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WC consider a reslistic suicide substrate reaction which can be represented by four rate equations for the concentrations of the 
various tnoleeules as functions of time. We present a general procedure to obtain accurate, approximate solutions analytioally in 
terms of the rate equation parameters. This systematic technique provides more accurate approximations to the exact (numerical) 
solutions than other approximate methods which have been proposed based on a pseudo-steady state hypothesis. 

1. Introduction 

An enzyme system of considerable experimen- 
tal interest [l-3] is the mechanism-based inhibitor, 
or ‘suicide substrate’ system, represented by [4] 

k, 4 
E+S-X - Y 

k, 

‘k_, 
- E+P 

I 

1 k4 

Ei 

(1) 

where E, S and P denote enzyme, substrate and 
product, respectively, X and Y enyme-substrate 
intermediates, Ei inactivated enzyme, and the ks 
are positive rate constants. In this system, Y can 
follow one of two pathways, namely, to E + P 
with rate k, or to E, with rate k,. The ratio of 
these rates, k,/k,, is called the partition ratio and 
is denoted by r. Both of these pathways are con- 
sidered to be irreversible over the time scale of the 
reaction [5]. S is known as a suicide substrate 
because it binds to the active site of an enzyme - 
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like a substrate - but the enzyme converts it into 
an inhibitor which irreversibly inactivates the en- 

zyme. Thus, the enzyme ‘commits suicide.’ 
Suicide substrates are important because they 

provide a way to target a specific enzyme for 
inactivation. They are especially useful in drug 
administration, since they are not harmful in their 
common form and only the particular targeted 
enzyme can convert them to their inhibitor form. 
For example, suicide substrates have been in- 
vestigated for use in the treatment of depression 
(monoamine oxidase inhibitors [2]), epilepsy (brain 
GABA transaminase inhibitors [3]), and some 
tumors (omithine decarboxylase inhibitors [2]). 

Suicide substrate kinetics have been considered 
by Waley [5] and by Tatsunami et al. [6]. Waley 
proposed that the factor which determined whether 
the substrate is exhausted before all the enzyme is 
inactivated is rp, where p is the ratio of the initial 
concentration of enzyme to that of substrate, 
namely, EO/&. Tatsunami et al., on the other 
hand, found the determining factor to be (1 + r)p. 
When (1 + r)~ > 1 the substrate is exhausted, 
while for (1 + r )p < 1, all the enzyme is in- 

activated. (When (1 + r)r = 1, both occur.) While 
it is true that the results obtained by Tatsunami et 
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al. were more consistent with numerical solutions 
of the full rate equations obtained from the system 
(eq. 1) than were Waley’s, both results deviate 
from the solution when c approaches 1. This 
highlights a shortcoming that occurs in most 
pseudo-steady-state approximations for enzyme 
kinetics: their validity decreases for increasing val- 
ues of E,/S,,. Thus, a new analysis is needed 
which is valid when the concentrations E,, and S,, 
are of the same order of magnitude or E,, is very. 
much larger than S,, i.e., E,,/S, is not small [7], 
Ideally, we would like an analytical, uniformly 
valid solution for all time. Such a solution clearly 
shows the transition from the fast-transient phase 
to the pseudo-steady-state phase. It also provides 
quantitative expressions for the time evolution of 
the reaction in terms of the parameters (which are 
related to the rate constants). This paper shows 
how to derive. such solutions. 

First, we set up the rate equations using the 
Law of Mass Action. We examine the equations in 
the initial stages of the reaction and also when the 
system is effectively at a pseudo-steady state. We 
are required to choose a time scale - the ‘inner’ 
time scale - that facilitates the analysis of the 
initial, fast transient. As the system approaches 
pseudo-steady state, we must choose a new time 
scale - the ‘outer’ time scale - to facilitate the 
study of the long-time evolution of the reactants. 
We then solve these two sets of equations for 
different sets of parameter values, and match the 
inner and outer solutions to obtain a uniformly 
valid approximation to the solution of the full 
system. Finally, we compare this approximation to 
previous ones, and to numerical solutions of the 
original rate equations. 

2. Rate equadons 

The rate equations obtained from eq. 1 using 
the Law of Mass Action are given by: 

WI 
- - -k,[E][S] + k_,[X] dt 

d[E] - = -ki[E][S] + k_,[X] + k,[Y] dt 

(2) 

(3) 

q=k,[E][S] -k_,[X] -kJX] (4 

$I = k,[X] - k,[Y] - k,[Y] (5) 

diE.1 
A = k,[Y] dt (6) 

d]P] - = k,[Y]. dt (7) 

where [ ] denotes concentration, and t time. Typi- 
cal experimental initial conditions which complete 
the mathematical formulation are 

E(0) = E,, S(0) = se, 

X(0)=Y(O)=Ei(O)=P(O)=O. (8) 

Eq. 7 can be uncoupled from the rest, because [P] 
does not appear in any of the other equations; [P] 
can be evaluated by integration after [Y] has been 
found. 

The order of the system can be further reduced 
by noting that (adding eqs 3-6) 

~{[EI+[XI+[YI+[EiI}=O (9) 

- [E] + [X] + [Y] + [Ei] - EO. (10) 

That is, the total amount of enzyme, whether free, 
inactive or in a complex, remains constant. Using 
eq. 10 to eliminate [El, we obtain the reduced 
system 

dlS1 
- = -ki(%- [XI - [YI - [EiI)[SI dt 

+ UXI 

~ ~ k,(E,- [X] - [Y] - [Ei])[S] 

(11) 

-(k-i + k,)]Xl (12) 

9 = k,[X] - (k, + k,)[Y] (13) 

d[E. ] 
i=k4[Y]_ 

dt (14) 

This is the system specifically considered by 
Tatsunami et al. [6]. 
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3. Model system in nod-ional form 

It is always advantageous to express the model 
system in nondimensional terms. By converting to 
nondimensional variables and parameters, we can 
then consider quantities on au absolute scale, in- 
dependent of specific units. Such a procedure also 
immediately gives a measure of the relative magni- 
tudes of the various contributions to the rate 
equations. 

There are several ways to nondirnensionalise 
the system. Here we follow the procedure of Segel 
and Slemrod [8] (see also refs. 9 and 10) and 
nondimensionalise the rate equations (eqs 11-14) 
using two different time scales related to the fast- 
transient phase (inner time scale) and the pseudo- 
steady-state phase (outer time scale). The inner 
equations describe the system during the early 
stage of the reaction, when [S] has not decreased 
significantly, and [X] and [Y] are small, but grow- 
ing. 

We nondimensional&e our variables by setting 

[s]=s,s, [x]=$pjfx, 
[YI = E~Y, [Ei] = E&i, 05) 
where 

and S, x, y and ei are now dimensionless varia- 
bles. The fast-transient time scale is taken as 

~=z/t~=tk~($o+K) (17) 

and the pseudosteady state time scale as 

T= t/t, = tc(k_, + k,) (18) 

with 

(19) 

Using the scalings in eq. 15 with T as the time 
scale, we obtain the nondimensional&d versions 
of eqs 11-14 for the fast-transient phase, namely 

sx + sy + Sei 

+ (l+pgi+O)x 1 

where 

s, 
e=--) 

K 

(23) 

The initial conditions (es. 8) now become, on 
using eq. 15, 

s(0) = 1, x(O) = 0, y(0) = 0, ei(0) = 0. (25) 

Note that E small in eq. 20 implies that 3 
changes little, while x and y change significantly 
during the fast-transient phase. An important part 
of the analysis is quantifying these statements. By 
saying ‘S has not changed significantly,’ we mean 
that the nondimensional time derivative of s in 
our equations is not zero, but is equal to an 
expression which is multiplied by a small parame- 
ter,’ c. We refer to the right-hand side of eq. 20 as 
being ‘of order E,’ or O(r). Conversely, since x 
and y are changing significantly, we say their time 
derivatives are ‘of order 1,’ or O(1) - they are not 
multiplied by L. We use this approach when solv- 
ing the equations by equating coefficients of 
powers of f. Since E&S, + K) is our small 
parameter, we can extend the validity of the tradi- 
tional quasi-steady-state assumption (QSSA) to 
cases where Eo/&, is not small. 

The same constants and scalings are used for 
the dependent variables but with T is the time 
scale to nondimensionalise the rate equations for 
the pseudo-steady-state phase: 

ds 
-= -s[(a+l)-ax-(a+l)y-(o+l)e,J dT 

P 
+iTjix 

cG=S[(e+l)-UX-(U+,l)y-(o+l)ei] 

-X (27) 
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dy 
‘dT= (l+u)yl+p) x-+y ( 1 

dei 
cm=+Y (29) 

where C, u, p, $ and + are given by eq. 24. 
Now that we have the two sets of dimensionless 

rate equations for the two time periods, we find 
uniformly valid approximate solutions by asymp- 
totic methods. In the following section, we simply 
describe the procedure heuristically and present 
the solutions. 

4. solution me&nI and aolutlons 

The fact that a small parameter 0 < f S 1 mul- 
tiplies the derivatives in eqs 27-29 indicates that 
this is a singular perturbation problem. One class 
of such problems is immediately recognised if, on 
setting c = 0, the order of the system of differen- 
tial equations is reduced: such a reduced system 
cannot in general satisfy all the initial conditions. 
Singular perturbation techniques are very im- 
portant and are powerful for determining asymp- 
totic solutions of such systems of equations for 
small c. Asymptotic solutions are usually remarka- 
bly accurate approximations to the exact solu- 
tions. A practical and elementary discussion of 
some of the key techniques is given in Murray’s 
book on asymptotic analysis [ll]. In this section, 
the philosophy and actual singular perturbation 
technique will be described in detail and the 
asymptotic solutions to eqs 20-23 and 26-29 for 
0 c E Q: 1 derived. The main reason for doing this 
is to indicate when we can neglect the E terms in 
practical situations [12]. 

If we set c = 0, the right-hand sides of eqs 
27-29 give x, y and ei in terms of s. This is what 
we mean when we say that the system is in 
pseudo-steady state. In the fast-transient phase, s 
is approximately constant and x, y and ei change. 
Therefore, we solve the inner equations, eqs 20-23 
(which are valid for small t), with the initial 
conditions, eq. 25. For t large,’ we solve the sys- 
tem, eqs 26-29 (where T is O(l)), i.e., the 
pseudo-steady-state system, and match it to the 
solution for t of O(1). So, an appropriate time 

scale for t large is proportional to et rather than t. 
We analyse eqs 20-23 near t = 0, i.e., T - 0, after 
which we shall obtain the solutions to eqs 26-29 
for large t and finally show how to determine a 
uniformly valid solution for all t > 0 [12]. 

4.1. Inner or singular solutions 

We begin with the fast-transient phase equa- 
tions, eqs 20-23, with initial conditions, eq. 25, 
and because of the presence of the small c we look 
for a Taylor series solution in the form 

s( +r) = P)(T) + ES(i)( 7) + CV)( T) + . . . (30) 

for each of the variables s, x, y and ei. Substitut- 
ing these into eqs 20-23 and equating like powers 
of E, we can find the first terms in the series. For 
example, substituting the series solutions like eq. 
30 into eq. 20 and equating terms of O(1) gives 
ds(‘)/dT = 0. Since s(O) = 1, this implies that 
~(O)(T) = 1. That is, s is approximately constant in 
the fast-transient phase. Similarly, eq. 22 gives 

dy”’ 9 (0) -=-- 

dr l+ay - (31) 

The only solution to this equation which fits the 
initial condition y(0) = 0 is y(O)(+r) = 0. In the 
same way, eq. 23 yields 

de!‘) cp L 
dr =l+oy 

(0) = 0 (32) 

which implies that ep)( 7) E 0 since ei(0) = 0. Fi- 
nally, substituting the series solutions into eq. 23, 
we obtain 

dx”’ - = p) 
d7 

_ s ‘Qy (0) _ s ‘“‘eT’ 

-p) asmx(o) 
_--- 

1+a 1+u * (33) 

With the above solutions for s(O), y(O) and e$“, 
this becomes 

dx(‘) - = 1 --p 

dr 

which is easily solved with x(0) = 0 to give X(‘)(T) 
9i 1 - e-7. 
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TO obtain nonzero solutions for y and e;, we 
need to determine y(‘)(r) and e!‘)(T). This in- 
volves matching the coefficients of O(r) terms. 

We note that 

Eo Eo IJ 
E= s,(l+K/s,) =x1+0 

which implies that 

lJ= ( 1 $ c+ o(c2). 
0 

(35) 

Since we are assuming &/J?& = O(l), this implies 
that u = O(C) [9]. Here we introduce a similarity 
variable for LI, 

a=ep (37) 

where p is a constant of O(1). We show the L 
factor explicitly so that we can match it with the 
O(c) terms. Substituting eq. 37 for u in eq. 22, we 
equate terms of O(e): 

dy(‘) d7 = fix(O) - +y’? 

Since we already have an expression for x(O), we 
can solve the above linear equation for y(l)(r): 

(39) 

Now, matching coefficients in eq. 23 yields an 
equation for dei/dT in terms of y(l) which can be 
solved to give 

Y(l) = # (1; P) x(o) - 

Note that in obtaining e:‘)(T), we assumed In order to equate coefficients further, we need 
+ = O(1). If it were the case that $ - O(c), we to determine the order of magnitude of each of the 
would have used another similarity variable, q = terms. Experimentally, we know that there are two 
E#, and found that e!‘)(T) = 0, but that ep)( 7) fundamentally different outcomes: either all of the 
gives the same result as e{‘)(r) above. substrate is exhausted, ‘or all of the enzyme is 

In a similar manner, we can find the coeffi- inactivated. These correspond to 9 = O(1) with 
cients of higher order terms in the series. For $J = O(l), and 4 = O(1) with + = O(t) (refer to eq. 

example, the O(E) terms of eq. 20 give 

s(l)(7) = -& + &(e-‘- 1). (41) 

Note that all of these solutions satisfy the ini- 
tial conditions, eq. 25. 

4.2. Outer or pseudo-steady-state solutions 

We now proceed to look for solutions to the 
pseudo-steady-state problem in the same way with 
a view to matching the two time period solutions. 
Recall that these solutions will not in general 
satisfy the initial conditions. Undetermined con- 
stants of integration are evaluated by matching 
the solution domains together. 

As before, we look for simple solutions to eqs 
26-29 in the form 

s(T) = s&l,(T) = f~~~)(T)+t’s(~,(T)+... (42) 

for each of the substance variables s, x, y and e,. 
After we have substituted these solutions into eqs 
26-29, we once again equate coefficients of powers 
of z. Here, however, we must solve for the unde- 
termined constants of integration, which we do by 
the method of matched asymptotic expansions; 
i.e., the inner solution as T + cc must match the 
outer solution as T + 0 (see ref. 11). 

Taking the O(1) terms, we find 

O = '(0) - s(0)Y(O) - x(O) - '(qei(0) (43) 

from eq. 27, and, assuming II/ = O(l), yco, = 0 from 
eq. 28. Together, these give 

X(o) = r(o) (1 - ei(o) ) - (44 

Similarly, we obtain 
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24 for the parameter relations). We solve the equa- 
tions for each of these sets of constraints. 

Case I: p = U(l), aj = O(I), 9$ = O(I) 

This is the case when all of the rate constants 
are of the same order of magnitude. By assuming 
$I = O(l), we solve to obtain 

qo,(T) = 
1-P 

1 - CeTll-(‘/811/(l+P) (46) 

(47) 

where 

4 
8=p (48) 

1 and C is a constant of integration. We find a 
value for C by matching the values of q,,,(T) as 
T + 0 with the value of S(‘)(T) as 7 -, co. We 
know S”‘(T) = 1, so C = 8. (gee ref. 11 for details 
of matching.) 

Case 2; p - O(I), 4 = O(i), $I = O(e) 

Assuming Q, = O(c) gives 

S@,(T) r ,-z/o+P) 

ei(0)= 0 

ceici,(T) = ’ - ‘T1+” 

(49) 

(50) 

(51) 

where again we have matched with the inner solu- 
tions. 

In both the inner and outer solutions, we could 
continue to solve for terms of higher order of e in 
the series, eqs 30 and 42. The solutions would 
become progressively more complicated, but in 
each case the equations are linear. The higher 
order terms also become progressively smaller; for 
most practical purposes, therefore, the first non- 
zero term is sufficiently accurate. 

Now that we have solutions for the fast-tran- 
sient and the pseudesteady-state time periods, we 
can obtain composite solutions that are valid for 
all time t 2 0 by a simple method detailed in ref. 
13. We add the first term of the inner solutions to 

the corresponding term of the outer solutions and 
subtract their common part - the knit of the 
inner solution as time (T) goes to infinity, which is 
the same as the limit of the outer solutions as time 
(T) tends toward zero. For example, the inner 
solution for s is s@(r) = 1. The outer solution for 
case 2 is qoj = exp( - T/(1 + p)). The limits de- 
scribed above are both 1, so the composite solu- 
tion is: 

T 
skP=l+exp -- 

( ) l-tP 
-1 

( 

2 
=exp - 1,(1+p) . 1 

Doing the same for the other solutions, we 
obtain two sets of composite solutions, one for 
case 1 and one for case 2, which are valid for all 

eL,,(t) = ’ -iLrnp 

cyL,( t) - +(+ p) ( e-+“;:;e-“‘p 

-+ 4-Lp (1 - eZkp 0 
Case 2: 

(57) 

s:,(r) = e-‘/‘.o+P) (58) 

ekmp(t) = 0 (59) 

xkp( t) = sLm, - e-“‘P 

Y:lnpw =o 

(53) 

(54) 

(55) 

(54) 

(60) 

(61) 

(62) 

~YEompW = 



where /? = #/+p. the same parameter that Tatsunami et al. [6] called 
Note that the important parameter distinguish- (1 c r)p. The above expressions show that for 

ing cases 1 and 2 is p. When /I < 1, case 1 holds, /3 r~ 1, ei -) 1 as T-+ M (to first order in r), while 

and when /I > 1, case 2 holds. This fl is, in fact, for fl> 1, s + 0 as T + 00 (to first order in e). 

b 

1 2 9 4 5 6 ? 8 

TIME 

Fig, 1. First two terms of the cast 2 composite sties dutiom (---) COIL~PWC~ to numerical SO~I~~OIB ( -1 and previous 
approximdons: Wdey (--.--- ) and Tatsummi et al. (- - -), (a) Subs&W caoccntrati~n; (b) inmtive enzyme coa~~tmth 

Pammeters: &,-2, k-,=-4, k,=l2, k3=10,k,-2, E,,-D.S,s,-0.5. 
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These results agree with those of Tatsunami et al. 

161. 
Now that we have approximate asymptotic 

solutions to our nomlimensionalised systems, we 
shall compare them to previous solutions and to 
numerical solutions to evaluate their accuracy. 

5. Numerical sulutions and comparison with ana- 
lytic solutions 

To assess the accuracy of our analytic solu- 
tions, we compared results from our analysis with 
those obtained by solving the dimensional system, 
eqs 11-14, numerically. Since the numerical anal- 
ysis was carried out on the dimensional system, 
the. nondimensional concentrations were multi- 
plied )by their scale factors before plotting for ease 
of comparison. Previous authors [5,6] have been 
able to match only S and Ei values with their 
models. With our procedure we can evaluate the 
intermediate concentrations as well. 

The first two terms of the composite solutions 

are compared to previous and numerical solutions 

in fig. 1. We see that the present solutions are at 
least as accurate as previous approximations, and 
more accurate for most of the reaction. 

Fig. 2 shows the approximations of Waley [5] 
and Tatsunami et al. [6] and numerical solutions 
compared to the composite solution for S at small 
time (the inner domain). The case 2 parameters 
and solution set were used; the O(r) terms were 
kept to give 

s camp = e -=/(l+P) + < 

[ 

- l!pe Vfp 

+e -2r/(l,(l +Pn 

( 

_ - 
p &&l) +Y 1 

+e-‘/(“(l+P)) p + -FL l+P 
)I 

(64 

Fig. 3 shows the previous and numerical solu- 
tions compared to the composite solution for Ei 
also at small time. Again, case 2 parameters and 

TIME 

Fig. 4. Case 2 composite (-- - -) solutions compared to numerical solutions (- ) for X and Y, the intermediate concentra- 
tions. Parameters are the same as in fig. 1. 
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solution set were used, and small terms were kept 
to give 

eicnmp 
= <!$!(I _ ,-‘/w+0) 

+ te-‘/‘w+P)) _ p 
1s ( #2(1+P) - &)’ )I 

These graphs illustrate that the composite solu- 
tions are far more accurate than previous solutions 
in the inner domain. 

Fig. 4 shows the numerical solutions compared 
to the composite solutions for X and Y. The first 
term of the case 2 composite solution as previ- 
ously given was used for each of X and Y. These 
intermediate results are much more accurate than 
any pseudo-steady state method has been able to 
achieve, since the present method incorporates the 
variation of the intermediate time derivatives prior 
to the pseudesteady state. 

6. Discussion 

The above results show that the solutions de- 
scribed here are a valid approximation of the 
kinetics of the suicide substrate system. The solu- 
tions for S and Ei are more accurate than those of 
previous attempts [5,6] for &-,/SO = O(l), espe- 
cially in the inner domain (small time), which is 
by definition ignored by any pseudo-steady-state 
method. It should be noted that solutions may be 
derived for E,/S, of other magnitudes by the 
same method. Moreover, the method developed 
here is particularly useful in estimating the inter- 
mediate (X and Y) concentrations which no pre- 
vious analysis has been able to do. Perhaps the 
most important result of the method described 
here is that solutions are obtained analytically in 
terms of the kinetic parameters. These solutions 
may be used to estimate the parameters by the 

methods described by Waley [14] and Duggleby 
[7]. Such analytical solutions are especially im- 
portant when the equations are stiff, i.e., when 
small parameters multiply derivatives in the dif- 
ferential equation system, when numerical solu- 
tions are notoriously difficult to compute accu- 
rately. 
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