [5].

New impetus was recently provided by Kondo and Asai [26], who sug-
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Figure 4: Patterns in the activator chemical obtained under apical growth for (a)
(rescaled) Gierer-Meinhardt kinetics [16] where f(u,v) = v*> — u and g(u,v) = v*?/u —
0.5v 4+ 0.1 showing insertion of new activator peaks and (b) Schnakenberg kinetics [58]
where f(u,v) = 0.9 — uv? and g(u,v) = 0.1+ uv® — v showing splitting of activator peaks.
In both cases D, = 1.0, D, = 0.025, £ = 1.0 and r = 0.01. Numerical solutions are com-
puted using NAG library routine DO3PCF. Grayscale is from low (black) to high (white)
concentration.
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gested that a reaction-diffusion mechanism could be responsible for the dy-
namic changes in pigmentation patterns of the marine angelfish Pomacan-
thus. Unlike mammalian coat markings, the pattern in the skin of these fish
changes dynamically during growth of the animal, rather than simply enlarg-
ing in proportion to the body size. Juvenile P. imperator display concentric
stripes and P. semicirculatus have a regular array of vertical stripes which
increase in number during growth. Juvenile P. semicirculatus of less than
2cm in length display three vertical stripes which separate until the length
of the fish is approximately 4cm, at which point new stripes appear between
the original ones. Similarly at around 8-9cm in length new stripes again
appear between the existing ones. In this manner the pattern changes by
insertion of new stripes as the animal roughly doubles in length, to preserve
the wavelength of the pattern. In P. imperator this behaviour is maintained
in the adult fish, where horizontal stripes maintain an average spacing. This
dynamic regulation of the pattern is quite unlike the static pattern selection
previously discussed.

A simple model of such a tissue supposes that uniform tissue density is
maintained, so that the expansion of the tissue may be described kinemat-
ically, with cell proliferation considered as a distributed source of volume.
The equations for reaction and diffusion on such a domain are given by [7]

ou

5 TV (au) = DuVu+ f(u,v) (6)
% +V - (a) = D, Vv + g(u, v) (7)

where a(z,t) is the velocity field generated by the distributed source term
S(z,t) such that
V-a=S(z,t). (8)

If all cells have the same rate of proliferation then S(z,t) = r is constant
over the domain, and in one spatial dimension the domain length is given by
L(t) = Le™. Transforming to a fixed interval, ¢ = ze™" € [0,£] we recover,
for u(¢,t) and v(¢, ),

2
ou _ _op 07U

ot = Due 6§2+f(u,v)—ru 9)
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— = Dye 8—U + g(u,v) —rv (10)

Again, we assume that r < 1, the slow domain growth limit. The two generic
solution behaviours, splitting and insertion of new peaks in the activator
solution, are illustrated in figure 5.

6 Discussion and Outlook

The insertion of new peaks shown in figure 5(a) was compared by Kondo
and Asai [26] to the regular insertion of stripes on the growing angelfish.
Subsequent work [63, 53] has shown that stripe-forming equations on two-
dimensional domains may exhibit similar behaviour. We have found that
domain growth can stabilise parallel stripes, as well as giving rise to stripe
splitting or insertion, and Painter et al. [53] have demonstrated that a pop-
ulation of cells responding chemotactically to the dynamic chemical prepat-
tern can lead to the insertion of initially narrow stripes in the cell population,
which broaden with age, as observed on the fish. While this is seemingly
good circumstantial evidence that a mechanism such as reaction-diffusion is
at work in the fish, it is important to note that these experimental obser-
vations may also be consistent with any other mechanism which generates
patterns with an intrinsic wavelength.

Many more patterning phenomena have been observed in the growing
fish, including the formation and movement of Y-shaped branching points
where one stripe divides into two. A wider range of behaviours, such as
these, are possible in the reaction-diffusion model in two spatial dimensions,
and with nonuniform domain growth, although the full range of possibili-
ties for pattern formation under nonuniform domain growth remains to be
determined.

One important feature of growth and form that we have overlooked is
curvature of the domain. The bowing and folding of sheets of tissue are
as important in developmental systems as their migration and expansion.
Translation without changing geometry (curvature or size) has no influence
on the reaction-diffusion mechanism within a tissue, however, curved sur-
faces and in particular curvature changing with growth may be an important
factor in pattern formation. To our knowledge there is, at present, little work
discussing the interaction of curvature and domain growth in pattern for-
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Figure 5: Patterns in the activator chemical obtained on the expanding domain for
(a) Gierer-Meinhardt kinetics, showing regular insertion of new activator peaks, and (b)
Schnakenberg kinetics, showing peak splitting. Kinetic functions and parameters as for
figure 4. For domain expansion the patterns change regularly through frequency or mode
doubling behaviour. Grayscale is from low (black) to high (white) concentration.
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mation. One notable exception is the paper by Chaplain et al. [5] in which
the results of a simulation of reaction-diffusion on the surface of a radially
growing sphere are reported, however, there are not sufficient data presented
to ascertain whether or not similar phenomena are observed in their system.
This warrants further investigation.

Thus far we have considered models for growing tissue, however, it has
been suggested that a similar model may represent tissue in which a region
that is competent to form pattern enlarges with time, for example in re-
sponse to the passage of a wave of maturation. In this simulated growth
model the changes in pattern are similar to the moving boundary problem
described for apical growth, and such a model has been proposed for the
periodic patterning of feather primordia in chick [25]. A further possibility
is that the local rate of domain growth (cell proliferation) is determined
by chemical signals, and may be controlled by the morphogens themselves.
Such reactant-controlled growth has been proposed for the outgrowth of the
limb bud, where the progress zone is maintained by the morphogens [13].

There are many aspects of pattern formation on growing domains which
remain unresolved. Mathematical analyses of the dynamic pattern formation
process suggest that the periodic doubling of the number of peaks occurs as a
result of a symmetry in the bifurcation structure of the model, however as yet
no detailed stability analysis of the model has been attempted. Furthermore,
there is a clear link between the behaviour of the equations on the growing
domain and spot and wave-splitting phenomena that have been reported and
analysed in bistable reaction-diffusion systems (on stationary domains) [54,
55, 56, 45].

It has also been suggested that the regular doubling of the number of
peaks on the domain can provide a mechanism for reliable pattern selec-
tion [7]. In one dimension the number of peaks in the pattern can be se-
lected by growing the pattern from an initially simple one, and in two spatial
dimensions regular periodic patterns can be obtained, and the orientation
of striped patterns controlled by the domain growth. Furthermore, between
the splitting or insertions, the pattern remains unchanged as the domain
size changes, providing a degree of regulatory invariance to the domain size.
The set of possible behaviours under domain growth is severely limited.
Such results may prove useful when trying to identify which biological pat-
tern formation events might arise as a consequence of the reaction-diffusion
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mechanism, and where it may be more prudent to seek alternative explana-
tions.

This last point raises the question as to whether the behaviour we have
described is particular to reaction-diffusion systems or is generic to all global
pattern generation mechanisms, such as chemotaxis and mechanochemical
models. In terms of the phenomenology of patterns generated on fixed do-
mains, such mechanisms are difficult to distinguish, all having a range of
destabilising modes which present the same pattern selection issues and
similar robustness problems. As is discussed by Oster and Murray [47], the
underlying mathematical structure of these biologically distinct models may
be very similar indeed, leading to model predictions that are independent of
the detailed underlying biology. If such mechanisms are found to differ then
the predicted behaviour on the growing domain will provide a useful means
to distinguish between them. Whether these other models exhibit qualita-
tively different behaviour in response to domain growth is the subject of
current investigation.
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Mathematical Institute,
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