
Available online at http://www.idealibrary.com on
doi:10.1006/bulm.2002.0295
Bulletin of Mathematical Biology(2002)64, 747–769

Pattern Formation in Reaction–Diffusion Models with
Nonuniform Domain Growth

E. J. CRAMPIN∗

Centre for Mathematical Biology,
Mathematical Institute, University of Oxford,
24–29 St Giles’,
Oxford OX1 3LB,
U.K.

W. W. HACKBORN

Augustana University College,
Mathematical Sciences Division,
4901 — 46th Avenue,
Camrose, Alberta,
Canada, T4V 2R3

P. K. MAINI

Centre for Mathematical Biology,
Mathematical Institute, University of Oxford,
24–29 St Giles’,
Oxford OX1 3LB,
U.K.

Recent examples of biological pattern formation where a pattern changes qual-
itatively as the underlying domain grows have given rise to renewed interest in
the reaction–diffusion (Turing) model for pattern formation. Several authors have
now reported studies showing that with the addition of domain growth the Turing
model can generate sequences of patterns consistent with experimental observa-
tions. These studies demonstrate the tendency for the symmetrical splitting or
insertion of concentration peaks in response to domain growth. This process has
also been suggested as a mechanism for reliable pattern selection. However, thus far
authors have only considered the restricted case where growth is uniform through-
out the domain.
In this paper we generalize our recent results for reaction–diffusion pattern forma-
tion on growing domains to consider the effects of spatially nonuniform growth.
The purpose is twofold: firstly to demonstrate that the addition ofweakspatial het-
erogeneity does not significantly alter pattern selection from the uniform case, but
secondly that sufficientlystrongnonuniformity, for example where only a restricted
part of the domain is growing, can give rise to sequences of patterns not seen for
the uniform case, giving a further mechanism for controlling pattern selection. A
framework for modelling is presented in which domain expansion and boundary
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(apical) growth are unified in a consistent manner. The results have implications
for all reaction–diffusion type models subject to underlying domain growth.

c© 2002 Society for Mathematical Biology. Published by Elsevier Science Ltd. All
rights reserved.

1. INTRODUCTION

Pattern formation in reaction–diffusion systems is the paradigm for models of
spatial self-organization and, following its proposal by Turing in 1952, the the-
ory has found many applications to modelling biological patterns. Traditionally
models make the assumption that a pre-pattern is established in the concentration
of a chemical (ormorphogen, the term coined by Turing) and only subsequently,
on a longer timescale, is the pattern interpreted for cellular differentiation [as
positional information,Wolpert (1969)]. Recently examples of biological pattern
formation have been reported where the pattern changes qualitatively as the under-
lying domain grows. This suggests that in some cases at least it is necessary to
consider domain growth commensurate with the pattern formation process.

Turing(1952) proposed that pattern formation during morphogenesis might arise
through a diffusion-driven instability in systems of reacting chemicals. Two or
more chemicals are required to interact in a well defined manner in order that
a heterogeneous distribution in their concentrations is generated. Significantly,
for a spatially homogeneous steady state to be stable in the absence of diffusion
but unstable to spatially periodic perturbations, the diffusion coefficients for the
chemicals must be distinct. For the two chemical example, the pattern forming
interaction has been described as short-range auto-catalytic activation and long-
range (lateral) inhibition byGierer and Meinhardt(1972), and the chemicals are
referred to as an activator and an inhibitor. Linear stability analysis (Murray,
1993) of the homogeneous steady state shows that the inhibitor must have larger
diffusivity than the activator.

A reaction–diffusion mechanism has been proposed byKondo and Asai(1995) to
account for the changes in pigmentation patterns on the marine angelfishPomacan-
thus. In the skin of these fish the pattern changes dynamically during growth of the
animal, unlike mammalian coat markings which simply enlarge in proportion to the
body size. JuvenileP. imperatordisplay concentric stripes andP. semicirculatus
have a regular array of vertical stripes which increase in number during growth.
JuvenileP. semicirculatusof less than 2 cm in length display three equally spaced
vertical stripes. These stripes separate until the length of the fish is around 4 cm, at
which point new stripes appear between the original ones. Similarly at 8–9 cm in
length new stripes are again inserted between the existing ones. In this manner the
pattern changes by insertion of new stripes as the animal approximately doubles
in length, providing a beautiful example of a wavelength-preserving mechanism in
a growing biological system. InP. imperatorthis behaviour is maintained in the
adult fish, where horizontal stripes maintain the same average spacing.
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This dynamic regulation of pattern is quite unlike the static pattern selection
problem classically studied for reaction–diffusion equations. The numerical com-
putations ofKondo and Asai(1995), subsequently confirmed and extended by
Painteret al.(1999), show that the sequence of patterns observed on the angelfish is
reproduced by reaction–diffusion schemes on growing domains, where the pattern
wavelength is conserved when the domain length is doubled. This sequence of
periodic patterns has been called mode-doubling. Transitions between patterns
arise through one of two mechanisms: insertion (as for the fish) or splitting of
activator peaks (Meinhardt, 1982). Under certain circumstances these mechanisms
can be made to operate simultaneously [mode-tripling, seeCrampinet al. (2002)].
Patterns evolving on the growing domain follow a sequence which depends on the
first pattern to form but is otherwise insensitive to initial conditions, and hence it
has been suggested that this is a mechanism for reliable pattern formation (Crampin
et al., 1999).

Previously, domain expansion has been considered in reaction–diffusion models
for the branching morphology of growingMicrasterias(Lacalli, 1981) and for the
emergence of tooth primordia in the alligator (Kulesaet al., 1996). Here exper-
imental evidence suggests that the spatial positioning and order of appearance of
tooth primordia is determined in part by tissue growth throughout the jaw. Recently
it has been suggested that reaction–diffusion pre-patterns may be important in the
growth and development of solid tumours (Chaplainet al., 2001), and in ligament
patterning in certain bivalves (Madzvamuseet al., 2002).

In a biological system there may be many reasons underlying spatial nonuni-
formity in the domain growth. For example, signalling cues which determine
the local growth rates (such as growth factors, or other chemicals) may not be
uniformly distributed throughout the tissue. In such cases the local strain rate will
depend on position (as well as time). The reacting and diffusing chemicals may
themselves generate nonuniform growth if the local expansion rate is a function
of their concentrations, a situation we call reactant-controlled growth. One further
example is apical (or marginal) growth, in developing shells (Meinhardt, 1995),
at the apical meristem in plants and in the developing limb bud, where patterning
occurs behind an outgrowing region at the boundary of the domain. In one of
the first studies on reaction–diffusion and growth,Meinhardt(1982) showed that
in one- and two-dimensional numerical simulations marginal growth favours the
generation of periodic structures.

In this paper we investigate the formation of sequences of patterns in the reaction–
diffusion model under such nonuniform conditions. In particular we investigate
whether introducing weak nonuniformity (where there is slow quantitative change
in the growth across the domain) disrupts the regular mode-doubling sequence,
or whether the sequence is robust to such changes. Furthermore, we ask whether
suitably chosen and sufficiently strong nonuniformity (such that one section of the
domain is growing in a quite different manner or rate to another part) can produce
reliable sequences of patterns other than mode-doubling. In the following section
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we present the modelling framework, which is then used in the subsequent sec-
tions to illustrate pattern selection under conditions of uniform, apical and finally
nonuniform domain growth.

2. MODEL DERIVATION

The evolution equations for reaction–diffusion on a growing domain are readily
obtained from conservation of mass in an elemental growing volume. Rather than
to present one particular case, we develop a general framework which will allow
for the subsequent inclusion of the properties of any specific tissue. Consequently
the derivation of the governing equations is considered as a problem in kinematics,
and no constitutive equations are proposed.

Specifically, we assume that the tissue is incompressible, i.e. that the domain
undergoes deformation and expansion with no accompanying change in density.
Growth consists of local directional volume expansion resulting in the transport
of material. In what follows we will consider only planar domains, however, it is
clear that domain curvature, either stationary or changing in time, is potentially an
important influence on pattern formation, in particular in the biological context.

Reaction–diffusion systems of the type studied for pattern formation generally
exclude cross-diffusion, and are coupled only in the kinetic terms. Hence we may
consider the kinematics for a single chemical with straightforward generalization to
a system of interacting chemicals. Growth of the domainx ∈ �(t) with boundary
∂�(t) generates a flowa(x, t). Application of the Reynolds transport theorem to
the equation for mass conservation for a chemicalC, which diffuses with constant-
density diffusivityDc and undergoes reaction at rateR, gives

∂c

∂t
+ ∇ · (ac) = Dc∇

2c + R(c, x, t) (1)

wherec(x, t) is the concentration at positionx and timet . The coupling to other
chemicals, which may also diffuse, is through the reaction termR(c, x, t). The
time-varying domain introduces two new terms to the standard reaction–diffusion
equation:a · ∇c, the transport of material around the domain at a rate determined
by the flow andc∇ · a, the diluting (concentrating) effect of local volume increase
(decrease).

2.1. Nondimensionalization. The Turing instability requires the interaction of
(at least) two chemicals,(u, v), giving a system of equations of the above form
coupled through the kinetic termsf (u, v) andg(u, v). Before nondimensionaliz-
ing, we write the system in a standard form by ordering the variables in decreasing
diffusivity, such thatDu ≥ Dv. The activator is then labelledv. Introducing
nondimensional variables for concentration, position and time leads to the nondi-
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mensional system

∂u

∂t
+ ∇ · (au) =

1

γ0
∇

2u + f (u, v) (2)

∂v

∂t
+ ∇ · (av) =

d

γ0
∇

2v + g(u, v) (3)

whered = Dv/Du ≤ 1 is the ratio of diffusivities,γ0 = ωL2/Du is a dimension-
less parameter which represents the ratio of diffusiveTD to kinetic TR relaxation
times,TD = L2/Du andTR = 1/ω, L is a length scale (the initial domain length
in the one-dimensional case) andω is a reaction rate. Typically, no-flux conditions
are imposed on the domain boundary

∇u = ∇v = 0 on x ∈ ∂�(t). (4)

2.2. Determining the flow. The flowa may be specified directly for certain sim-
ple cases. However, in generala(x, t) will be determined by an extended system of
constitutive equations describing the properties of the tissue. We will assume that
growth properties are determined locally due to factors that will not be explicitly
modelled, but which might include the effects of growth factors and cellular or sub-
cellular structures giving rise to mechanical anisotropy, influencing the direction of
growth. Such properties will be specified on an initial positionX and subsequently
follow the flow due to tissue growth. Lagrangian coordinates,(X, t), are therefore
a natural coordinate system in which to work. Tissue movement is described in
terms of the trajectories000 of elemental tissue volumes

x = 000(X, t) = (01(X, t), 02(X, t), 03(X, t)). (5)

Solid body translations and rotations of the domain leave the pattern generated by
reaction and diffusion within the tissue unaffected. The coordinate system for the
domain is chosen such that there is a reference point which is initially at the origin
of the coordinate system and which remains at the origin during the subsequent
flow. Some general conditions must then be observed for the components of000.
From the definition of000, the initial condition is

000(X, 0) = X (6)

and in the absence of solid body translations we also have the boundary condition

000(0, t) = 0. (7)

The deformation of the tissue due to growth inN-dimensions is described by
the N × N rate of deformation tensorL i j which has components determined by
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local tissue properties. The antisymmetric part of this tensor is associated with rigid
body rotation and so we assume thatL i j is symmetric and the tensor determines the
tissue strain rate. Off diagonal elements ofL i j correspond to the shear rate between
axesxi andx j with no accompanying volume change. On-diagonal components
give the rate of extension along each axis and the trace∑

i = j

L i j = ∇ · a = S(X, t) (8)

gives the rate of volume expansion, thus for domaingrowthwe requireS(X, t) > 0
(and hencec∇ · a is adilution term). L i j (X, t) is related to coordinates(X, t) via

∂20i

∂t ∂ Xk
=

∑
j

L i j
∂0 j

∂ Xk
(9)

from which in general we can calculate000(X, t) and thus the flow,a, due to the
domain growth.

In the following sections we consider several specific cases, where we assume
the form of the components ofL i j and from them derive the trajectories,000, and the
flow, a. Firstly we consider the general form taken for the evolution equation for a
one-dimensional domain.

2.3. One-dimensional growth. In this paper we will present results in one spatial
dimension. Specification of the local growth characteristics reduces to specifying
the sole component, the strain rateL11 = S(X, t). The trajectories, found by
integrating equation (9) with i, j, k = 1 using conditions (6) and (7), are

0(X, t) =

∫ X

0

[
exp

∫ t

0
S(z, τ ) dτ

]
dz (10)

and the flowa(X, t) = ∂0/∂t . To isolate the effects of transport within the domain
and to facilitate comparison of results, we transform the spatial coordinate to the
unit interval using the uniform spatial scalingξ = x/r (t) ∈ [0, 1], where

r (t) = 0(1, t) (11)

is the nondimensional domain length, and the transformed evolution equation is

ut =
1

γ (t)
uξξ + χ(ξ, t) uξ + f (u, v) − S(ξ, t) u (12)

vt =
d

γ (t)
vξξ + χ(ξ, t) vξ + g(u, v) − S(ξ, t) v (13)

with γ (t) = γ0(r (t))2 and

χ(ξ, t) =
1

r (t)
(ξ ṙ (t) − a(ξ, t)) (14)

whereṙ represents the time-derivative ofr .
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2.4. Timescales: slow domain growth.Domain growth introduces a new time-
scale to the problem through the rate of volume expansion. We denote this expli-
citly writing

‖S(X, t)‖ ∼ ρ. (15)

The effect of growth on pattern formation is expected to depend on the relative
magnitudes of the timescales for domain growth and pattern formation. Having
nondimensionalized time using the kinetic relaxation timeTR, the spatial pat-
tern is established on a timescale ofO(1), and hence 1/ρ measures the time for
domain growth relative to pattern formation. For biological systems we suggest
that reaction and diffusion processes will operate on a much faster timescale than
the cellular machinery involved in tissue growth, and thus the relevant regime is
one in which

0 < ρ � 1. (16)

In this case the dilution term is small compared to anyO(1) linear terms in the
reaction kinetic functions.

2.5. Reaction schemes.Two reaction schemes which illustrate the two mecha-
nisms for pattern transition, splitting (Schnakenberg kinetics) and insertion (Gie-
rer–Meinhardt kinetics) of activator peaks, are presented briefly below. These
mechanisms for pattern transitions have been investigated in a class of reaction–
diffusion systems byCrampinet al. (2002), wherein a third possibility is also
described in which splitting and insertion occur simultaneously.

Schnakenberg(1979) proposed a hypothetical series of trimolecular autocatalytic
reactions, for which the nondimensionalized concentrations of self-activating,v,
and self-inhibiting,u, chemicals give the kinetic scheme

f (u, v) = b − uv2, g(u, v) = a + uv2
− v. (17)

Gierer and Meinhardt(1972) presented a model for pattern formation to explain
the regenerative properties of the freshwater polyp Hydra observed in various trans-
plantation experiments. The kinetics are based on biologically plausible arguments
and functions were chosen to reproduce the experimentally observed behaviour.
The scheme considers autocatalytic activation of chemicalv and self-inhibition of
u and can be written as

f (u, v) = v2
− u, g(u, v) =

v2

u
− kv + δ. (18)

We note that equation (17) is actually a special case of one of several different reac-
tion schemes presented byGierer and Meinhardt, the activator-depleted substrate
mode, which also shows peak splitting (Meinhardt, 1982).
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Figure 1. Patterns in the activatorv(x, t) obtained on the uniformly growing domain. For
domain expansion the patterns change regularly through mode doubling behaviour: (a)
Gierer–Meinhardt kinetics, wheref (u, v) = v2

− u andg(u, v) = v2/u − 0.5v + 0.1,
showing regular insertion of new activator peaks and (b) Schnakenberg kinetics, where
f (u, v) = 0.9 − uv2 andg(u, v) = 0.1 + uv2

− v, showing peak splitting. In both cases
d = 0.025,γ0 = 1.0 andS = ρ = 0.01. Numerical solutions are computed using the NAG
library routine DO3PCF. The grey-scale is from low (white) to high (black) concentration.

3. UNIFORM DOMAIN GROWTH

Before considering the effects of a strain rate that varies with position we review
results for the simple case when the strain rateS(t) is uniform across the domain.
The trajectories are

0(X, t) = X exp
∫ t

0
S(τ ) dτ = Xr(t) (19)

and so in this caseξ = X and, with a = Xṙ , the convection-like terms in
equations (12) and (13) vanish under the uniform spatial scaling,χ = 0, as would
be expected for uniform growth. Below we present solutions for constant strain
rateS = ρ [seeCrampinet al. (1999) for results with time-dependent strain rate].
In this case the evolution equations are classical reaction–diffusion modified by a
constant dilution term and time-dependent diffusivity. The two generic solution
behaviours, spatial mode-doubling via splitting and insertion of new peaks in the
activator concentration, are illustrated in Fig.1 (called frequency-doubling when
transformed to the unit interval). Note that the insertion of peaks here is consistent
with the description ofKondo and Asai(1995) for the growing angelfish.

In the case of general nonuniform domain growth,0(X, t) is a non-separable
function of X andt : the convection term is not removed under a uniform transfor-
mation and may therefore influence pattern formation in the system. In order to
investigate pattern formation under nonuniform domain growth we must consider
specific examples. In Section5 we consider a one-dimensional domain comprising
two sub-domains with uniform but different growth rates, thepiecewise uniform
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case, to gain some insight into pattern formation under more general growth func-
tions. First we look at the case where growth is restricted to a region at the
extending tip of the domain.

4. APICAL GROWTH

In many developmental systems tissue growth is restricted to a region located
towards a tip or boundary (at least, growth in this region is much faster than
elsewhere). Pattern formation takes place behind this advancing boundary. Exam-
ples of apical growth include the vertebrate limb bud, where rapid cell prolifera-
tion is maintained in the progress zone, a region of undifferentiated mesenchyme
beneath a bounding ridge (the apical ectodermal ridge) at the tip of the limb bud.
The progress zone is thought to be maintained by signals produced in specialized
regions of the tissue (from the apical ectodermal ridge and the zone of polarizing
activity, a region at the posterior margin of the limb bud) and the rapid proliferation
remains localized close to the border of the limb bud during outgrowth. Similarly,
in plants growth typically occurs at the apex of an outgrowing shoot (at the shoot
apical meristem) from which organs such as leaves and flower buds originate.

For a proliferating region that retains a constant cell population, the rate of
outgrowth will be determined by the proliferation rate and the size of the cell
population of that region. We model this by assuming that the strain rate is nonzero
in the proliferating region, maintained at widthδ, hence

S(x, t) =

{
0, 0 ≤ x < r (t) − δ

Stip(t), r (t) − δ ≤ x ≤ r (t).
(20)

Integrating, and transforming uniformly we find for the flow

a(ξ, t) =

{
0, 0 ≤ ξ < 1 − δ/r (t)
((ξ − 1)r (t) + δ)Stip(t), 1 − δ/r (t) ≤ ξ ≤ 1

(21)

wherer (t) = 1 + δ
∫ t

0 Stip(τ )dτ is the (dimensionless) domain length.
In the limit that the proliferating region is much smaller than the remainder of

the domain, the system can be reduced to a moving boundary problem. Formally
this can be shown by choosing‖S‖ ∼ 1/δ as δ → 0. In this limit the flow is
zero everywhere (the proliferating region is vanishingly small), while the domain
length,r (t) ∼ O(1), increases with time. The scaled reaction–diffusion system
becomes

ut =
1

γ (t)
uξξ + ξ

ṙ (t)

r (t)
uξ + f (u, v) (22)

vt =
d

γ (t)
vξξ + ξ

ṙ (t)

r (t)
vξ + g(u, v). (23)
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Figure 2. Patterns in the activator concentration obtained under apical growth for (a)
Gierer–Meinhardt kinetics showing insertion of new activator peaks near the moving
boundary and (b) Schnakenberg kinetics showing splitting of the activator peak proximal
to the boundary. Kinetic functions and parameters as for Fig.1 with Stip = 0.01/δ, i.e.
r (t) = 1 + 0.01t . Grey-scale is from low (white) to high (black) concentration.

Numerical solutions behaviour for constant proliferation rate,Stip = ρ � 1, are
shown for both splitting and insertion in Fig.2.

Meinhardtet al.(1998) considered a moving boundary-type model in two spatial
dimensions for the generation of the arrangements of leaves found on plant stems
(phyllotaxis). In computer simulations the growing plant stem is idealized as a
cylindrical domain with the addition of cells parallel to the axis of the cylinder.
Many of the commonly observed morphologies for leaf primordia may be gener-
ated by varying the diffusion constants and the growth rateρ. A similar model has
also been developed for the pigmentation patterns of some sea shells, which also
grow from a narrow region near the leading edge of the shell (Meinhardt, 1995).
Here we have shown how such moving boundary models can be incorporated into
the general framework, as a special case of nonuniform domain growth.

5. NONUNIFORM DOMAIN GROWTH

To investigate in greater depth the role of nonuniformity in the domain growth we
firstly consider a simplified scenario in which a one-dimensional domain comprises
two sub-domains, each undergoing slow uniform domain growth but with different
strain rates. This problem is studied in detail with the aim of gaining insight into the
possibilities and complexities of pattern sequences generated under more general
nonuniform growth conditions.

We defineS(X, t) on the two sub-domains

S(X, t) =

{
S1(t), 0 ≤ X ≤ 2

S2(t), 2 < X ≤ 1
(24)
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where2 is the dimensionless initial position of the interface between the two sub-
domains. Trajectories are calculated from equation (10)

0(X, t) =

{
Xr1(t), 0 ≤ X ≤ 2

2(r1(t) − r2(t)) + Xr2(t), 2 < X ≤ 1
(25)

wherer i (t) = exp
∫ t

0 Si (τ )dτ , from which we can calculate the flow directly. The
latter, when scaled, is given by

a(ξ, t) =


ξ

ṙ1

r1
r (t), 0 ≤ ξ ≤ θ(t)/r (t)

θ(t)

(
ṙ1

r1
−

ṙ2

r2

)
+ ξ

ṙ2

r2
r (t), θ(t)/r (t) < ξ ≤ 1.

(26)

Due to the growth of the left-hand sub-domain (i = 1) there is a moving interface
between the sub-domainsθ(t) = 2r1(t) and the total domain length is given by

r (t) = 2r1(t) + (1 − 2)r2(t). (27)

The convective terms in the equations arise despite the uniformity of growth for
each sub-domain because of the choice of spatial transformation, also giving rise
to the internal moving boundary.

Below we present results for constant strain rate in each sub-domain,Si = ρi �

1 for i = 1, 2. Thena ∼ O(ρ) and ṙ (t) ∼ O(ρ), and given thatr (t) ≥ 1 while
ξ ∈ [0, 1] we also find thatχ ∼ O(ρ) or smaller, so that the advection component
is small. Numerical solutions were computed by discretizing the domain to deal
with the internal boundary and then integrating the resulting system of coupled
ordinary differential equations forward in time, as described in the Appendix.
Continuity of flux at the interface permits communication between the two regions.
Pattern formation on each sub-domain will influence the solution behaviour on
the other and so we expect that the pattern sequence may differ from the case of
uniform growth across the whole domain. In the figures the location of the interface
between the uniformly growing sub-domains is shown by the dashed line.†

Comparison with the pattern formed under uniform growth, Fig.1(b), shows
that piecewise uniform growth at relatively high strain rate generates asymmetry
in peak splitting (Fig.3). This is similar to the asymmetries observed for high
strain rates for uniform domain growth reported inCrampinet al. (1999). This
represents a smooth modulation of the frequency-doubling sequence. Each peak
still undergoes splitting. For lower strain rates peaks occasionally fail to split, even
when the strain rates for the two sub-domains are very close (Fig.4).
This defect in the peak splitting is reminiscent of the breakdown of the frequency-
doubling sequence at very low uniform strain rates (Crampinet al., 1999), however,

†We note that in the figures the patterns are shown in the transformed variables on the unit interval.
This is for ease of comparison between different pattern sequences.
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Figure 3. Asymmetric peak splitting for piecewise uniform domain growth, with
Schnakenberg kinetics. Numerical solutionsv(ξ, t) are shown on the unit interval for
(a) piecewise uniform domain growth withρ1 = 0.01, ρ2 = 0.02 andγ0 = 1 and (b)
uniform domain growth withρ = 0.017 andγ0 = 1 giving (approximately) the same
dimensional domain length at timet = 200. Shading is 0 (white) to 4 (black). In this and
subsequent figures the initial conditions were chosen such that a right-hand boundary peak
is first generated. Further numerical simulations (data not shown) demonstrate that the
pattern sequence and asymmetry are the same for an initial peak located on the left-hand
boundary. For ease of comparison the faster-growing sub-domain is on the right-hand side.
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Figure 4. Missing peaks for piecewise uniform domain growth. The figure shows
numerical solutions for the activatorv(ξ, t) for (a) piecewise uniform domain growth with
ρ1 = 0.001,ρ2 = 0.0011 andγ0 = 1 and (b) uniform domain growth withρ = 0.00105
andγ0 = 1 giving (approximately) the same dimensional domain length at timet = 3500.
Other remarks as for Fig.3.

introduction of a continuous strain rate functionS(X, t) (below) suggests that this
is an effect of the discontinuity in the strain rate.

When only one sub-domain is growing, similar to apical growth, there is a strong
tendency for peak splitting to be restricted to the growing region [Fig.5(a)].
Any tissue originating in the growing sub-domain continues to expand, in con-
trast to the apical problem in which growth is restricted to a region of predeter-
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Figure 5. Pattern sequences generated from larger initial domains. The figure shows the
activatorv(ξ, t) for piecewise uniform domain growth withρ1 = 0.0, ρ2 = 0.02 and (a)
γ0 = 1.0 so that the initial modem = 1 and (b) withγ0 = 20.0 where the initial pattern is
modem = 4. Other remarks as for Fig.3.

mined size. If the initial domain size is increased so that activator peaks form
simultaneously on the growing and non-growing sub-domains [Fig.5(b)], different
sequences can be generated. In this example, two peaks transform to three via
splitting on the growing sub-domain, and subsequently six peaks are formed when
the peak closest to the interface splits. However, the tendency for peaks only to split
on the growing part is sustained. At a lower strain rate this differentiation between
growing and non-growing regions appears even more distinct (Fig.6). Figure6(a)
has model parameters identical to Fig.5(b) but with reduced strain rate.

These results are corroborated by solving the equations for nonuniform domain
growth taking the tanh function to approximate the discontinuous step in strain rate:

S(X, t) = ρ1 +
(ρ2 − ρ1)

2

[
1 + tanh

(
X − 2

ε

)]
(28)

which asε → 0 tends to a step-function betweenρ1 andρ2 centred onX = 2.
Numerical solutions for this strain rate function are computed by writing the evo-
lution equations in Lagrangian form (see the Appendix). For high values of the
strain rate, i.eρi ∼ 0.01, there is little difference between the solutions for strain
rate given by equation (28) and for piecewise uniform strain rate, even when the
change is very gradual (ε ∼ 1). As the strain rate is decreased, the piecewise
uniform growth results are recovered asε → 0. Figure7 shows activator solutions
with ρ1 andρ2 the same as in Fig.4(a) for decreasingε.
Whereas regular peak splitting is seen for largerε, certain peaks fail to split as
ε decreases andS(X, t) becomes increasingly step-like.

Results of simulations with larger initial domain size are presented in Fig.8.
Hereρ1 = 0 and asε → 0 the left-hand part of the domain is not growing. The
same behaviour as for the piecewise uniform case is seen in the limit (only when
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Figure 6. Pattern sequences generated from larger initial domains. Numerical solutions
for activatorv(ξ, t) are shown for piecewise uniform domain growth withρ1 = 0.0, ρ2 =

0.001 and (a)γ0 = 20.0 so that the initial mode to grow is modem = 4 and (b)γ0 = 80.0
where the initial pattern ism = 8. Other remarks as for Fig.3.

ε ≈ 0 is S close to zero in the left-hand side of the domain) and for each solution
the transition from two to three peaks is observed as only the peak in the region
of faster domain growth splits. These results indicate that the transition from two
activator peaks to three on the growing domain is not strongly dependent on the
exact nonuniformity.

6. REACTANT -CONTROLLED GROWTH

Several models have been proposed in the literature for which domain growth
is determined by reaction–diffusion variables.Dillon and Othmer(1999) study
pattern formation in the growing limb bud, modelled as an incompressible fluid
with a distributed source term which is a function of the local chemical compo-
sition. In their model there are two chemicals which react and diffuse through
the growing fluid region, however, their system is not of Turing-type and only
simple gradients in the chemicals are formed. Modelling the morphogenesis of
green algae,Harrison and Koĺǎr (1988) andHolloway and Harrison(1999) couple
a Turing mechanism to domain growth. Their study is extended to two- and three-
dimensional domains (Harrisonet al., 2002). However, they also include a feed-
back mechanism to the kinetics such that the diffusion-driven instability operates
only within history-dependent boundaries separated by ‘inert’ regions for which
there is no pattern formation.

The coupling of domain growth to the chemical kinetics provides a feedback
between the pattern formation process and the mechanism that generates sequences
of patterns. As an example, we consider a model for which domain growth is
controlled by ‘growth factor’v, the activator. Rather than model a specific bio-
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Figure 7. Pattern formation with nonuniform domain growth: asε is reduced solutions
resemble the piecewise uniform case shown in Fig.4(a). Here we plot numerical solutions
for the activatorv(ξ, t) with the tanh function for the domain growth andρ1 = 0.001,
ρ2 = 0.0011 and2 = 0.5. The initial domain lengthγ0 = 1 and we plot solutions for (a)
ε = 0.1; (b) ε = 0.01 and (c)ε = 0.001 giving successively closer approximations to the
piecewise uniform case.

chemical pathway, we will assume functional forms for the uptake of the growth
factor,1(v), and the response function which determines the local growth,S(v).
If uptake ofv is limited by receptor saturation then we expect the relationship to
be sigmoidal. A similar problem arises in the biological chemostat [continuously-
stirred tank reactor, CSTR, see for exampleSmith and Waltman(1995)] in which
nutrient is supplied to a well-mixed tank containing a micro-organism population
(with possibly several interacting species). The empirical relationship observed
between population growth and nutrient consumption is sigmoidal (Monod, 1942).
Therefore in the absence of other detailed information, we take

1(v) =
αv

κ + v
, S(v) =

ρv

κ + v
(29)
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Figure 8. Pattern formation under nonuniform domain growth for larger initial domains.
Numerical solutions are shown for the activatorv(ξ, t) with the tanh function for the
domain growth andρ1 = 0, ρ2 = 0.001 and2 = 0.5. The initial domain length is
γ0 = 20 and we plot (a)ε = 0.1, (b)ε = 0.01 and (c)ε = 0.001.

where the growth response is on a slow timescale,ρ � 1. The assumption that
tissue density remains constant (incompressibility) implies that the result of tissue
growth, increased cell size or proliferation, is expansion of the domain, and the
evolution equation is

ut =
1

γ (t)
uξξ + χ(ξ, t) uξ + f (u, v) −

ρuv

κ + v
(30)

vt =
d

γ (t)
vξξ + χ(ξ, t) vξ + g(u, v) −

(ρv + α)v

κ + v
(31)

whereγ andχ are defined as above [equation (14)]. Numerical solutions pre-
sented in Fig.9 were computed by casting the equations in Lagrangian form (see
Appendix), for which explicit calculation of the kinematic flow in the domain is
not required. The strain rateS is plotted as a function of time and scaled space in
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Figure 9. Pattern formation with reactant-controlled domain growth. We plot (a) the
activator (the ‘growth factor’) on the transformed domain and (b) the local strain rate for
Schnakenberg kinetics and withγ0 = 1, d = 0.01,ρ = 0.005,κ = 1 andm = 1. In (c)
the flow lines,0(X, t)/0(1, t), are plotted, i.e. trajectories of particles initially separated
at regular intervals inX. For clarity twice as many points are taken in the second half as
in the first half of the intervalX ∈ [0, 1]. We have takenα = 0 although we have found
no qualitative change to the results for small non-zeroα. The numerical mesh has 1000
space points and no change to the solution is found by halving the mesh size. Numerical
solutions were also computed with sigmoidal response functions for higher cooperativity,
m > 1, and for other values ofκ, giving qualitatively similar results.

Fig. 9(b), where those parts of the domain which are growing have dark shading,
and is seen to correspond closely to the evolving activator profile.

The regular doubling of the number of peaks on the domain is unsurprising in
light of the results described above asS has no discontinuities and is significantly
greater than zero in positions that coincide with the location of the peaks. The
trajectories of particles embedded in the domain (flow lines), uniformly scaled
to the unit interval,0(X, t)/0(1, t) for different values of the initial positionX,
are plotted in Fig.9(c) in which the relative expansion of different regions of the
domain can be seen.
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7. DISCUSSION

For those cases where results have been shown for Schnakenberg kinetics only,
analogous results obtain for insertion of peaks with Gierer–Meinhardt kinetics.
There is no significant effect on pattern amplitude or wavelength from those terms
which have a spatial dependence in the equation for nonuniform growth. For slow
domain growth the convection-like term is correspondingly small. Peaks in the
activator concentration reorganize continuously to maintain a separation which is
roughly independent of position. In Figs3 and5 the asymmetry in the pattern is
due to the relatively high value ofρ. After splitting, peaks do not reach stationary
positions before the domain is sufficiently large for the peaks to undergo the next
transition. For slower growth (Figs4 and 6) the nonuniformity of the domain
growth is reflected in the failure of some peaks to split, giving an asymmetric
sequence of patterns.

Nonuniform growth introduces terms with explicit spatial dependence into the
evolution equation. In its original formulation, and in much of the subsequent
development of the theory, it has been assumed that parameters are homogeneous
throughout the domain, for the good reason that the Turing instability generates
inhomogeneity where before there was none. Indeed, this is the source of much of
the theoretical interest in such pattern forming instabilities. One exception is the
analytical study of a reaction term with explicit space-dependence byAuchmuty
and Nicolis(1975) [see also the numerical simulations ofHerschkowitz–Kaufman
(1975)]. Also, the recent interest in the modelling of chemical pattern formation
in gel reactors leads to the study of spatial gradients in certain reaction terms. In
the Gel Strip reactor the feed of the reactants, held at fixed concentrations at the
boundaries, establishes steady gradients across the domain of pattern formation.
Theoretical studies prior to the experimental realization of Turing patterns in gel
reactors are given byDewel and Borckmans(1989) and modelling of the structures
experimentally observed in these ramped systems is presented byBorckmanset al.
(1992) andDuloset al. (1996).

Several applications of the theory to problems in biological pattern formation
do, however, consider some underlying spatial dependence. For example,Gierer
and Meinhardt(1972) include a shallow source gradient in their model for mor-
phogenesis and regeneration in Hydra to orient patterns (by removing degeneracy
in the spatial modes). Benson and co-authors have demonstrated that inhomoge-
neous reaction–diffusion equations may generate patterns with continuously vary-
ing amplitude (Maini et al., 1992) [see alsoMay et al. (1999)] and wavelength
(Bensonet al., 1993) when one or both diffusion parameters are varying in space.
In our equations for nonuniform domain growth the spatially dependent terms are
small and so we would not expect strong influence on the amplitude or wavelength
of patterns generated by the model.

We now reassess the two questions that were posed at the beginning. We have
shown that for small spatial perturbation, which we interpret as gentle gradients in
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the spatial dependence, we recover mode-doubling-type sequences (at least for the
low modes that we have monitored). For more strongly nonuniform growth (for
steeper change inS) at highρ we have observed asymmetry, as for the uniform
case, and for lowerρ selected peaks fail to undergo transitions, akin to the failure
of mode-doubling for uniform linear growth (Crampinet al., 1999). For highly
nonuniform domain growth, in particular when one region of the domain is not
growing, other sequences may be formed by the failure of peak splitting (or inser-
tion) at particular locations, specifically for those peaks on the stationary part. This
mechanism also appears to some degree robust, suggesting that it may be possible
to choose the nonuniformity such that a specific pattern is selected during domain
growth (as part of an evolving sequence) and furthermore, that the same pattern
will be selected for some amount of variation of the nonuniformity.

Clearly for a thorough investigation of the potential for pattern selection on
growing domains and its relation to specific biological examples, results in two
spatial dimensions, and on curved surfaces are required.Vareaet al. (1999) have
considered pattern formation on spherical surfaces whileChaplainet al. (2001)
investigate patterns on the radially growing sphere.Liaw et al. (2001) show that
the patterns exhibited by a Turing reaction–diffusion system on a fixed portion of a
sphere resemble closely those observed on lady beetles (ladybirds). Moreover, their
preliminary study suggests that curvature does not alter significantly the results for
the case of planar domains. Clearly the formalism that we have described can be
adapted to encompass these and other geometries. Indeed, this has been done in
parallel to the work presented here (Plazaet al., 2002).

It remains to be seen whether the behaviour we have described is particular to
reaction–diffusion models or is generic to all global pattern generation mecha-
nisms, such as chemotaxis and cell motility (mechano-chemical) models, where the
pattern forming dynamical system acts globally across the whole domain. From a
mathematical viewpoint it has been shown that models which differ widely in their
physical interpretation may nevertheless exhibit very similar behaviour, suggesting
that predictions can be made that are mechanism independent (Oster and Murray,
1989). The models are difficult to distinguish by their pattern formation properties
on domains of fixed size alone, as they each demonstrate a range of destabilizing
modes presenting the same pattern selection and robustness problems. Model
predictions are found to be, to some extent, independent of the details of the
underlying biology. If such models are found to differ under domain growth then
the predicted behaviour on the growing domain will provide a useful means to
distinguish between them experimentally, when trying to identify which biological
patterns might arise as a consequence of a reaction–diffusion mechanism, and
where it may be more prudent to seek an alternative explanation. Whether these
other models exhibit qualitatively different behaviour in response to domain growth
is the subject of current investigation.
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APPENDIX

Numerical solution for piecewise uniform growth.Reactant concentrations
u(ξ, t) andv(ξ, t) and their fluxes are continuous at the moving internal boundary
ξ = θ(t)/r (t) between the two sub-domains. The effective diffusion coefficients
are functions of time throughγ (t) but are independent ofξ , thus continuity of
flux requires that the first spatial derivatives are continuous across the internal
boundary. The spatial interval is discretized with a uniform mesh, writingUi (t) ≈

u(ξi , t) as the approximate values of the solutionu(ξ, t) at the mesh pointsξi ,
i = 1, 2, . . . , N, and similarlyVi (t) ≈ v(ξi , t). The first spatial derivative is
approximated using standard central differences. Central differences are also taken
for the second spatial derivative within the two sub-domains, however, the formula
will not be valid across the internal boundary. We adopt the strategy often used
to deal with curved boundaries [see for exampleMorton and Mayers(1994)] and
introduce an extra mesh point,ξθ = θ(t)/r (t) at the internal boundary. When
ξi < ξθ < ξi +1 we linearly interpolate to find an approximation,Uθ , to the solution
at positionξθ

Uθ ≈ (1 − λ+)Ui + λ+Ui +1 (A1)

whereλ+ = (ξθ − ξi )/h for mesh spacingh. The central differences formula for
the second derivative is modified by foreshortening the range in the direction of the
internal boundary[

∂2u

∂ξ2

]
ξi

≈
2

(1 + λ+)h2
[Ui +1 − 2Ui + Ui −1]. (A2)

Similar expressions are derived forξi −1 < ξθ < ξi , with λ− = (ξi − ξθ )/h.
With these formulae the system of ordinary differential equations inUi andVi is
integrated forwards in time using Gear’s method.

Lagrangian formulation for nonuniform and reactant controlled growth.If, for
strain rateS, an explicit inversion of0(X, t) is not readily found then it is easier to
compute numerical solutions to the Lagrangian problem. Explicit calculation of the
kinematic velocity is then not required during the computation. Writing variables
as functions of initial positionX and timet the evolution equation becomes

ct = Dc
1

0X

[
1

0X
cX

]
X

+ R(c) − S(X, t) c (A3)
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with initial and boundary conditions forc(X, t) and0(X, t)

c(X, 0) = c0(X), cX(0, t) = cX(1, t) = 0 (A4)

0(X, 0) = X, 0(0, t) = 0. (A5)

The transformation to Lagrangian coordinates can naturally also be made in higher
spatial dimensions. These equations can be written as a system of first-order partial
differential equations in the variables(u, uX, v, vX, 0, 0X). Numerical solutions
are found by discretizing the first order system using the Keller box scheme (Mor-
ton and Mayers, 1994), implemented in the NAG library routineD03PEF. Solutions
at equally spacedξ or x are calculated by interpolating from the solutions at equally
spacedX, for example using routineC05AZF to invert0 andE01BFF to interpolate.

To recover the form of the pattern on the uniformly scaled domain(ξ, t) the
solution is translated with the scaled trajectories0(X, t)/0(1, t). The computation
proceeds on a grid which is equally spaced inX, while patterns are approximately
equally spaced inξ . During growth of the domain, any particular interval inX
may expand to become a large interval inξ . Hence in order to achieve reliable
results a large number of grid points is required. This is the trade-off against the
computational effort saved in not inverting0 at each step of the calculation. For the
simulations presented above, we repeated the computations doubling the number
of grid points to ensure that the simulation had converged.
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