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Abstract. The formation of spatiotemporal patterning in biology has intrigued ex-
perimentalists and theoreticians for many generations. Here we present a brief review
of some mathematical models for pattern formation and then focus on three models
which use the phenomenon of chemotaxis to generate pattern.

1 Introduction

One of the characteristic features of nature is the enormous diversity of spatial
structure and form present in plants and animals. Understanding how such pat-
terns arise is the central goal of a large body of experimental and theoretical
research. Although the spectacular advances over the past decade in molecular
biology have resulted in detailed descriptions of the spatiotemporal dynamics of
various genes and their products, such studies shed only very limited light on the
underlying origin of these dynamics. The latter is the interest of the mathemat-
ical biologist, and many models have been proposed to describe the formation
of biological patterns.

One of the most famous examples of spatiotemporal pattern formation is the
Belousov-Zhabotinsky chemical reaction, in which bromate ions oxidise malonic
acidic in a reaction catalysed by iron which, depending on its state, can assume
two different colours — reddish-orange or blue. By observing the colour changes,
one can see that this reaction exhibits a wide range of spatiotemporal pattern-
ing, such as propagating fronts, spiral waves, target patterns and toroidal scrolls,
This reaction may be modelled mathematically by a coupled system of nonlin-
ear partial differential equations which account for the reaction kinetics between
species and also their diffusion. Solutions of the resultant system of equations ex-
hibit the experimentally observed phenomena for chemically realistic parameter
values (for review, see [1,2] and references therein).

Such oscillatory and wave-like patterns also arise in physiology. For example,
the heart beats in response to an electrical stimulus which moves in a wave-
like fashion across the heart. This may be modelled phenomenologically by a
system of equations which are not dissimiliar to those mentioned above, and the
resultant models have been used to try to understand abnormal heart behaviour,
such as fibrillation, which can lead to death (for review, see [3]). Spiral waves
also play a key part in the life cycle of the slime mould Dictyostelium discoideum
and we will focus on this in section 4.

The above are examples of patterns that change in space and in time. Per-
haps the most elegant model for temporally stationary spatial patterns is that
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proposed by Turing [4]. He showed that a pair of reacting and diffusing chemi-
cals could evolve from initial nearly uniform steady state chemical concentration
profiles to spatially varying profiles. He hypothesized that if one of the reacting
pair of chemicals was a growth hormone, then this underlying spatially hetero-
geneous chemical profile would result in spatially non-uniform growth leading
to the development of structure, or a spatial pattern. Hence he termed these
chemicals morphogens.

Turing’s analysis showed that it was possible to chose a reaction-diffusion sys-
tem in which the kinetics yielded a steady state which was stable in the absence
of diffusion. However, the introduction of diffusion, which we intuitively think of
as a stablizing process, causes instability. Hence, this was termed diffusion-driven
instability and is an example of self-organisation, or an emergent property.

Since Turing’s seminal paper there has been an enormous amount of litera-
ture in which different types of nonlinear models are derived and analysed, all
based on his original idea. Although the existence of morphogens still remains
a controversial issue, there are a number of candidates (see, for example, [5]).
Some 40 years after Turing predicted the phenomenon of diffusion-driven insta-
bility, it was observed in a chemical system, the Chloride-Iodide-Malonic Acid
(or CIMA) reaction [6,7].

In this paper we present a brief review of previous models that have been
proposed to account for spatial patterning in biology. We then consider, in a little
more detail, three different models which have the common underlying theme
of involving chemotaxis, a widely-used mechanism for directed cell movement

which has been extensively studied from both the experimental and theoretical
viewpoints [8,9].

2 Models for Spatial Pattern Formation: A Brief Review

A number of models have been proposed to account for spatial pattern formation
and regeneration in several areas of developmental biology. This is now a huge
area of research and to aim to review all such models in one short paper is too
ambitious. Therefore, here we present only a few of the models in order to give
the reader a flavour of the area.

Broadly speaking, most models may be classified as either chemical pre-
pattern models or cell movement models. We consider each in turn:
(i) Chemical pre-pattern models: These models assume that a spatial pattern in
some chemical (termed a morphogen) is set up and cells respond to this pattern
by differentiating accordingly, that is, cells are distributed in a spatially uniform
manner, and the spatial heterogeneity arises due to the information (termed po-
sitional information) cells receive from the chemical pre-pattern. There are two
main ways in which such a spatially non-uniform pattern in chemical concentra-
tion may arise: It may be due to a simple source-sink mechanism, coupled with
diffusion and degradation, which cells then interpret via a complex mechanism
involving multiple thresholds [10], or it may arise due to a reaction-diffusion,
or Turing system. Such a pattern, in its simplest one-dimensional form, consists
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of a series of peaks and troughs, which require only one threshold of cellular
interpretation in order to lead to a spatial pattern of cell differentiation. These
models may be couched in terms of partial differential equations, or discretized
and analysed as cellular automata [11].

(ii) Cell movement models: These models assume that a spatial pattern arises
in cell density, and cells then differentiate in a density-dependent manner; for
example, those cells in high density aggregates differentiate while cells in low
density areas remain undifferentiated. There are a number of ways in which cell
aggregation can occur. Cells can move in response to mechanical and chemical
cues, such as gradients in certain chemical concentrations and /or adhesive sites
in the extracellular material in which they move. A number of authors have
studied these types of models and shown that they can lead to complex spatial
patterns in cell density (see, for example, [12-14]).

Models formulated on the hypotheses that cells move to minimize energy
have also been shown to give rise to pattern formation and cell sorting behaviour
consistent with a number of experimental observations [15-18].

Chemical pre-pattern and cell movement models have been used to account
for a wide range of pattern formation and morphogenetic phenomena, including
gastrulation, pattern formation and regulation in Hydra, skeletal patterning in
the limb, animal coat markings, feather formation on dorsal chick skin, tooth
primordia formation in alligators, to name but a few (see [19], and references
therein, for further details).

The above models are based on very different biological hypotheses and it
is still an area of controversy as to which is correct. Although it appears that
in alligators, salamanders and certain fishes, the pigmentation patterns are due
to cell movement, in many other cases a pattern of cell condensations and of
certain chemicals are observed. However, as the time course of these patterning
events has not yet been resolved (due to technical difficulties) it is still not clear
what is cause and what is effect [20].

Although the biology underlying these models are different, several of them
are based on short-range activation, long-range inhibition, which is a general
mechanism for generating spatial pattern. Mathematically, the reaction-diffusion
models and several of the cell movement models are coupled systems of nonlin-
ear partial differential equations. Due to their complexity, most mathematical
analyses have thus far consisted of determining linear stability and primary bifur-
cation points. One finds that for both model types, the patterns produced in the
vicinity of a primary bifurcation point are eigenfunctions of the Laplacian satis-
fying the appropriate boundary conditions. This can be confirmed by numerical
simulation. Therefore, both model classes make similar patterning predictions.
Although this means that it is difficult to use these types of models to distin-
guish between hypotheses, it does make it possible to make predictions that are
independent of the underlying biological hypotheses. This has been exploited to
derive certain developmental constraints [21]. Perhaps the best known of these
is that spotted animals with striped tails are much more common than striped
animals with spotted tails [2].
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The above models consider pattern formation at a macroscopic level and
therefore cannot account for patterning on a finer scale. In many developing
tissues, adjacent cells diverge in character to create a fine-grained pattern of cells
in contrasting states of differentiation. For example, in the developing nervous
system, nascent neural cells inhibit their neighbours from becoming committed
to a neural fate, resulting in a fine-grained differentiation pattern. This is an
example of the general lateral inhibition principle that underlies many such
patterns. The appropriate type of mathematical model in this case is a coupled
system of ordinary differential equations characterising the temporal changes of
key chemicals or proteins in each individual cell, with cells being coupled by
nearest neighbour interactions [22].

3 Primitive Streak Formation

Many pattern formation and morphogenetic studies focus on aspects of avian de-
velopment. Although there are detailed experimental descriptions of the events
occurring in the early stages of chick development, less is known about the mech-
anisms that underly these events. One of the earliest pattern forming events,
which also sets the stage for the proper coordination of subsequent develop-
ment, is the formation of the primitive streak. During streak formation, a group
of specialized cells at the posterior margin of the disc-like blastoderm moves an-
teriorly across the disc to about three-fifths the way across, and then it regresses.
During regression, large scale cell movements occur turning the two-dimensional
embryo into a three-dimensional structure. The movement of the streak is an ex-
ample of a novel type of travelling wave. Travelling waves of constant speed and
profile are well-known to occur in scalar reaction-diffusion equations and they
have been applied to account for the propagation of a favoured gene through a
population, while such waves in coupled systems have been used to account for
the invasion of one species by another [2], or the closure of wounds [23].

To date, little in known about the mechanisms controlling progression and
regression in the primitive streak. Recently, a simple model based on cell-chemo-
taxis was proposed and analysed, and shown to exhibit many of the features
observed experimentally. Here, we briefly review the main points of the model
and refer the reader to the original paper for full details [24].

The model postulates that the density n(x,t) at spatial position x and time
t of the subpopulation of cells that comprise the primitive streak secrete and
respond to a chemoattractant which has concentration u(x,t) and takes the
general form:

%% = D,V - (Vn —nx(u)Vu) + fi(n,u) (1)
du
5 = DuVPu+ fo(n) (2)

where D,, and D, are constant diffusion coefficients and the second term on the
right-hand side of the first equation models movement up the gradient of the
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chemical (chemoattraction) with chemotactic sensitivity. Modelling how cells re-
spond to external signalling cues is a very active area of research at the moment.
To date, most models are phenomenological, although recently it has been shown
how rules of motion at the individual cell level may be translated, using the ideas
of biased random walks, to the cell population level [25]. For simplicity, here we
assume that the sensitivity is a constant xg. Net cell and chemical production
are modelled by the terms fi; and fa respectively. It is known that cell motion
during these early stages of development occurs on a faster timescale than cell
division, so fi can be taken to be 0. The chemical kinetics is chosen to be of the
form:

fa(n,u) = g(n) — Bnu — du (3)

where g(n) accounts for secretion of the chemical by cells, and is assumed to
depend sigmoidally on n. (In a very simple case, it can be taken to be 0 for
n < ny, and a non-zero constant v for n > n; for some constant threshold cell
density level n;). The other two terms in the equation above model chemical
degradation due to the cells and to natural decay.

The appropriate boundary conditions are zero flux. If the model is consid-
ered on a one-dimensional spatial domain, then appropriate initial conditions
for n are that n(z,0) = n; for < z; but zero otherwise. If the initial chemical
concentration is taken to be spatially uniform and the model equations solved
numerically, it is found that this simple model exhibits progression followed by
regression. The mechanism underlying this behaviour is that the initial cell den-
sity at the origin degrades the chemical concentration creating a gradient, up
which cells start to move. At some later stage, however, the chemical concentra-
tion ahead of the advancing cell wave drops to a value below that behind the
wave, reversing the chemical gradient and hence cell motion. It is possible to
determine the parameter space in which this behaviour will occur and it turns
out to be a robust phenomenon. The time of reversal can be approximated in
terms of the parameters of the model as can the speed.
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Fig. 1. Comparison of experimental data with numerical simulations of model equa-
tions (1)-(2) in one dimension showing the spatial extent of primitive streak regression.
Reproduced from [24] with permission.
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Fig. 2. Numerical simulations of model equations (1)-(2) for the case where a donor
primitive streak is implanted at different places in a host. The host primitive streak
is at the left-hand margin of the domain. The resulting “prediction” agrees with ex-
perimental observations. Note that two of the experiments give different predictions:
the top panel predicts two ingrowing streaks, the bottom panel predicts fused streaks.
The outcome of the numerical simulations is crucially dependent on the initial condi-
tions and reflects the experimental observations that the outcome is either two separate
streaks or a fused pair. The left-most panels show the concentration of chemoattractant.
Reproduced from [24] with permission.

Of course, on a two-dimensional spatial domain, the above initial conditions
result in a spreading disc of cells, whereas the primitive streak itself is a tightly
compacted column of cells. By assuming that the initial chemical concentration

Mathematical Modelling in Pattern Formation 211

on a two-dimensional domain has a maximum at the centre of the domain,
however, numerical simulations show that the model exhibits behaviour in close
agreement with experimental observations (Figs 1 and 2). Fig. 3 shows how the
model can be used to make experimentally testable predictions.

Hence, this simple model shows that the hypothesis that primitive streak
formation is due to chemotaxis is a plausible one, and it makes experimentally
testable predictions.

Fig. 8. Model predictions for streak development after experimental ablation (hatched
area) of certain portions of the blastodisc. Reproduced from [24] with permission.

4 Cell Aggregation in Slime Mould

The amoebae of the cellular slime mould Dictyostelium discoideum (Dd) have a
remarkable life cycle. In response to starvation conditions, the amoebae secrete a
chemical, cyclic 3’56’-adenosine monophosphate (cAMP), which diffuses through
the medium in the form of spiral waves. This is a chemottractant for the cells
and causes the phenomenon of cell streaming, leading to cell aggregation and
finally to the formation of a multicellular organism, known as the slug, composed
typically of 104 —105 cells. In the body of the crawling slug, the cells differentiate
into pre-spore and pre-stalk cells. Finally, the slug culminates into a fruiting body
in which the stalk cells lift the spore cells, aiding their dispersal. The amoebae
can remain in the spore stage for many years before emerging under favourable
conditions.

This developmental program has been studied in great detail by experimen-
talists and theoreticians alike because it contains several elements, for example,
signal propagation and tranduction, cell movement, sorting and differentiation,
that are common to higher organisms. Hence it serves as an excellent model
paradigm.

We briefly summarise the modelling here and refer the reader to [26-29]
and references therein for full details. The molecular mechanisms of the cAMP
signalling dynamics have been studied in detail and a number of models have
been proposed. The simplest of these exploit the different time scales on which
reactions occur to use a quasi-steady state assumption to reduce the order of
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the system, leading to a coupled pair of ordinary differential equations in which
the variables are extracellular cAMP concentration and density of cAMP recep-
tors. This is an excitable system and exhibits propagating spiral waves, in good
agreement with those observed experimentally.

To model cell streaming, one must couple cell movement and chemotaxis
to this excitable system. This may be done by considering the cells as discrete
entities for which cAMP-dependent movement rules are specified, and the cAMP
concentration profiles are determined by a numerically computed finite-difference
approximation to the above excitable system. This method has the advantage of
allowing one to follow individual cells and compare at a detailed level, the model
with experimental observations. However, the form of the model is such that little
mathematical insight can be gained. Alternatively, the cells can be modelled as a
continuum. This has the disadvantage of allowing less detailed comparison with
experiment, but the resultant system of coupled partial differential equations can
be analysed mathematically to some extent [28]. We refer the reader to [29] for
more details of these two alternative methods and a comparison between them.

Here, we consider the following continuum model [26,27]:

?9_? = V. (uVn — x(v)nVu) (4)
aa—? = A[6(n) f1(u,v) — ($(n) + 6) fo(w)] + V?u &
{;—: = —g1(u)v + g2(u)(1 —v), (6)

where n, u and v denote cell density, extracellular cAMP concentration and
fraction of active cAMP receptors, respectively. The first equation is the cell
conservation equation and incorporates diffusion, with cell diffusion coefficient p,
and chemotaxis, with chemotactic sensitivity denoted by x(v). The simplest form
of x(v), namely a constant, is not appropriate here, because it would mean that
cells would move both in response to the front of the signalling cAMP wave and
also in the waveback. This contradicts experimental observations, which show
movement only in the wavefront. Moreover, it predicts that the net cell motion
will be in the direction the signal is travelling, rather than in the direction from
where the signal originated. This was known as the “chemotactic paradox” and
can be resolved by accounting for adaptation. Hence, the chemotactic sensitivity
is taken to be of the form x(v) = xov™/(A™ + v™), m > 1, where xo and
A are positive constants. This functional form reflects the hypothesis that an
appreciable chemotactic response requires a minimal fraction of active receptors,
yet, for a large fraction of active receptors, the response saturates.

The second and third equations are a simplified version of the excitable model
of the cAMP-cell receptor dynamics [30] modified by cell density effects. The
first term on the right-hand side of the second equation is the cAMP production
term and assumes that the rate of production per unit cell density is fi(u,v),
where fi(u,v) = (bv + v?)(a + u?)/(1 + u?). This models autocatalytic cAMP
production with saturation, mediated by cAMP binding to active receptors. The
rate of cAMP degradation per cell is taken to be fa(u) = du. The cell density
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dependence is taken to be ¢(n) = n/(1 — pn/(K + n)), while § accounts for
cAMP degradation in the absence of cells. The parameters a,b,d, p, K, 6 and A
are all positive constants.
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Fig. 4. Typical numerical simulation of model equations (4)-(6) showing the time evo-
lution (left to right) of (a) cell density and (b) cAMP. Note the phenomenon of cell
streaming (panels 5 and 6 in (a)).

The first term on the right-hand side of the third equation accounts for recep-
tor densitization and, assuming the law of mass action, g1 (u) = kju. The second
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term models resensitization of the desensitized (1 — v) fraction of receptors, at
the constant rate ga(u) = ks. The parameters k; and ks are positive constants.

Good estimates of most of the parameters are available from the experimental
literature and we refer the reader to the original paper [26] for these estimates
and also for full details on the derivation of each term, which we have only
sketched above. Substituting these parameter values into the model, we find
that the model captures the key features of the cell streaming process. Fig. 4
shows a typical model simulation.

It is found that the initial uniform state is unstable from the outset, suggest-
ing that the coupled dynamics of cAMP wave propagation and cell movement
exhibit a patterning instability perpendicular to the direction of wave propa-
gation. This has been investigated in an analytically-tractable caricature of the
above model from which it is possible to derive explicit conditions on the param-
eters for the uniform steady state to go unstable, and to predict the wavelength
of the fastest growing mode from the dispersion relation. The results are in good
agreement with the numerical simulations of the full model above and experi-
mental observations [27].

Numerical simulations show that low initial cell densities lead to the for-
mation of a central hole agreeing with experimental observations in which the
excitability of the medium is lower. It can be shown mathematically that, in the
model, this is equivalent to lowering the cell density.

The model is not only consistent with a number of experimental observations,
it can also provide alternative explanations for some observed phenomena. For
example, it is known that the wavespeed and wavelength of the spiral patterns
decrease as cell streaming procedes. This has been explained by assuming that
complex biochemical changes must be occurring in the medium resulting in the
parameters changing their values. However, the above model, in which the pa-
rameter values are kept constant, exhibits identical behaviour. It can be shown
mathematically that this occurs due to the spiral dynamics.

5 Pigmentation Patterning in Fishes

A number of models have been proposed to account for the spectacular variety of
pigmentation patterns seen on animals. These models show that the complexity
of the pattern depends on the size of the domain at the instance when the pattern
is laid down. None of these studies considered domain growth during the pattern
formation process as it was assumed that, particularly in mammals, domain
growth simply caused the pattern to change quantitatively, not qualitatively.
However, it was shown recently that the pigmentation patterns on certain fishes
change qualitatively with domain growth [31]. The authors studied the striped
patterns on the marine angelfish, Pomacanthus, and observed that as the fish
grows, its stripes grow wider apart until they are about twice the distance apart
as in the juvenile case. At this stage, new stripes appear between the existing
stripes in such a way that the original interstripe spacing is restored. The new
stripes are thinner than the pre-existing stripes but they gradually broaden.
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It was shown in [31] that this mode-doubling phenomenon was consistent
with the Turing theory. The general Turing model takes the form:

du

= D, V?u + f(u,v) (7)
% = DY+ g(uv) (8)

where f and g are the reaction kinetics for chemicals with concentrations u and v.
The authors considered very simple piecewise linear kinetics and included domain
growth in an ad hoc way in their simulations. Their results showed that as the
domain grew, new stripes were inserted in a fashion similar to that observed
on the fish, except that the inserted stripes had exactly the same width as the
pre-existing stripes. This is to be expected as the wavelength of the pattern in
a Turing system depends only on the model parameters.

It is not yet clear if the pigmentation pattern in Pomacanthus arises due to
a chemical pre-pattern (as hypothesized in this model) or due to cell movement.
Observations in other fish, such as zebrafish, suggest that cell movement may
play an important role in pigmentation patterning. Therefore, a model was de-
veloped in [32] which accounted for cell movement and modelled domain growth
in a mathematically rigorous way. It was shown that, under domain growth, the
concentration ¢ of a chemical in a reaction-diffusion system satisfies an equation
of the form:

de

— + V- (ac) = DV?c + flw) (9)

where D is the diffusion coefficient, a is the velocity of growth of the domain,
and u is the vector of chemical concentrations. It can be shown that this system
undergoes mode doubling for quite general forms of reaction kinetics and that
this phenomenon can arise not only via insertion, but also by splitting [33].

Cell movement may be incorporated into this model by assuming that cell
density, n, satisfies an equation of the form:

Z—? + V.(ng) = D,V — V.[xu(W)nVu + xo (0)n Vo] + n(re + 1) (10)
where a = (rzzi + ryyj) is the velocity field (assumed uniform for simplicity)
generated by growth, r, and r, are growth rates in the z and y directions,
respectively, © and v are the concentrations of the chemicals in the reaction-
diffusion system, x.(u) and x,(v) are the chemotactic sensitivities. The last
term on the right-hand side is a cell source term chosen to ensure conservation
of cell density.

In [32] it is shown that not only can a model of this form produce mode
doubling behaviour (obviously possible since the underlying Turing model is
unchanged) but that, for biologically realistic parameters, the inserted stripes
are narrower to begin with and then gradually broaden. The reason behind this
behaviour is that although the newly inserted stripes of chemical concentration in
the underlying reaction-diffusion system have width identical to the pre-existing
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stripes, the cell rearrangement induced by this new pattern occurs slowly, for
realistic diffusion coefficients. As a result, the new inserted stripes in cell density
are thinner than the existing stripes, broadening only gradually (Fig. 5). In fact,
it can be shown that for suitable choice of chemotactic sensitivites x,(u) and

Xv(v), this model can give rise to cell density steady state patterns of thick and
thin stripes [34].

Fig. 5. Cell density plots in a numerical simulation of the fish pigmentation model
(equation (10) plus corresponding Turing system) showing stripe insertion as the do-
main grows (a) - (h). For convenience the domain has been rescaled to a fixed size.
Reproduced from [34] with permission.

6 Discussion

The models presented in sections 3-5 share the common underlying process of
chemotaxis but give rise to very different patterns due to the different dynamics
that generate the pattern in chemoattractant. In the model for primitive streak
a simple gradient in chemoattractant concentration is set up via degradation and
diffusion. In the case of the slime mould, spiral waves of cAMP concentration
are the result of the cAMP-active cAMP receptor system being an excitable
medium, while in the fish pigmentation model, the chemical patterns are set
up via diffusion-driven instability. The latter model also incorporated domain
growth. One of the main future challenges in this general area is the detailed
study of growth. In the model presented, growth was prescribed, for simplicity.
In actual fact, of course, growth will result from the internal dynamics and this
presents a new modelling challenge [35].

It is clear that biology offers mathematics a wide variety of novel and chal-
lenging problems. It is natural to ask what mathematics offers biology. Most
biological processes interact in a nonlinear way. Therefore, to forecast the con-
sequences of these interactions one must use a language in which nonlinearities
can be manipulated. At the moment, mathematics is the only language that can
do so. Therefore mathematics can be used to test hypothesis and also to make
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experimentally testable predictions. The three models presented in sections 3-5
illustrate how mathematics may be used in this way.
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