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Experimental oncology is awash with
data. In 2001 alone, over 21,000 articles
on characterizing, diagnosing and treat-

ing malignancies were published. The power-
ful techniques of molecular biology have
demonstrated innumerable cancer-related
alterations in the structure and function of
macromolecules that control life and death in
mammalian cells. At least 200 genes that may
promote or prevent cancer have been identi-
fied in the human genome. Remarkably,
despite this wealth of information, clinical
oncologists and tumour biologists possess
virtually no comprehensive theoretical
model to serve as a framework for under-
standing, organizing and applying these data.

Heeding lessons from the physical sci-
ences, one might expect to find oncology
aggressively, almost desperately, pursuing
quantitative methods to consolidate its vast
body of data and integrate the rapidly accu-
mulating new information. In fact, quite the
contrary situation exists. Mathematical mod-
els are typically denounced as “too simplistic”
for complex tumour-related phenomena
(ignoring, of course, the fact that similar 
simplifying assumptions are required in most
experimental designs). Articles in cancer
journals rarely feature equations. Clinical
oncologists and those who are interested in
the mathematical modelling of cancer seldom
share the same conference platforms.

This attitude begins in medical and gradu-
ate schools, where curricula often fail to
include theoretical analysis or the application
of quantitative methods other than statistics.
In fact, medical schools have generally elimi-
nated mathematics from admission prerequi-
sites, resulting in a generation of clinical and
research physicians who lack expertise in or
regard for biological mathematics.

Those of us who apply quantitative meth-
ods to cancer also bear responsibility. Too
often we are content with work that is entirely
phenomenological — ‘curve-fitting’ data —
without developing mechanistic models that
provide real insights into critical parameters

that control system dynamics. We also tend to
focus on narrow mathematical issues, such as
existence and uniqueness theorems, that have
no discernible medical application. Most
importantly, we have not clearly demonstrat-
ed to our biologist colleagues a dominant
theme of modern applied mathematics: that
simple underlying mechanisms may yield
highly complex observable behaviours.

So how might mathematical methods help
oncology? Consider the well-known model of
colorectal carcinogenesis that was developed
by Eric Fearon and Bert Vogelstein. This 
theory correlates a sequence of genetic and
epigenetic events with corresponding changes
in tissue morphology as it proceeds serially
from normal mucosa, to a small polyp, to a
large polyp, and eventually to invasive cancer. 

The ‘Vogelgram’ represents a word
model, grounded in the linear logic that is
typical of this approach. It can, however,
form the schematic framework for mecha-
nistic, quantitative models that incorporate
more realistic properties of biological sys-
tems such as stochasticity and nonlinearity.
As the outcomes of such interactions cannot
be determined by verbal reasoning alone,
they must be computed from general 
integrative models of carcinogenesis. 

These models might, for example, adapt
methods from game theory and population
biology to frame the ‘Vogelgram’ mathemat-
ically as a sequence of competing popula-
tions that are subject to random mutations
while seeking optimal proliferative strategies
in a changing adaptive landscape. The phe-
notypic expression of each mutation inter-
acts with specified environmental selection
factors that confer a proliferative advantage
or disadvantage. Such models will generate
far less predictable (and more biologically
realistic) system behaviour, including multi-
ple possible genetic pathways and timelines
in the somatic evolution of invasive cancer.

Critical parameters that emerge from
mathematical modelling focus attention on
issues that require further theoretical and
experimental work. These include explicit
identification of environmental factors that
control clonal expansion and select the
malignant phenotype, as well as how these
microenvironmental selection parameters
are perturbed by successive waves of increas-
ingly transformed cellular populations. 

Our own work addresses some of these
questions by showing that system dynamics in
early carcinogenesis are dominated by normal
tissue-growth promoters and inhibitors.
Mutations that alter cellular reception, pro-
duction or processing of these signals will con-
fer a growth advantage, providing a selection
mechanism for the early gene mutations

depicted in the Vogelgram. As the transformed
populations expand, substrate limitations due
to diminished blood flow and cellular crowd-
ing generate new selection parameters that
favour cellular populations that are angiogenic
and use rapid but inefficient glycolytic metab-
olism. Thus, properties that are typical of inva-
sive cancers but are not included in the original
model flow readily from quantitative meth-
ods. This can be further extended through
models of tumour–host interactions showing
that environmental perturbations induced by
acid excretion from glycolytic metabolism can
produce the invasive phenotype.

Existing mathematical models may not be
entirely correct. But they do represent the nec-
essary next step beyond simple verbal reason-
ing and linear intuition. As in physics, under-
standing the complex, non-linear systems in
cancer biology will require ongoing interdisci-
plinary, interactive research in which mathe-
matical models, informed by extant data and
continuously revised by new information,
guide experimental design and interpretation.

Fortunately, there are some signs of
increasing acceptance of mathematical
methods in experimental oncology. Analysis
of complex genomic and proteomic data has
placed bioinformatics in the biological
mainstream. ‘Systems biology’ is applying
interesting quantitative methods to the web
of transcriptional and protein–protein
interaction that follow perturbations in bio-
logical systems. Perhaps this presages a time
in which mathematical oncology will
become integral to the study of cancer. ■
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Cancer summed up
concepts
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Mathematical
oncology
Clinical oncologists and tumour
biologists possess virtually no
comprehensive model to serve 
as a framework for understanding,
organizing and applying their data.

Simple maths can model a world of complexity.
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