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Using mathematical models to help understand biological pat
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Abstract

One of the characteristics of biological systems is their ability to produce and sustain spatial and spatio-temporal patte
Elucidating the underlying mechanisms responsible for this phenomenon has been the goal of much experimental and theor
research. This paper illustrates this area of research by presenting some of the mathematical models that have been propos
to account for pattern formation in biology and considering their implications.To cite this article: P.K. Maini, C. R. Biologies
327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

One of the most intriguing properties of ma
dynamical systems is their ability to spontaneou
generate spatial and spatio-temporal patterns. T
have been well studied in fluid dynamics (for exa
ple, Rayleigh–Bernard convection patterns), mater
(crystal growth), ecology (formation of herds), to me
tion only a few examples. In chemistry, the spon
neous generation of propagating fronts, target patte
spiral waves and toroidal scrolls in the Belouso
Zhabotinsky reaction has been analysed in great deta
In this reaction, bromate ions oxidise malonic acid
the presence of a catalyst, cerium, which has the s
Ce3+ and Ce4+. Sustained periodic oscillations are o
served in the cerium ions. If, instead, one uses Fe2+ as

E-mail address: maini@maths.ox.ac.uk (P.K. Maini).
1631-0691/$ – see front matter 2004 Académie des sciences. Publis
doi:10.1016/j.crvi.2003.05.006
the catalyst, and Fe3+ and phenanthroline, the period
oscillations are visualised as colour changes betw
reddish-orange and blue (see, for example, [1,2]
a review). Similar types of patterning arise in physi
ogy and one of the most widely-studied and import
areas of wave propagation concerns the electrica
tivity in the heart [3] which stimulates muscle contra
tion during heart beat.

In developmental biology, a key aim is to unde
stand the mechanisms underlying spatio-temporal
tern formation. Although genes play a crucial role
study of genetics alone cannot provide a mechan
understanding of how physical and chemical proces
within a developing system conspire to produce
complex spatio-temporal cues to which cells resp
and interact. Indeed, this problem extends beyond
velopmental biology. For example, in tumour form
tion, one wishes to understand the combined effec
hed by Elsevier SAS. All rights reserved.
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the signalling cues involved in the regulation of cel
lar processes no longer functioning properly and n
signalling cues initiated by the tumour cells. A num
ber of the processes that occur during the forma
and spread of tumour cells are also of vital importa
in wound healing, where their function is beneficial
the organism.

In these examples, a number of complex mech
cal and biochemical processes interact in a highly n
linear way. Such systems areamenable to mathemat
cal modelling and the role of the modeller is to sugg
explanations, based on biologically plausible mec
nisms, of observed behaviour and to make experim
tally testable predictions.

There are now a vast number of mathematical
computational models proposed to describe pat
formation in a number of different areas, too many
describe in one article. Therefore, by way of illust
tion, I will focus on pattern formation in developmen
In such systems, cell fate can be strongly influenced
environmental factors. Therefore, to answer quest
on pattern formation, one must really address the
sue of how an organism organises the complex spa
temporal sequence of signalling cues necessary to
velop structure in a controlled and coordinated m
ner. Structure can form as a result of response to ch
ical signalling, as a consequence of cell–cell inter
tion, through tissue movement and rearrangemen
most likely, a combination of all three.

This article is based on a lecture given at the su
mer school in Bedlewo. Its aim was not to provide
comprehensive review of the field, but to provide
a broad audience a flavour of the types of continu
mathematical models that have been proposed to
scribe pattern formation in biological systems. S
tion 2 introduces the concept of chemical pre-patt
models, while Section 3 focusses on cell movem
models. Coupling model pattern generators is ill
trated in Section 4 by way of two examples. Some
ological applications are presented in Sections 5 a
is devoted to a discussion.

2. Chemical pre-pattern models

The simplest chemical pre-pattern model is t
proposed by Wolpert [4] in which a source-sink mec
anism, coupled with diffusion and degradation, lea
-

to a spatial gradient in a single chemical. He propo
that this chemical concentration profile providedpo-
sitional information for cells, which differentiated ac
cording to a series of threshold values. Here, the me
anism of setting up the signalling cue is simple,
the response is complex. Alternatively, the pattern
mation step may be complicated, but its interpre
tion simpler, requiring response to only one thresh
value. For example, Turing showed that complica
spatial patterns can be generated due to the rea
and diffusion of a number of chemicals [5], a ph
nomenon now known asdiffusion-driven instability.
The reaction kinetics he considered were stabiliz
and diffusion is, of course, a homogenizing proce
Yet combined in the appropriate way, he showed t
these two stabilizing influences could conspire to p
duce an instability resulting in spatially heterogene
chemical profiles – a spatial pattern. This is an exa
ple of anemergent property and is termeddiffusion-
driven instability, that is, a spatially uniform stead
state, linearly stable in the absence of diffusion,
comes linearly unstable in the presence of diffusi
The resultant spatial pattern is said to have occu
via self-organisation.

The simplest model that can give rise to th
instability involves two chemicals and takes the for

(1)
∂u

∂t
= D1∇2u + f (u, v)

(2)
∂v

∂t
= D2∇2v + g(u, v)

whereu(x, t) andv(x, t) denote the concentrations
the chemicalsu andv respectively, at spatial positio
x, and timet on a bounded domain with, typicall
zero flux boundary conditions. The functionsf and
g model the reaction kinetics ofu andv, respectively
(see examples later). Using standard linear theory (
for example, [1]) it can be shown that a spatia
uniform steady state of the above system can und
diffusion-driven instabilityif the following conditions
hold:

I fu + gv < 0
II fugv − fvgu > 0

III D1gv + D2fu > 2
√

D1D2(fugv − fvgu)

where all the partial derivatives are evaluated at th
spatially uniform steady state.
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One possible scenario for pattern formation
that in which fu and gu are positive, the latte
implying that u activates v, while gv and fv are
negative, so thatv inhibits u (see, for example, [6])
Condition I⇒ |fu| < |gv|, so from III D1 < D2. That
is, the activator diffuses more slowly than the inhibit
This is an example of the classic property of many s
organising systems, namelyshort-range activation,
long-range inhibition, an idea first introduced b
Gierer and Meinhardt [7].

In Turing’s original model,f and g were linear
so that if the uniform steady state became unsta
then the chemical concentrations would grow ex
nentially. This, of course, is biologically unrealisti
Since Turing’s paper, a number of models have b
proposed whereinf andg are nonlinear so that whe
the uniform steady state becomes unstable it ma
may not evolve to a bounded, stationary, spatially n
uniform, steady state (aspatial pattern) depending on
the nonlinear terms. Examples include:

(i) the Gierer–Meinhardt model [7]:

(3)
f (u, v) = α − βu + γ u2

v

g(u, v) = δu2 − ηv

whereα,β, γ, δ andη are positive constants,u
activatesv andv inhibitsu;

(ii) the Thomas model [8]:

(4)
f (u, v) = α(u0 − u) − Vmuv

Km + u + u2/Ks

g(u, v) = β(v0 − v) − Vmuv

Km + u + u2/Ks

whereu0, v0, α, β , Vm, Km andKs are positive
constants;

(iii) the Gray–Scott model [9]:

(5)
f (u, v) = −uv2 + F(1− u)

g(u, v) = uv2 − (F + k)v

whereF andk are positive constants.

Although Turing predicted the phenomenon of
ffusion-driven instability in 1952, there were man
technical difficulties in observing this phenomen
and it was not until almost 40 years later that
was finally observed, in what is now known as t
CIMA (chlorite–iodide–malonic acid starch) reactio
[10,11]. In the model proposed for this reaction
Lengyel and Epstein [12],

(6)
f (u, v) = k1 − u − 4uv

1+ u2

g(u, v) = k2

(
u − uv

1+ u2

)

where u, v are the concentrations of iodide a
chlorite, respectively, andk1 and k2 are positive
constants.

For these systems, uniform steady state values
u andv can be determined and the model equati
linearised about these steady states. Imposing
conditions I–III above defines the parameter spac
which diffusion-driven instability occurs.

In many cases, particularly in one dimension,
results of the linear analysis carry over to the wea
nonlinear case but the fully nonlinear system can o
be analysed by numerical simulation. It can be sho
that the model exhibits, in one dimension, multip
stable steady states, while in two dimensions th
is a further degeneracy. For example, the ability
exhibit stripes or spots depends crucially on the typ
nonlinearities present (see, for example, [13,14],
Fig. 1).

The Gierer–Meinhardt model can exhibit high
localised patterns, known as spike-type solutio
Simplified versions of this model can be analysed
study the dynamics of the spike solutions on o
and two-dimensional domains (see, for example, [1
This type of behaviour has been observed in
Gray–Scott model and analysed in detail (see,
example, [17,18]). The latter model also exhibits
phenomenon of self-replicating spots, which has b
observed experimentally (see, for example, [17,
20]), and travelling pulses (see, for example, [21]).

There is now a great deal of literature on th
subject and general results on the patterning prope
of reaction–diffusion equations can be found in
paper by Cross and Hohenberg [22] and the book
Britton [23], Fife [24], Grindrod [25], Murray [1] and
Segel [26].

3. Cell movement models

These models describe how cell aggregations
occur spontaneously from an initially spatially hom
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Fig. 1. The form of the pattern exhibited by theTuring model in two dimensions depends crucially on the nonlinearity. Spots are favoured
quadratic terms, stripes by cubic terms, after the system has been transformed so that the uniform steady state is(0,0). This is illustrated using
the simple kinetics,f (u, v) = αu(1− r1v2) + v(1− r2u), g(u, v) = βv(1+ αr1

β
uv) + u(γ + r2v), by choosing the parameters (α, β andγ )

in the linear regime so that diffusion-driven instability occurs and then choosingr1 and r2 appropriately. (a) r1 = 3.5, r2 = 0; (b) as in (a)
but with α, β andγ chosen to excite a different wavelength solution. By choosing different initial conditions, onecan obtain different pattern
for the same parameter values, but the spatial scale of the solutions is preserved. This is illustrated by (c) and (d), with parameters as in (a)
and (b), respectively. (e) and (f) are the same as (a) and (b), respectively, except thatr1 = 0.02,r2 = 0.2, so that spots are favoured. Reproduc
from [15] with permission.
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geneous cell density profile. Essentially, the spati
uniform steady state becomes unstable when the
dispersing factors (for example, diffusion) are ov
come by aggregating factors such as movemen
chemical gradients (known as chemotaxis) or adhe
gradients (haptotaxis), or passive convection arisin
the result of cell-traction induced deformation of t
extracellular matrix (ECM) on which cells move.

The typical chemotaxis model takes the form:

(7)
∂n

∂t
= Dn∇2n − ∇ · (χ(u)n∇u

) + f (n,u)

(8)
∂u

∂t
= Du∇2u + g(n,u)

wheren(x, t), u(x, t) denote cell density and chemoa
tractant concentration, respectively, at positionx and
time t ; Dn, Du are diffusion coefficients,f,g are
terms incorporating production and degradation
χ(u) is the chemotactic sensitivity. The latter vari
depending on the mode of cell-chemoattractant
teraction [27]. This model has been analysed ex
sively (see, for example, [28,29]) and shown to exh
bounded spatial patterns. It can also exhibit the p
nomena of blow-up and of collapse [27].

Oster et al. [30] showed how mechanical effe
could be taken into account. Their model took t
form:

(9)

∂n

∂t
= D∇2n − α∇ · (n∇ρ) − ∇ ·

(
n
∂u
∂t

)

+ rn(N − n)

(10)
∂ρ

∂t
= −∇ ·

(
ρ

∂u
∂t

)

for the cell and matrix densities,n(x, t) andρ(x, t),
respectively, whereD is the diffusion coefficient,α,
the haptotacticcoefficent, andr andN are constants
describing cell production due to logistic growth. Bo
cell and matrix are assumed to move also by advect
whereu(x, t) is the displacement of a material point
matrix initially at x.

They further modelled the ECM as a viscoelas
material at low Reynolds number, so

(11)∇ · σ + sρu = 0

where sρu accounts for body forces (modelled as
linear spring wheres is the modulus of elasticity of th
substrate to which the composite ECM-cell milieu
attached) andσ is the composite stress tensor given

(12)σ = σρ + σn

Hereσρ is the usual viscoelastic stress tensor

(13)σρ = µ1
∂ε

∂t
+ µ2

∂θ

∂t
I︸ ︷︷ ︸

viscous

+ E

1+ ν

(
ε + ν

1− 2ν
θI

)
︸ ︷︷ ︸

elastic

whereθ = ∇ · u is the dilatation,ε = 1
2[∇u + ∇uT]

is the strain tensor,I is the unit tensor,µ1, µ2 are the
shear and bulk viscosities, respectively, andE, ν are
the Young’s modulus and the Poisson ratio, resp
tively.

The stress due to cell traction is modelled by

(14)σn = τnρ

1+ λn
I

where τ and λ are positive constants. This satisfi
the conditions that there is no traction without mat
and that traction per cell decreases with increasing ce
density (contact inhibition).

Linear and nonlinear analyses, plus numerical sim
ulation, show that models within this general mech
ical framework can exhibit steady state spatial p
terns [31] and spatio-temporal patterns [32].

4. Coupling pattern generators

The above models provide a framework up
which one can build more complicated and realis
models. For example, it is probable that cells resp
to more than one chemotactic cue. Recently, Painte
et al. [33] considered the case where the cells resp
to two chemical cues, assuming that the latter w
components in a Turing system. The simplest s
model takes the form:

(15)
∂u

∂t
= D1∇2u + f (u, v)

(16)
∂v

∂t
= D2∇2v + g(u, v)

(17)

∂n

∂t
= Dn∇2n − ∇ · (χu(u, v)n∇u

)
− ∇ · (χv(u, v)n∇v

)
whereu andv are the chemical concentrations,n the
cell density andχu(u, v) andχv(u, v) are chemotactic
sensitivity functions. It is well known that, at prima
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bifurcation points, the turning points of the chemic
concentration profiles in the Turing model coincid
Now, if we consider the above system in one dim
sion (for simplicity), we have that, at steady state

(18)Dn
dn

dx
= n

(
χu

du

dx
+ χv

dv

dx

)

assuming zero flux boundary conditions. Therefore
not only doesn have turning points coincident wit
those ofu andv but also, for appropriateχu andχv ,
there may be other turning points ofn, leading to very
complex spatial patterns.

Reaction–diffusion models can have instabilitie
other than the Turing instability that we have thus
discussed. For example, depending on the nature o
intersection of the nullclinesf = g = 0 in Eqs. (1)
and (2), withD1 = D2 = 0, one may obtain excitabl
behaviour, that is, for extra-threshold stimulation aw
from the stable steady state, the system undergo
long excursion before returning to its steady sta
it is also possible to obtain oscillatory behavio
With diffusion included, this leads to the possibili
of travelling wavetrain solutions. If one now coupl
chemotaxis to this system it is possible to obt
a completely different mode of aggregation to th
previously described. Cell streaming in the cellu
slime mouldDictyostelium discoideum is one such
example. This serves as an excellent model parad
for morphogenesis as it exhibits the processes
signal transduction, signal relay, cell movement a
aggregation, all of which play important roles
early embryonic development in higher organism
Briefly, starvation conditions trigger a developmen
programme which is initiated by cell–cell signallin
via the extracellular messenger cyclic 3′5′-adenosine
monophosphate (cAMP). The chemotactic respons
this signal leads to the formation of a multicellul
organism composed typically of 104–105 cells. This
organism passes through an intermediate motile (s
phase during which cells differentiate into pre-sp
and pre-stalk types, before developing a fruiting bo
aiding the dispersal of spores from which, und
favourable conditions, new amoebae develop.

Several models have been proposed to accoun
many of the afore-mentioned phenomena. Here,
focus only on a model for cell aggregation proposed
Höfer et al. [34,35] – we refer the reader to this pa
for a fuller description of the biology and parame
values, as well as references to other models.
model takes the form:

(19)
∂n

∂t
= ∇ · (µ∇n − χ(v)n∇u

)

(20)

∂u

∂t
= λ

[
φ(n)f1(u, v) − (

φ(n) + δ
)
f2(u)

]
+ ∇2u

(21)
∂v

∂t
= −g(u)v + α(u)(1− v)

where n, u and v denote cell density, extracellula
cAMP concentration and fraction of active cAM
receptors, respectively.

The second and third equations are a simplifi
model of the cAMP-cell receptor dynamics (see [3
for full details) modified by cell density effects; th
rate of cAMP synthesis per cell isf1(u, v) = (bv +
v2)(a + u2)/(1+ u2), wherea andb are positive con-
stants. This models autocatalytic production with s
uration, mediated by receptor binding. The functions
f2 andg are assumed to be linear inu, to model lin-
ear degradation of cAMP and binding of active rec
tors to cAMP, respectively, whileα is assumed to b
a positive constant, accounting for the resensitiza
of the desensitized fraction of receptors at cons
rate. This subsystem exhibits excitable dynamics le
ing to the formation of spiral waves of cAMP conce
tration. Cell density effects are modelled by the f
tor φ(n) = n/(1 − ρn/(K + n)), whereρ andK are
positive constants. This excitable system is coup
with a chemotaxis equation for cell density, with co
stant diffusion coefficientµ, and chemotactic sensitiv
ity χ(v) = χ0v

m/(Am + vm), m > 1, which accounts
for adaptation, whereχ0 andA are positive constants
Hence cells only move in the wavefront, when th
have a substantial number of active free receptors.
model thus exhibits the pulsatile movement of ce
that is observed experimentally. Note that ifχ(v) was
a constant, as in the classical cell-chemotaxis mo
then the cells would movealso in the waveback an
end up further away from their signalling neighbou
than at the start of the signal.

Using experimentally determined parameter v
ues, the above model captures the key features o
aggregation process (see Fig. 2). The model is con
tent with the observation that as streaming proceed
the wavespeed of the spiral patterns decreases,
thus provides an alternative explanation for this p
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nel:
MP
ne
37]
Fig. 2. Numerical simulation showing cell streaming inDictyostelium discoideum under the influence of two signalling centres. Upper pa
cell density (upper row) and cAMP concentration (lower row) for a counter-rotating pair of spiral waves. Lower panel: cell density and cA
concentration for a spiral wave and a periodic pacemaker (period 6 min). Initial conditions for thespiral waves were appropriately broken pla
wavefronts. Snapshots taken at 10 min, 40 min and 100 min; colour scale ranging from black for low values to white for high values. See [
for full details.
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nomenon, which was previously explained by the
sumption that biochemical changes must be occur
in the cell-cAMP system, altering the parameter v
ues. In the above model no such change is requ
because, as the cells form streams, they alter the co
tions through which the cAMP waves are propagati
This is initially equivalent to increasing the excitab
ity of the medium which, in turn, leads to an increa
in the rotation frequency of the spiral core. As a res
[38] the wavespeed of the spiral patterns decrease

5. Applications

Turing was the first to formulate the notion
a chemical morphogen, that is, he hypothesized th
cells responded to the concentration of certain ch
icals and differentiated accordingly. Recently, a nu
ber of morphogens have been discovered, but it is
an open question as to whether their spatial patte
set up by a Turing mechanism. In some cases, for
ample, the fruit flyDrosophila, it has been shown tha
some of the early patterning is definitely not due t
Turing-type mechanism, but is set up due to a comp
interaction of gradients.

The book by Murray [1] describes a number
applications of the types of models discussed in
paper. Meinhardt [39] has shown that Turing-ty
models (with two or more chemicals) can exhibit t
spectacular variety of patterns seen on sea shells, w
Nijhout [40] has shown that such models, toget
with a small number of sources and sinks, can exh
the vast array of pigmentation patterns observed
certain butterfly wings. This work has recently be
extended (see [41], and Fig. 3).

These models have been applied to account for
imal coat markings [42–46] and to skeletal pattern
in the limb (see [47] for a critical review). The Tu
ing model predicts that the complexity of pattern
creases with domain size and this has been obse
in the chick limb where an experimental manipulati
which increases the limb size results in more dig
Conversely, reduction of domain size should decre
the number of digits and this has also been observ

6. Discussion

The mathematical models that have been prese
above propose different scenarios for biological p
-

tern formation. For example, the mechanical mo
assumes that cells aggregate and differentiate acc
ingly, while the Turing model assumes that cell dens
remains uniform and cells differentiate in response
spatially patterned morphogens. Mathematically, t
far it has not been possible to show that there are
tain patterns that one of the models exhibits wh
the other cannot produce. Thus, from a mathema
viewpoint, it is not possible to distinguish, as yet, b
tween these models. However, one could then say
some patterns, and patterning properties are gen
and mechanism-independent, and this leads to the
tion of developmental constraints [48].

The models propose different scenarios for patt
formation and, to date, it is a highly controversial iss
as to which, if any, of the models is the appropri
one. In most of the above models, pattern format
arises as a bifurcation from an initially spatia
homogeneous steady state. However, as recogn
by Turing, this rarely happens in an embryo, wh
certain polarities are inherited maternally and
system evolves from one pattern to another. This i
was used by Maini et al. [49], who considered
Turing model in an environment where a gradie
of a third chemical controlled the diffusivity of th
chemicals in the Turing system. They showed t
such a model gave rise to results that were consis
with certain recombination experiments in chick lim
that appeared to contradict the Turing model. It tu
out that there actually is a gradient in diffusivity acro
the domain, as hypothesised by the model.

Although the biochemistry underlying the mo
elling of spatio-temporal patterning inDictyostelium
discoideum is reasonably well known so that mode
have a firm basis (see [50], and references ther
that is not the case of the other applications prese
above. Therefore the issue arises as to whether o
Turing-type instabilities do play a role in biology (a
mentioned, they have been shown to occur in ch
istry). At the very least, the Turing model, and the su
sequent modelling approaches it has inspired, pro
a way of thinking about pattern formation that is ve
different to how it had been thought of before, it i
creases our intuition, and understanding of the patt
ing possibilities afforded by combining reaction a
diffusion. Moreover, the model equations are argua
some of the richest in mathematics and lead to a n
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s,
(a)

(i) (ii) (iii) (iv)

(b)

(i) (ii) (iii) (iv)

Fig. 3. Simulations of the Gierer–Meinhardt model on ageometrically accurate representation of the wing ofPapilio dardanus. By varying only
a small number of parameters it is possible to reproduce the range of patterns seen in the different mimetic (a) and non-mimetic (b) forms of
this butterfly. Black indicates concentrations ofv above the threshold value, white indicates concentrations below the threshold. For full detail
see [41]. Reproduced from [41] with permission.
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