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Summary. This paper presents a novel numerical technique, the moving grid finite
element method, to solve generalised Turing [20] reaction-diffusion type models on
continuously deforming growing domains. Applications to the development of bivalve
ligaments and pigmentation colour patterns in the wing of the butterfly Papilio
dardanus will be considered, by way of examples.

5.1 Introduction

It is half a century since the appearance of Turing’s seminal paper [20] on the
chemical basis of morphogenesis which gave rise to the emergence of reaction-
diffusion theory in developmental biology. He considered a system of two react-
ing and diffusing chemicals (which he termed morphogens) and demonstrated
the possibility that, although in the absence of diffusion, the system tends to
a linearly stable uniform steady state, in the presence of diffusion, the system
evolves, due to diffusion driven instability, to a spatially non-uniform pattern.
Since then, many nonlinear reaction-diffusion models have been proposed [10]
and analysed, mainly on geometrically simple fixed domains.

Nature is more complicated, however. For example, butterfly wing pigmen-
tation patterns, animal coat markings [10] and shell pigmentation patterns (8]
occur on geometrically complex growing surfaces. Kondo and Asai [6] have
shown that domain growth can play an important role in pattern formation.
To compute the outcome of a pattern generator operating on a continuously
deforming and growing domain requires novel applications of numerical com-
putational methods. Of particular interest is the moving grid finite element
method [1]. We employ this method to compute solutions of a general Tur-
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ing system of two chemical morphogens on fixed, complicated and growing
domains in one and two dimensions.

In section 5.2 we present the theory behind the moving grid finite element
method applied to a generalised Turing reaction-diffusion model on a contin-
uously deforming domain. Two biological applications are considered. Section
5.3 analyses the essentially one-dimensional growth patterns of certain bivalve
ligaments. Section 5.4 considers the two-dimensional wing colour patterning
in the butterfly Papilio darndanus. Finally, in section 5.5 we discuss future
research.

5.2 Moving grid finite element method

We write the non-dimensional form of the two species Turing reaction-diffusion
model on a continuously deforming domain 2(t) in the form [3]:

StV (aw) =7 () +pa ) + P, ()
% + V- (av) = yg(u,v) + qs(u,v) + dV?v, (5.2)

where u(x, t) and v(x,t) are chemical concentrations at spatial position x and
time t. We define a(x,t) as the velocity field. The kinetic functions f, ps, g
and g3 describe the nonlinear reaction between the chemicals, with ps and gg
bivariate cubic polynomials. Here f and g encode some of the familiar and
often used reaction schemes:

(see website ! for more details and a freely downloadable software). The pa-
rameter values v and d represent the reaction timescale and ratio of diffusion
coefficients respectively. Typically, boundary conditions on the spatial domain
are either zero flux (Neumann) or fixed (Dirichlet) or both.

The model equations (5.1) and (5.2) assume that the domain £2(t) de-
forms continuously and uniformly in time. This enables us to solve the system
numerically by use of moving grid finite elements [1]. We first derive an equiv-
alent weak form over a space V. Multiplying (5.1) and (5.2) by w € V and
applying Green’s theorem we seek to find u,v € V' such that:

(%, w) + (V- (au),w) = (v f(u,v) + pa(u,v), w) + (Vgu, w) : (5.3)
v
(Fr0) + (7 @0),0) = (rau0) + s v) ) 4.0 (o), )

where (u,w) = .f;}(:} uw df2(t) is the Lo-inner product. Let V* C V be a
finite-dimensional space consisting only of simple functions depending only

! http://web.comlab.ox.ac.uk/oucl /work /andy.wathen /software. html

5 Moving Grid Finite Elements: Applications 61

on finitely many parameters. The Galerkin Formulation [12] seeks to find
uh, v® € V? such that

h
(%‘wh) + (V 3 (auh) ,wh) e ('Y f{‘uh,'uh) n pg(uh,v”),m") = (vuh‘vwh) ,

o h
(%,wh) + (V- (av"),w") = (v g(u®,v") + a3 (ul, "), wh) — d (Voh, Vuh),
for all w" € V" where zero-flux boundary conditions have been applied. Here

u" and v" are the finite element approximations to u and v respectively,
defined as

N+1 N+1
ul(x,t) = Z ul(t) ai(x,s(t)) and v*(x,t) = Z ol (t) ai(x,8(t))
i=0 i=0

where x € R™ indicates the spatial coordinates and s(t) represents the moving
grid in time. The time derivative of u" (or similarly v") is given by ([2, 5])

Buh N+1 y .
= > [ — diul] ai(x,s(t) (5.5)
i=0
in one dimension and
81.!.}‘ N+1
o = o [ = (#iuz + giu)] eilx,s(0)) (5.6)
i=0

in two dimensions. The effect of domain growth on the finite element formula-
tion is to add extra terms as illustrated in (5.5) and (5.6). The spatial discreti-
sation gives rise to a semi-discrete system of nonlinear ordinary differential
equations. We use the Backward Euler finite difference scheme to discretise
the ordinary differential equations in time. In one dimension the discretisation
gives rise to symmetric, tridiagonal and diagonally dominant systems which
can be solved using the Thomas algorithm [9]. In two dimensions we use a
preconditioned Conjugate Gradient method [13].

5.3 Growth patterns in bivalve ligaments

The bivalve ligament is the uncalcified, elastic part of the bivalve shell which
joins the two valves dorsally (Fig. 5.1, top panel). In the family Arcidae, these
ligaments typically consist of oblique lamellar and fibrous sheets, alternating
along the hinge so that their attachments on the two valves form character-
istic chevron patterns. New elements are added at or near the middle of the
growth zone as the ligament expands ventrally (see [7, 18] for more details).
In the family Noetiidae, new elements are added to each end of the ligament,
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Fig. 5.1. (a): Bivalve ligament in longitudinal section (Adapted from Fig. 51, True-
man [19]). Schematic showing growth patterns of the duplivincular ligament typical
of (b) Glycymeris (arcoid) and (c¢) the noetiid ligament showing a cross-sectional
view of the ligament as it is inserted on the attachment area of each valve [18].

anteriorly and posteriorly (see Fig. 5.1). By solving numerically the Schnaken-
berg [14] reaction-diffusion model on a one-dimensional growing domain with
fixed parameter values we generate a variety of patterns consistent with those
observed in nature (see Fig. 5.2 top panel). Similar results can be obtained
in two dimensions as illustrated in Fig. 5.2 (bottom panel). This investiga-
tion shows that the noetiid growth pattern can be derived from the chevron
pattern by simply fixing the value of one of the morphogens at the centre
of the domain. These results suggest that the noetiid growth pattern could
have evolved independently more than once, and not necessarily from a single
common ancestor as the existing classification implies.

5.4 Colour patterning in Papilio dardanus

For many decades scientists have been fascinated by the spectacular colour
patterns of butterfly wings. On the basis of the pioneering work of Schwan-
witsch [15] and Siiffert [17] on the nymphalid ground plan, the seemingly
complicated colour patterns on butterfly wings can now be understood as a
composite of a relatively small number of pattern elements. A number of math-
ematical models have been put forward to account for the diversity of colour
patterning (see [10, 11] for review). Nijhout [11] proposed a specific ground
plan for Papilio dardanus, a species known for its spectacular phenotypic poly-
morphism in females. Recently, Sekimura et al. [16] proposed a global wing
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Fig. 5.2. (a), (b): Numerically computed results for u corresponding to the
Schnakenberg reaction scheme with the boundaries (a) v = 0.7, un = 0 along z = —1
and t = 1. (b) vp, = 0, un = 0 along z = —1 and z = 1 with v = 0 along z = 0. (a)
is consistent with arcoid patterning, while (b) is similar to the patterning observed
in the noetiids (compare with Fig 5.1 (b) and (¢)). (¢}, (d): Two-dimensional results
consistent with the patterns observed in one dimension.

colouration hypothesis due to stripe-like patterns of some pigment inducing
morphogens. By solving the Gierer-Meinhardt [4] reaction diffusion model on
a geometrically accurate (fixed) wing shape, we can capture the details of the
diverse colour patterns exhibited in the wing of Papilio dardanus (Fig. 5.3) by
simply modifying the gradient threshold above which pigmentation occurs.

5.5 Discussion

Although we have illustrated results for the Schnakenberg and Gierer-Meinhardt
reaction models, similar results can be obtained for other common kinetic
models, The power of the moving grid finite element method applied to bi-
ological problems is that dynamically deforming complex geometries can be
dealt with easily and efficiently without many changes in the numerical code.
By solving the paradigm Turing model on continuously deforming domains we
have shown that when a particular species exhibits morphological diversity,
such diversity may arise through a simple modification of a basic ground plan.
The generality of our numerical method allows us to study other biological pat-
terns observed experimentally. We are currently carrying out computational
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Fig. 5.3. Top panel: Some mimetic forms of females of Papilio dardanus. From left
to right: cenea, hippocoon, and planemoides. (Courtesy of Dr. A. P. Volger and Dr.
A. Cieslak of the Natural History Museum, London and Imperial College, Silwood
Park). Bottom panel: Numerical results of the Gierer-Meinhardt model [4], showing
patterns corresponding to hippocoon, cenea and planemoides respectively (see [16]
for full details).

studies of wing development in Papilio dardnus from the larval imaginal disc
to the adult wing, and will use our model and numerical scheme to make
predictions on the effects of experimental manipulation.
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