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Abstract

One of the characteristics of biologicalssgms is their ability to produce and sustapatial and spatio-temporal pattern.
Elucidating the underlying mechanisms responsible for thispimenon has been the goal of much experimental and theoretical
research. This paper illustrates thisad research by presenting some of the raathtical models that have been proposed
to account for pattern formation in biology and considering their implicatidosite this article: P.K. Maini, C. R. Biologies
327 (2004).
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1. Introduction the catalyst, and P& and phenanthroline, the periodic
oscillations are visualised as colour changes between
One of the most intriguing properties of many reddish-orange and blue (see, for example, [1,2] for
dynamical systems is their ability to spontaneously a review). Similar types of patterning arise in physiol-
generate spatial and spatio-temporal patterns. Thesepgy and one of the most widely-studied and important
have been well studied in fluid dynamics (for exam- areas of wave propagation concerns the electrical ac-
ple, Rayleigh—Bernard convection patterns), materials tivity in the heart [3] which stimulates muscle contrac-
(crystal growth), ecology (formation of herds), to men-  tion during heart beat.
tion only a few examples. In chemistry, the sponta- In developmental biology, a key aim is to under-
neous generation of propagating fronts, target patterns, stand the mechanisms underlying spatio-temporal pat-
spiral waves and toroidal scrolls in the Belousov— tgrn formation. Although genes play a crucial role, a
Zhabotinsky reaction hagbkn analysed in great detail. study of genetics alone cannot provide a mechanistic
In this reaction, bromate ions oxidise malonic acid in understanding of how physical and chemical processes
the presence of a catalyst, ce_riur_n, Wh_iCh has the statesithin a developing system conspire to produce the
Cet and Cé*. Sustained periodic oscillations are ob- o mplex spatio-temporal cues to which cells respond
served in the cerium ions. If, instead, one uséS'Rss  anq interact. Indeed, this problem extends beyond de-
velopmental biology. For example, in tumour forma-
E-mail address: maini@maths.ox.ac.uk (P.K. Maini). tion, one wishes to understand the combined effects of
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the signalling cues involved in the regulation of cellu- to a spatial gradient in a single chemical. He proposed
lar processes no longer functioning properly and new that this chemical concémation profile providedoo-
signalling cues initiated by the tumour cells. A num- sitional information for cells, which differentiated ac-
ber of the processes that occur during the formation cording to a series of threshold values. Here, the mech-
and spread of tumour cells are also of vital importance anism of setting up the signalling cue is simple, but
in wound healing, where their function is beneficial to the response is complex. Alternatively, the pattern for-
the organism. mation step may be complicated, but its interpreta-
In these examples, a number of complex mechani- tion simpler, requiring response to only one threshold
cal and biochemical processes interact in a highly non- value. For example, Turing showed that complicated
linear way. Such systems aaenenable to mathemati-  spatial patterns can be generated due to the reaction
cal modelling and the role of the modeller is to suggest and diffusion of a number of chemicals [5], a phe-
explanations, based on biologically plausible mecha- nomenon now known adiffusion-driven instahility.
nisms, of observed behaviour and to make experimen- The reaction kinetics he considered were stabilizing
tally testable predictions. and diffusion is, of course, a homogenizing process.
There are now a vast number of mathematical and Yet combined in the appropriate way, he showed that
computational models proposed to describe pattern these two stabilizing influences could conspire to pro-
formation in a number of different areas, too many to duce an instability resulting in spatially heterogeneous
describe in one article. Therefore, by way of illustra- chemical profiles — a spatial pattern. This is an exam-
tion, I will focus on pattern formation in development. ple of anemergent property and is termedliffusion-
In such systems, cell fate can be strongly influenced by driven instability, that is, a spatially uniform steady
environmental factors. Therefore, to answer questions state, linearly stable in the absence of diffusion, be-
on pattern formation, one must really address the is- comes linearly unstable in the presence of diffusion.
sue of how an organism organises the complex spatio- The resultant spatial pattern is said to have occurred
temporal sequence of signalling cues necessary to de-via self-organisation.
velop structure in a controlled and coordinated man-  The simplest model that can give rise to this
ner. Structure can form as a result of response to chem-instability involves two chemicals and takes the form:
ical signalling, as a consequence of cell-cell interac-

tion, through tissue movement and rearrangement, or o _ D1VZu+ f(u,v) (1)
most likely, a combination of all three. g’
This article is based on a lecture given at the sum- 2% _ p,v2, 4 ¢(u, v) ()

mer school in Bedlewo. Its aim was not to provide a 97

comprehensive review of the field, but to provide to whereu(x, ) andv(x, ) denote the concentrations of

a broad audience a flavour of the types of continuum the chemicals andv respectively, at spatial position
mathematical models that have been proposed to de-x, and timer on a bounded domain with, typically,
scribe pattern formation in biological systems. Sec- zero flux boundary conditions. The functiofsand

tion 2 introduces the concept of chemical pre-pattern g model the reaction kinetics af andv, respectively
models, while Section 3 focusses on cell movement (see examples later). Using standard linear theory (see,
models. Coupling model pattern generators is illus- for example, [1]) it can be shown that a spatially
trated in Section 4 by way of two examples. Some bi- uniform steady state of the above system can undergo
ological applications are presented in Sections 5 and 6 diffusion-driven instabilityif the following conditions

is devoted to a discussion. hold:
I fu+g,<0
2. Chemical pre-pattern models Il fugv — fugu >0

I Digy+ D2fy > 2\/D1D2(fugv — fogu)
The simplest chemical pre-pattern model is that
proposed by Wolpert [4] in which a source-sink mech- where all the partial deriviies are evaluated at the
anism, coupled with diffusion and degradation, leads spatially uniform steady state.
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One possible scenario for pattern formation is
that in which f, and g, are positive, the latter
implying that u activates v, while g, and f, are
negative, so that inhibits u (see, for example, [6]).
Condition 1= | f,| < |gvl, so from Ill D1 < D2. That
is, the activator diffuses more slowly than the inhibitor.

This is an example of the classic property of many self- g(u, v) = k2 (u —

organising systems, namebhort-range activation,
long-range inhibition, an idea first introduced by
Gierer and Meinhardt [7].

In Turing’s original model,f and g were linear

so that if the uniform steady state became unstable,
then the chemical concentrations would grow expo-

nentially. This, of course, is biologically unrealistic.
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CIMA (chlorite—iodide—malonic acid starch) reaction
[10,11]. In the model proposed for this reaction by
Lengyel and Epstein [12],

4uv

f(M,U):kl—M—m
uv

(6)
1+ u2>

where u, v are the concentrations of iodide and
chlorite, respectively, andi1 and k> are positive
constants.

For these systems, uniform steady state values for
u andv can be determined and the model equations
linearised about these steady states. Imposing the

Since Turing’s paper, a number of models have been conditions I-11l above defines the parameter space in

proposed whereirf andg are nonlinear so that when

the uniform steady state becomes unstable it may or
may not evolve to a bounded, stationary, spatially non-

uniform, steady state (gpatial pattern) depending on
the nonlinear terms. Examples include:

(i) the Gierer—Meinhardt model [7]:

2
—o— re
f(u,U)—a ﬁu"f_ v (3)

gu,v) = Su? — nv

whereq, 8, y, 8 andn are positive constants,
activatesy andv inhibits u;

(ii) the Thomas model [8]:
Vimuv
f(u,v)—a(uo—u)—m (4)
VmMU

glu,v) =B —v) — m

whereug, vg, «, B8, Vm, Km and Ks are positive
constants;
(iii) the Gray—Scott model [9]:
f(u,v) :—uv2+F(1—u)
g(u,v) =uv? — (F + kv

whereF andk are positive constants.

()

Although Turing predicted the phenomenon of di-
ffusion-driven instability in 1952, there were many
technical difficulties in observing this phenomenon
and it was not until almost 40 years later that it
was finally observed, in what is how known as the

which diffusion-driven instability occurs.

In many cases, particularly in one dimension, the
results of the linear analysis carry over to the weakly
nonlinear case but the fully nonlinear system can only
be analysed by numerical simulation. It can be shown
that the model exhibits, in one dimension, multiple
stable steady states, while in two dimensions there
is a further degeneracy. For example, the ability to
exhibit stripes or spots depends crucially on the type of
nonlinearities present (see, for example, [13,14], and
Fig. 1).

The Gierer—Meinhardt model can exhibit highly
localised patterns, known as spike-type solutions.
Simplified versions of this model can be analysed to
study the dynamics of the spike solutions on one-
and two-dimensional domains (see, for example, [16]).
This type of behaviour has been observed in the
Gray—Scott model and analysed in detail (see, for
example, [17,18]). The latter model also exhibits the
phenomenon of self-replicating spots, which has been
observed experimentally (see, for example, [17,19,
20]), and travelling pulses (see, for example, [21]).

There is now a great deal of literature on this
subject and general results on the patterning properties
of reaction—diffusion equations can be found in the
paper by Cross and Hohenberg [22] and the books by
Britton [23], Fife [24], Grindrod [25], Murray [1] and
Segel [26].

3. Cdl movement models

These models describe how cell aggregations can
occur spontaneously from an initially spatially homo-
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(b)

(d)

Fig. 1. The form of the pattern exhibited by tfiaring model in two dimensions depends dalig on the nonlinearity. Spots are favoured by
quadratic terms, stripes by cubic terms, after the systas been transformed so that the uniform steady sté@e@. This is illustrated using
the simple kineticsf (1, v) = au(1l— rlvz) +v(d—rou), g(u,v)=Bv(l+ %uv) + u(y + rov), by choosing the parameters, (8 andy)

in the linear regime so that diffusioniden instability occurs and then choosing andr, appropriately. ) r1 = 3.5, rp = 0; (b) as in @)

but with «, 8 andy chosen to excite a different wavelength solution. By chapsiifferent initial conditions, onean obtain different patterns
for the same parameter values, but the spatial scale of the solutions is preserved. This is illustrefemdyd], with parameters as ira)
and p), respectively. €) and ) are the same ag)and ), respectively, except thai = 0.02,r, = 0.2, so that spots are favoured. Reproduced

from [15] with permission.
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geneous cell density profile. Essentially, the spatially

uniform steady state becomes unstable when the cell

dispersing factors (for example, diffusion) are over-
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attached) and is the composite stress tensor given by

come by aggregating factors such as movement up Hereo, is the usual viscoelastic stress tensor

chemical gradients (known as chemotaxis) or adhesive
gradients (haptotaxis), or passive convection arising as

the result of cell-traction induced deformation of the
extracellular matrix (ECM) on which cells move.
The typical chemotaxis model takes the form:

d

a_’: =D, V21 =V - (x@nVu) + f(n,u) (7)
2_’: = D,V + g(n, u) (8)

wheren(x, t), u(x, t) denote cell density and chemoat-
tractant concentration, respectively, at positioand
time ¢; D,, D, are diffusion coefficientsf, g are
terms incorporating production and degradation and
x (u) is the chemotactic sensitivity. The latter varies
depending on the mode of cell-chemoattractant in-
teraction [27]. This model has been analysed exten-
sively (see, for example, [28,29]) and shown to exhibit
bounded spatial patterns. It can also exhibit the phe-
nomena of blow-up and of collapse [27].

Oster et al. [30] showed how mechanical effects
could be taken into account. Their model took the
form:

M DV —aV-mVp) -V (0
= n—ao -(n —_ A\n—
ot P at

+rn(N —n) 9)
ap au
Lo _v. o= 10
o1 <p8t> (10)

for the cell and matrix densitieg,(x, ) and p(x, 1),
respectively, whereD is the diffusion coefficienty,
the haptotacticoefficent, and- and N are constants
describing cell production due to logistic growth. Both
cell and matrix are assumed to move also by advection,
whereu(x, t) is the displacement of a material point of
matrix initially at x.

They further modelled the ECM as a viscoelastic
material at low Reynolds number, so

V.o+spu=0 (11)

wherespu accounts for body forces (modelled as a
linear spring where is the modulus of elasticity of the
substrate to which the composite ECM-cell milieu is

0 =0p+ 0y (12)
i L (er 2 a) a3
e TR T T A

viscous elastic

whered = V - u is the dilatationg = %[Vu +vuh)
is the strain tensot, is the unit tensoru1, w2 are the
shear and bulk viscosities, respectively, andv are
the Young’s modulus and the Poisson ratio, respec-
tively.
The stress due to cell traction is modelled by

™Tnp
T 1l4an
wheret and A are positive constants. This satisfies
the conditions that there is no traction without matrix
and that traction per cell dezases with increasing cell
density (contact inhibition).

Linear and nonlinear analgs, plus numerical sim-
ulation, show that models within this general mechan-
ical framework can exhibit steady state spatial pat-
terns [31] and spatio-temporal patterns [32].

| (14)

On

4. Coupling pattern generators

The above models provide a framework upon
which one can build more complicated and realistic
models. For example, it is probable that cells respond
to more than one chemotiéx cue. Recently, Painter
et al. [33] considered the case where the cells respond
to two chemical cues, assuming that the latter were
components in a Turing system. The simplest such
model takes the form:

ou

- = D1VZu+ f(u,v) (15)
?)_1; = DoV + g(u, v) (16)
a—': = D, V%1 =V - (xu(, v)n Vi)

-V- (Xu(bt, v)an) a7

whereu andv are the chemical concentratiomsthe
cell density and, (u, v) andx, («, v) are chemotactic
sensitivity functions. It is well known that, at primary
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bifurcation points, the turning points of the chemical
concentration profiles in the Turing model coincide.
Now, if we consider the above system in one dimen-
sion (for simplicity), we have that, at steady state

(18)

assuming zero flux boundarywditions. Therefore,
not only does: have turning points coincident with
those ofu andv but also, for appropriatg, and y,,
there may be other turning pointsmofleading to very
complex spatial patterns.

Reaction—diffusion mode can have instabilities
other than the Turing instability that we have thus far

PK. Maini / C. R. Biologies 327 (2004) 225-234

values, as well as references to other models. The
model takes the form:

g_,; =V (uVn — x()nVu) (19)
ou
o = Mo flw ) = () +3) fotw)]

V2 (20)
5, = 8y +a@d-v) (21)

wheren, u and v denote cell density, extracellular
cAMP concentration and fraction of active cAMP
receptors, respectively.

The second and third equations are a simplified

discussed. For example, depending on the nature of themodel of the cAMP-cell receptor dynamics (see [36]

intersection of the nullclinegy = ¢ =0 in Egs. (1)
and (2), withD; = D, = 0, one may obtain excitable
behaviour, that is, for extra-threshold stimulation away

for full details) modified by cell density effects; the
rate of CAMP synthesis per cell ig («, v) = (bv +
v2)(a + u?) /(1 + u?), whereq andb are positive con-

from the stable steady state, the system undergoes astants. This models autocatalytic production with sat-

long excursion before returning to its steady state;
it is also possible to obtain oscillatory behaviour.
With diffusion included, this leads to the possibility
of travelling wavetrain solutions. If one now couples
chemotaxis to this system it is possible to obtain
a completely different mode of aggregation to that
previously described. Cell streaming in the cellular
slime mould Dictyostelium discoideum is one such

uration, mediated by recegr binding. The functions

f2 andg are assumed to be linear i to model lin-

ear degradation of cCAMP and binding of active recep-
tors to cCAMP, respectively, while is assumed to be

a positive constant, accounting for the resensitization
of the desensitized fraction of receptors at constant
rate. This subsystem exhibits excitable dynamics lead-
ing to the formation of spiral waves of CAMP concen-

example. This serves as an excellent model paradigmtration. Cell density effects are modelled by the fac-
for morphogenesis as it exhibits the processes of tor ¢(n) =n/(1— pn/(K + n)), wherep andK are

signal transduction, signal relay, cell movement and
aggregation, all of which play important roles in
early embryonic development in higher organisms.
Briefly, starvation conditions trigger a developmental
programme which is initiated by cell—cell signalling
via the extracellular messenger cycli®&'3adenosine

positive constants. This excitable system is coupled
with a chemotaxis equation for cell density, with con-
stant diffusion coefficient, and chemotactic sensitiv-
ity x(v) = xov™/(A™ +v™), m > 1, which accounts
for adaptation, whergo and A are positive constants.
Hence cells only move in the wavefront, when they

monophosphate (CAMP). The chemotactic response to have a substantial number of active free receptors. The

this signal leads to the formation of a multicellular
organism composed typically of 461 cells. This

model thus exhibits the pulsatile movement of cells
that is observed experimentally. Note thayifv) was

organism passes through an intermediate motile (slug) a constant, as in the classical cell-chemotaxis model,

phase during which cells differentiate into pre-spore
and pre-stalk types, before developing a fruiting body,
aiding the dispersal of spores from which, under
favourable conditions, new amoebae develop.

then the cells would movalso in the waveback and
end up further away from their signalling neighbours
than at the start of the signal.

Using experimentally determined parameter val-

Several models have been proposed to account forues, the above model captures the key features of the
many of the afore-mentioned phenomena. Here, we aggregation process (see Fig. 2). The model is consis-
focus only on a model for cell aggregation proposed by tent with the observatiorhat as streaming proceeds,

Hofer et al. [34,35] — we refer the reader to this paper
for a fuller description of the biology and parameter

the wavespeed of the spiral patterns decreases, and
thus provides an alternative explanation for this phe-
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Fig. 2. Numerical simulation showing cell streamingDittyostelium discoideum under the influence of two signalling centres. Upper panel:
cell density (upper row) and cAMP concentration (lower row) for a ceuratating pair of spiral waves. Lower panel: cell density and cAMP
concentration for a spiral wave and a periodiwemaker (period 6 min). Initial conditions for thpiral waves were appropriately broken plane
wavefronts. Snapshots taken at 10 min, 40 min and 100 min; colow saading from black for low values to white for high values. See [37]

for full details.
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nomenon, which was previously explained by the as- tern formation. For example, the mechanical model
sumption that biochemical changes must be occurring assumes that cells aggregate and differentiate accord-
in the cell-cAMP system, altering the parameter val- ingly, while the Turing model assumes that cell density
ues. In the above model no such change is requiredremains uniform and cells differentiate in response to
because, as the cells form streams, they alter the condi-spatially patterned morphogens. Mathematically, thus
tions through which the cCAMP waves are propagating. far it has not been possible to show that there are cer-
This is initially equivalent to increasing the excitabil- tain patterns that one of the models exhibits which
ity of the medium which, in turn, leads to an increase the other cannot produce. Thus, from a mathematical
in the rotation frequency of the spiral core. As aresult yiewpoint, it is not possible to distinguish, as yet, be-
[38] the wavespeed of the spiral patterns decreases.  tween these models. However, one could then say that

some patterns, and patterning properties are generic

5. Applications and mechanism-independent, and this leads to the no-
_ . . tion of developmental constraints [48].
Turing was the first to formulate the notion of  The models propose different scenarios for pattern

a chemical morphogen, that is, he hypothesized that  formation and, to date, itis a highly controversial issue
cells responded to the concentration of certain chem- 4¢ tq which, if any, of the models is the appropriate

icals and differentiated accordingly. Recently, a num- 4ne |y most of the above models, pattern formation
ber of morphogens have been discovered, butitis still 4ses as a bifurcation from an initially spatially

an open questipn asto whgther their spatial pattern is homogeneous steady state. However, as recognised
set ulp bz afTu_r|fr|1g mechﬁTlsr_n.hln sgme C;\SGS, fﬁr ex- by Turing, this rarely happens in an embryo, where
ample, the fruit flyDrosophila, it has been shown that .o i, polarities are inherited maternally and the

some of the early pgtternlng_ is definitely not due to a system evolves from one pattern to another. This idea
Turing-type mechanism, but is set up due to a complex - .
. ; . was used by Maini et al. [49], who considered a
interaction of gradients. : . : X
. Turing model in an environment where a gradient
The book by Murray [1] describes a number of . . e
o X . . of a third chemical controlled the diffusivity of the
applications of the types of models discussed in this hemicals in the Turi ¢ h h d that
paper. Meinhardt [39] has shown that Turing-type chemicals in the Turing system. They showed tha
models (with two or more chemicals) can exhibit the such a model gave rise to results that were consistent
spectacular variety of patterns seen on sea shells, whileVith certain recombination experiments in chick limb
Nijhout [40] has shown that such models, together that appeared to contradict the Turing model. It turns
with a small number of sources and sinks. can exhibit Ut thatthere actually is a gradient in diffusivity across
the vast array of pigmentation patterns observed on the domain, as hypothesised by the model.
certain butterfly wings. This work has recently been ~ Although the biochemistry underlying the mod-
extended (see [41], and Fig. 3). elling of spatio-temporal patterning iDictyostelium
These models have been applied to account for an- discoideum is reasonably well known so that models
imal coat markings [42—46] and to skeletal patterning have a firm basis (see [50], and references therein)
in the limb (see [47] for a critical review). The Tur- that is not the case of the other applications presented
ing model predicts that the complexity of pattern in- above. Therefore the issue arises as to whether or not
creases with domain size and this has been observedTuring-type instabilities do play a role in biology (as
in the chick limb where an experimental manipulation mentioned, they have been shown to occur in chem-
which increases the limb size results in more digits. istry). Atthe very least, the Turing model, and the sub-
Conversely, reduction of domain size should decrease sequent modelling approaches it has inspired, provide
the number of digits and this has also been observed. a way of thinking about pattern formation that is very
different to how it had been thought of before, it in-
creases our intuition, and understanding of the pattern-
ing possibilities afforded by combining reaction and
The mathematical models that have been presenteddiffusion. Moreover, the model equations are arguably
above propose different scenarios for biological pat- some of the richest in mathematics and lead to a num-

6. Discussion
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(in)

0] (i)

(iii)
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@iv)

@iv)

Fig. 3. Simulations of the Gierer—Meinhardt model agemmetrically accurate representation of the winBagilio dardanus. By varying only
a small number of parameters it is possible to repredhe range of patterns seen in the different mimetjafd non-mimeticlf) forms of
this butterfly. Black indicates concentrationsuvcdibove the threshold value, white indicates coneginins below the threshold. For full details,

see [41]. Reproduced from [41] with permission.

ber of challenging and fascinating mathematical prob-
lems.
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